Tải bản đầy đủ (.pdf) (12 trang)

Đê ôn thptqg 6 (1)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.08 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

ln x p 2
1
Câu 1. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
3
3
9
9

Câu 2. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là



3

a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
12
4
3
◦ d

d
Câu 3. Cho hình chóp S .ABC có BAC = 90 , ABC = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
A.
.
B.

.
C.
.
D. 2a2 2.
12
24
24
2n + 1
Câu 4. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 3.
D. 0.
2
ln x
m
Câu 5. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.
C. S = 22.
D. S = 24.
Câu 6. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.


C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 7. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].
C. [−3; 1].
D. [1; +∞).

Câu 8. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng √


3a 58
3a 38
a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29

29
29
Câu 9. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.
C. 12.
D. 8.
2
x
Câu 10. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = , m = 0.
D. M = e, m = 0.
e
e
Câu 11. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 12.
C. 20.
D. 30.
Câu 12. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 8 năm.

D. 10 năm.
Câu 13. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Trang 1/10 Mã đề 1


Câu 14. Tính lim
A. 2.

2n2 − 1
3n6 + n4
B. 1.

C. 0.

Câu 15. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. (4; 6, 5].

D.

2
.
3

D. [6, 5; +∞).


d = 60◦ . Đường chéo
Câu 16. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
B.
.
C.
.
D.
.
A. a 6.
3
3
3
1 + 2 + ··· + n
Câu 17. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1

C. lim un = 0.
D. lim un = .
2
Câu 18. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.

D. m < 0.

Câu 19. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số đồng biến trên khoảng (1; 2).


Câu 20. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2 − 1, phần ảo là √
3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Z 1
6
2
3
Câu 21. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √

. Tính
f (x)dx.
0
3x + 1
A. 4.

B. 2.

Câu 22. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.

C. −1.

D. 6.

C. 10.

D. 8.

Câu 23. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.

.
B.
.
C.
.
D.
.
4
4
8
12
7n2 − 2n3 + 1
Câu 24. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. - .
C. 0.
D. 1.
3
3
Câu 25. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.

C. 12 cạnh.

D. 11 cạnh.


Câu 26. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. .
D. 6.
2
2

Câu 27. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 108.
D. 6.
Trang 2/10 Mã đề 1


Câu 28. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.
x+1
Câu 29. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .

3
2

C. 30.

D. 12.

C. 1.

D.

1
.
6

Câu 30. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
2
Câu 31. Tính
√ mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i.
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.


D. |z| =

√4
5.

Câu 32. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


20 3
14 3
.
B.
.
C. 6 3.
A.
D. 8 3.
3
3
Câu 33. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 27 m.

D. 25 m.
Câu 34. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = 10.
D. P = −10.
Câu 35. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a3 2
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
48
24
16
48
Câu 36. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2

A. m = −1.
B. m = −2.
C. m = −3.
Câu 37.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.
B.
.
A.
6
4

D. m = 0.


a3 2
C.
.
12


a3 2
D.
.
2
x+2

Câu 38. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 2.
C. Vô số.
D. 1.
log 2x
Câu 39. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x
x ln 10
2x3 ln 10
 π π

Câu 40. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 7.
C. −1.
D. 3.
Câu 41. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 + 4 2.
B. 3 − 4 2.
C. 3 + 4 2.


D. −3 − 4 2.
Trang 3/10 Mã đề 1


Câu 42. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 3
a3 6
A.
.

B.
.
C.
.
D.
.
48
8
24
24
1
Câu 43. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (1; 3).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
Câu 44. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 45. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 46. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)


cùng vuông góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD

3
3
3
a
a 3
a 3
A.
.
B.
.
C.
.
D. a3 .
3
3
9
log3 12
Câu 47. [1] Giá trị của biểu thức 9
bằng
A. 24.
B. 2.
C. 144.
D. 4.
!2x−1
!2−x
3
3



Câu 48. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. [1; +∞).
C. (+∞; −∞).
D. (−∞; 1].
log7 16
Câu 49. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. −2.
C. 2.
D. 4.
Câu 50. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.

D. 5 mặt.

Câu 51. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là




3
a3 3
4a3 3
5a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Z 1
Câu 52. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 0.
Câu 53.
A. 1.
Câu 54.
A. −3.
Câu 55.
A. 3.


1
.
C. 1.
D.
4
x
Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
B.
.
C. .
D.
2
2
Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
B. −6.
C. 0.
D.
log2 240 log2 15
[1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. −8.
D.
B.


1
.
2
1
.
2
3.

1.
Trang 4/10 Mã đề 1


Câu 56. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.
C. 8.


Câu 57. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x
C. 2 + 3.
A. 3.
B. 3 2.


D. 2 3.

Câu 58. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.

C. m > −1.

D. m > 1.

D. 12.

Câu 59. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 60. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1
C. lim = 0.
n

B. lim qn = 0 (|q| > 1).
1
D. lim k = 0.
n

[ = 60◦ , S O
Câu 61. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng

√ Khoảng cách từ O đến (S

a 57

2a 57
a 57
.
C.
.
D.
.
A. a 57.
B.
19
17
19
Câu 62. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
Câu 63. [1] Tập xác định của hàm số y = 4
A. D = R \ {1; 2}.
B. D = R.

x2 +x−2

D. 3 mặt.


C. D = (−2; 1).

D. D = [2; 1].

Câu 64. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất

√ của |z|
A. 1.
B. 2.
C. 3.
D. 5.
Câu 65. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với

√mặt phẳng (AIC) có diện tích
2
2
2
2
a 5
a 7
11a
a 2
.
B.
.
C.
.
D.
.
A.
4

16
8
32
Câu 66. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 8, 16, 32.
B. 2, 4, 8.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 67. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. (I) và (II).

Câu 68. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 1.
2
x − 3x + 3
Câu 69. Hàm số y =

đạt cực đại tại
x−2
A. x = 1.
B. x = 3.
C. x = 0.

D. Cả ba mệnh đề.
D. 3.
D. x = 2.
Trang 5/10 Mã đề 1


Câu 70. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 5%.
D. 0, 8%.
Câu 71. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

x→a

x→a


C. lim+ f (x) = lim− f (x) = a.

D. lim f (x) = f (a).
x→a

Câu 72. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
.
B. a 2.
.
D. a 3.
A.
C.
2
3
Câu 73. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.

.
C. a 6.
D.
.
A.
3
6
2
Câu 74.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
xα dx =
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
0dx = C, C là hằng số.
x
Câu 75. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
.
B. a 2.
.
C. 2a 2.
D.
A.
4
2
Câu 76. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 12 m.
D. 16 m.
Câu 77. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 78. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A.
.
B. −4.
C. −2.
D. −7.

27
1
Câu 79. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 80. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
! 3
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 81. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).

D. (−∞; 2).
Trang 6/10 Mã đề 1


Câu 82. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A

0
đến đường



√ thẳng BD bằng
b a2 + c2
abc b2 + c2
a b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 83. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.
C. 8.
D. 20.
Câu 84. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac

3b + 3ac
A.
.
B.
.
C.
.
c+2
c+1
c+2
Câu 85. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 2.
B. 3.
C. +∞.

Câu 86. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. − .
B. 3.
C. −3.
3
x3 − 1
Câu 87. Tính lim
x→1 x − 1
A. 0.
B. 3.
C. −∞.

D.


3b + 2ac
.
c+3

D. 1.
D.

1
.
3

D. +∞.

Câu 88. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 9.
C. 27.
D. 3 3.
Câu 89. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Câu 90. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.

D. −2.


Câu 91. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
.
D. 2 13.
B. 26.
C.
A. 2.
13
0
Câu 92. Cho hai đường thẳng d và d cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Không có.
B. Có hai.
C. Có vơ số.
D. Có một.
Câu 93. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4





a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
6
12
36
Câu 94. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.
C. 2.
D. 4.
x+2
Câu 95. Tính lim
bằng?
x→2
x
A. 0.

B. 2.
C. 3.
D. 1.
Câu 96. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. 6.
C. −1.

D. 2.

Câu 97. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
Trang 7/10 Mã đề 1


(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Không có câu nào D. Câu (I) sai.
sai.
Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
.

C. 10a3 .
D. 40a3 .
A. 20a3 .
B.
3
Câu 99. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
.
C. 68.
D. 34.
17
x−2
Câu 100. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. −3.
D. 1.
3
3
2
x

Câu 101. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
B. m = ±3.
C. m = ±1.
D. m = ± 2.
A. m = ± 3.
Câu 102. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 3n
A. un =
.
B.
u
=
.
n
(n + 1)2
n2

C. un =

1 − 2n
.
5n + n2

D. un =

n2 − 2
.
5n − 3n2


d = 300 .
Câu 103. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của

√ khối lăng trụ đã cho.
3
3

a
3a
3
3
D. V =
A. V = 6a3 .
B. V =
.
C. V = 3a3 3.
.
2
2
x2 − 5x + 6
Câu 104. Tính giới hạn lim
x→2
x−2
A. −1.
B. 1.
C. 5.
D. 0.
d = 30◦ , biết S BC là tam giác đều

Câu 105. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
26
16
Câu 106. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x) + C, với C là hằng số.
Câu 107. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.

C. {5; 3}.

D. {3; 4}.

C. 3.

D. +∞.

2

Câu 108. Tính lim
x→3

A. −3.

x −9
x−3

B. 6.

Trang 8/10 Mã đề 1


 π
Câu 109. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là

2


2 π4
1 π3
3 π6
e .
C. e .
D.
e .
A. 1.
B.
2
2
2
9t
Câu 110. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 1.
C. 0.
D. 2.
1
Câu 111. [1] Giá trị của biểu thức log √3
bằng
10
1
1

A. − .
B. 3.
C. −3.
D. .
3
3
[ = 60◦ , S A ⊥ (ABCD).
Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là
3
3

a 2
a 3
a3 2
3
B.
.
C.
.
D.
.
A. a 3.
12
6
4
Câu 113. Hàm số f có nguyên hàm trên K nếu

A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) xác định trên K.
C. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.
Z 2
ln(x + 1)
Câu 114. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 0.
B. −3.
C. 3.
D. 1.
Câu 115. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x) + g(x)] = a + b.
D. lim
x→+∞
x→+∞ g(x)
b
Câu 116. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.


A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 117. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Khơng thay đổi.
C. Giảm đi n lần.
D. Tăng lên (n − 1) lần.
1
Câu 118. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.

C. −2.

D. −1.

Câu 119. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối tứ diện.
Câu 120. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 0.


B. 9.

C. 5.

D. 7.

Câu 121. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 22.
D. 23.
8
Câu 122. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 81.
D. 82.
Trang 9/10 Mã đề 1


!
x+1
Câu 123. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017

2016
.
C.
.
D.
.
A. 2017.
B.
2017
2018
2018
Câu 124. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (2; 2).
D. (−1; −7).
Câu 125. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. [3; 4).
D. (1; 2).
2
2



ab.

Câu 126. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).

1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n

1
Câu 127. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 < m < −1.
D. −2 ≤ m ≤ −1.
Câu 128. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.

C. 0.

D. 2.


Câu 129. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 130. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m < .
D. m ≥ .
A. m > .
4
4
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.


C

2.

3.

C

4.

B

6.

B

5.

B

7.

C

9.

C

10.


11.

C

12. A

13.

8. A

D

15.

18. A
20.

C

21. A
C

23.

C

16. A
D

19.


D

14.

C

17.

C

C

22.

B

24.

B

25.

B

26. A

27.

B


28.

D
D

29.

D

30.

31.

D

32.

33.

C

35. A

34.

B

36.


B
B

37.

C

38.

39.

C

40. A

41. A
43.

D

C

42.

D

44.

D


45.

C

46. A

47.

C

48.

B

50.

B

49. A
51.

52.

B

53. A

54. A

55.

57.

D

56.

C
B

B

58.

59.

D

C

60.

B
B

61.

B

63.


64.

B

65.

C

67.

C

66.
68.

C
B

69. A
1


70.

71.

B

72. A


73.

74. A

75.
D

76.
78.

C

D
B
D

77.

B

79.

B

80.

D

81.


B

82.

D

83.

B

C

84.

85. A

86.

D

87.

B

88.

D

89.


B

90.

D

91.

C

93.

C

92.

B

94.
96.

D

95.
97.

B

98. A


99.

100.

D

102.
104. A
108.

C
B

105.

B

107.

B

109.

B

111. A

112.

D


113.

116.

C

117.

118.

C

119.

124.

B

121.

D
C
D
C

123.

C


D

125. A

B

127.

126. A
128.
130.

C

115.

B

122.

D
B

D

120.

B

103.


110.
114.

C

101.

C

106.

B

D

129.

B

2

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×