TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≤ 3.
C. m ≥ 3.
D. −3 ≤ m ≤ 3.
Câu 2. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
B. 2.
C. 1.
A. .
2
D.
ln 2
.
2
Câu 3. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Hai khối chóp tứ giác.
Câu 4. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
x−1
y
z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.
Câu 5. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 6. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
B. y = loga x trong đó a = 3 − 2.
A. y = log √2 x.
C. y = log π4 x.
D. y = log 14 x.
Câu 7. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 20, 128 triệu đồng.
Câu 8. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 2400 m.
D. 6510 m.
π
Câu 9. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π
A.
e .
B. 1.
C.
e .
D. e 3 .
2
2
2
3a
Câu 10. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
2a
a 2
a
A. .
B.
.
C.
.
D. .
3
3
3
4
log 2x
Câu 11. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
2x ln 10
x
x ln 10
Trang 1/10 Mã đề 1
Câu 12. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 6 mặt.
D. 10 mặt.
x−2
Câu 13. Tính lim
x→+∞ x + 3
2
D. 1.
A. −3.
B. 2.
C. − .
3
Câu 14. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 15. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
4035
2017
A.
.
B.
.
C.
.
D. 2017.
2017
2018
2018
x+1
Câu 16. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
B. .
C. .
D. 1.
A. .
3
2
6
Câu 17. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 3.
D. 4.
Câu 18. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
un
Câu 19. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 0.
B. −∞.
C. +∞.
D. 1.
Câu 20. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
.
B.
u
=
.
A. un =
n
(n + 1)2
n2
C. un =
n2 − 2
.
5n − 3n2
Câu 21. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
B. 2.
1
3|x−1|
C. 3.
Câu 22. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2
A. 2.
B. Vô nghiệm.
C. 1.
x−3
x−2
1 − 2n
.
5n + n2
D. un =
= 3m − 2 có nghiệm duy
D. 4.
x−3
− 3.3
Câu 23. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (0; 2).
C. (−∞; 1).
x−2
+ 6 = 0 là
D. 3.
D. (2; +∞).
Câu 24. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.
Câu 25. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 26. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 1.
D. 0.
Trang 2/10 Mã đề 1
2n − 3
Câu 27. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 1.
√
√
4n2 + 1 − n + 2
Câu 28. Tính lim
bằng
2n − 3
3
A. 2.
B. .
2
C. 0.
D. −∞.
C. 1.
D. +∞.
√
√
Câu 29. Phần thực và √
phần ảo của số phức
z
=
2
−
1
−
3i lần lượt √l
√
√
A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 30. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 31. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 1.
C. 4.
D. 3.
Câu 32. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8
12
1
Câu 33. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
√
2
x + 3x + 5
Câu 34. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 1.
D. 0.
4
4
!x
1
1−x
Câu 35. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.
D. log2 3.
Câu 36. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều.
D. Bát diện đều.
Câu 37. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.
D. D = (0; +∞).
C. D = R \ {0}.
Câu 38. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 12.
C. 10.
D. 3.
Câu 39. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {4; 3}.
D. {3; 4}.
Trang 3/10 Mã đề 1
Câu 40. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
D. m > − .
A. m ≥ 0.
B. m ≤ 0.
C. − < m < 0.
4
4
√
√
Câu 41. Tìm
√
√ giá trị lớn nhất của√hàm số y = x + 3 + 6 − x
A. 2 + 3.
B. 2 3.
C. 3.
D. 3 2.
a
1
Câu 42. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 4.
C. 1.
D. 7.
Câu 43. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
6
2
3
Câu 44. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B. a 3.
C.
.
D. a 6.
2
Câu 45. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 12 m.
D. 8 m.
Câu 46. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 4.
D. V = 3.
Câu 47. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 2.
C. 1.
D. 3.
Câu 48. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Ba mặt.
D. Bốn mặt.
Câu 49. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. n2 lần.
D. 3n3 lần.
[ = 60◦ , S O
Câu 50. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√
a 57
2a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
17
19
19
Câu 51. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y+2 z−3
A. =
=
.
B.
=
=
.
2
3
−1
2
2
2
x y z−1
x−2 y−2 z−3
C. = =
.
D.
=
=
.
1 1
1
2
3
4
Câu 52. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 30.
D. 20.
Câu 53. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 54. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B.
.
C. a.
D. .
3
2
2
Trang 4/10 Mã đề 1
2
2
sin x
Câu 55.
+ 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm√số f (x) = 2
A. 2 2 và 3.
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.
Câu 56. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 57. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. [1; +∞).
D. (−∞; −3].
Câu 58. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 64cm3 .
D. 48cm3 .
Câu 59. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
A. 1.
B. .
C. .
D.
.
2
2
2
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 60. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
Câu 61. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. 2
.
D. √
.
.
C. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
q
Câu 62. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
D. m ∈ [0; 4].
Câu 63. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = 22.
2
Câu 64. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
B. 2 .
C. 3 .
e
2e
2 e
D.
2
.
e3
[ = 60◦ , S A ⊥ (ABCD).
Câu 65. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√
√ S C là a. Thể tích khối chóp S .ABCD là
3
3
3
√
a 2
a 3
a
2
A.
.
B.
.
C. a3 3.
D.
.
12
6
4
2n2 − 1
Câu 66. Tính lim 6
3n + n4
2
A. 0.
B. .
C. 1.
D. 2.
3
√3
4
Câu 67. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
7
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
0 0 0 0
0
Câu 68.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
7
3
2
Trang 5/10 Mã đề 1
Câu 69. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
C. 30.
D. 12.
Câu 70. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = ln 10.
D. f 0 (0) = 1.
A. f 0 (0) = 10.
B. f 0 (0) =
ln 10
Câu 71. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có vơ số.
C. Khơng có.
D. Có hai.
Câu 72. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là −4.
Câu 73. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
2a
5a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 74. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
.
B.
.
C. a 3.
D. a 2.
A.
2
3
Câu 75. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối lập phương.
Câu 76. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 77. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 3.
D. 4.
Câu 78. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 79. Điểm cực đại của đồ thị hàm số y = 2x − 3x − 2 là
A. (−1; −7).
B. (2; 2).
C. (1; −3).
D. (0; −2).
√
Câu 80. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
3
2
Câu 81. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
!
!
!
1
2
2016
4x
Câu 82. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T = 1008.
C. T = 2017.
D. T =
.
2017
1
Câu 83. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Trang 6/10 Mã đề 1
1
Câu 84. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (−∞; 1).
C. D = R \ {1}.
D. D = (1; +∞).
! x3 −3mx2 +m
1
Câu 85. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ R.
D. m ∈ (0; +∞).
Câu 86. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√
√ N, P bằng
√
√
20 3
14 3
.
B.
.
C. 8 3.
D. 6 3.
A.
3
3
Z 1
Câu 87. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
A. .
B. .
C. 1.
2
4
Câu 88. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. 0.
Câu 89. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
a 3
a3 2
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
4
6
12
12
cos n + sin n
Câu 90. Tính lim
n2 + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
Câu 91. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B.
.
C. 5.
D. 68.
17
Câu 92. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.
C. 5.
D. 4.
x+2
Câu 93. Tính lim
bằng?
x→2
x
A. 1.
B. 2.
C. 3.
D. 0.
x−3
Câu 94. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. 1.
C. −∞.
D. +∞.
Câu 95. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = R.
2
D. D = [2; 1].
Câu 96. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
8
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 97. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. 2e2 .
D. −e2 .
Trang 7/10 Mã đề 1
d = 60◦ . Đường chéo
Câu 98. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
3
B.
A. a 6.
.
C.
.
D.
.
3
3
3
Câu 99. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
D. V = S h.
3
2
Câu 100. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 101. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.
2−n
bằng
Câu 102. Giá trị của giới hạn lim
n+1
A. 2.
B. 1.
C. 30.
D. 20.
C. 0.
D. −1.
Câu 103. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
α α
α
A. a b = (ab) .
B. β = a β .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
a
Câu 104. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 2
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
16
24
48
Câu 105. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m
√
√
A. 16.
B. 8 2.
C. 7 3.
D. 8 3.
1
Câu 106. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. 3.
C. .
D. −3.
A. − .
3
3
Câu 107. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 108. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
Câu 109. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = 0.
D. x = −8.
Câu 110. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.
C. y0 = ln x − 1.
D. y0 = x + ln x.
C. +∞.
D. −∞.
Câu 111. Tính lim
x→1
A. 3.
x3 − 1
x−1
B. 0.
Câu 112. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. − .
C. .
2
2
D. −2.
Trang 8/10 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
√
Câu 114. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vô nghiệm.
D. 3 nghiệm.
√3
Câu 115. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. −3.
C. .
D. 3.
3
3
3
2
Câu 116. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
√
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 − 4 2.
D. 3 + 4 2.
Câu 113. [3-1226d] Tìm tham số thực m để phương trình
Câu 117. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 6.
C. −6.
D. 5.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 118. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
2
Câu 119. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là
√
√ với đáy và S C = a 3.3 √
a3 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
2
12
4
9
Câu 120. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 121. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 122. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {5; 2}.
C. {3}.
D. {2}.
√
Câu 123. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
2
6
6
Câu 124. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 125.
hạn là 0?
!n Dãy số nào sau đây có !giới
n
1
5
A.
.
B.
.
3
3
!n
5
C. − .
3
!n
4
D.
.
e
Câu 126.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
1
A.
xα dx =
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
α+1
Z
Z x
C.
0dx = C, C là hằng số.
D.
dx = x + C, C là hằng số.
Trang 9/10 Mã đề 1
Câu 127. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
6
18
Câu 128. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
3
10a
3
.
A. 40a3 .
B. 20a3 .
C. 10a3 .
D.
3
Câu 129. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
6
. Tính
Câu 130. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
3x
+
1
Z 1
f (x)dx.
0
A. 6.
B. −1.
C. 4.
D. 2.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
1.
2.
3.
B
4.
5.
B
6. A
D
7.
10.
11.
D
12.
13.
D
14.
15.
D
18.
19. A
20.
21. A
22. A
23.
B
25. A
B
C
D
B
D
D
26.
D
C
28.
29.
C
30.
D
C
24.
27.
31.
D
16.
C
17.
C
8.
C
9.
B
C
D
32.
C
33.
C
34.
B
35.
C
36.
B
37. A
38.
D
39. A
40.
D
42.
D
43. A
44.
D
45. A
46.
C
48.
C
50.
C
41.
47.
D
C
49. A
51.
52.
C
53.
D
54.
55. A
56.
57. A
58.
59. A
60.
61.
C
B
C
B
62. A
C
63. A
65.
D
64.
D
B
66. A
67. A
68.
1
C
69.
D
70.
71.
D
72.
73.
B
B
74. A
75. A
76.
D
79.
B
78.
C
77.
C
81. A
D
80.
B
82.
B
84.
D
85. A
86.
D
87. A
88.
B
90.
B
83.
B
89.
D
91.
B
92.
93.
B
94. A
96.
C
95.
97.
D
99.
C
98. A
C
100. A
101.
B
102.
103.
B
104. A
105. A
D
106. A
107.
C
109.
108. A
D
110.
B
D
112.
111. A
D
113.
114.
C
115.
B
116. A
117. A
118. A
119.
B
120.
121.
B
122. A
123. A
124.
125.
B
126. A
128.
B
129.
130.
D
C
2
B
C
C