Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
3a
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng
cách từ A đến mặt phẳng (S BD) bằng
√
2a
a 2
a
a
B.
.
C.
.
D. .
A. .
3
3
3
4
2n + 1
Câu 2. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. .
C. .
D. 0.
3
2
2
Câu 3. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.
C. 2.
D. 3.
√
√
Câu 4. Phần thực √
và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√
√
A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 1. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
Câu 5. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Câu 6. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
tích khối chóp S .ABCD là
vng góc
√ với đáy, S C = a 3. Thể
√
3
3
3
a 3
a
a
3
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Câu 7. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 8. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 6.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 9. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 10. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 11. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.
C. 7 năm.
D. 10 năm.
Trang 1/10 Mã đề 1
Câu 12. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 13. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
Z
Câu 14. Cho
A. −3.
1
2
1
3|x−1|
B. 4.
C. 1.
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 1.
C. 0.
2
= 3m − 2 có nghiệm duy
D. 3.
D. 3.
2
sin x
Câu 15. [3-c] Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x)
+ 2cos x √
lần lượt là
√ =2
C. 2 và 2 2.
D. 2 và 3.
A. 2 và 3.
B. 2 2 và 3.
p
ln x
1
Câu 16. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
8
1
A. .
B. .
C. .
D. .
3
3
9
9
x+1
Câu 17. Tính lim
bằng
x→+∞ 4x + 3
1
1
B. .
C. 1.
D. 3.
A. .
4
3
√
Câu 18. Thể tích của khối lập phương có cạnh bằng a 2
√
3
√
√
2a
2
A. V = a3 2.
B. V = 2a3 .
C. 2a3 2.
D.
.
3
Câu 19. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 20. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 21. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 22. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
abc b2 + c2
c a2 + b2
b a2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
!
1
1
1
Câu 23. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. +∞.
D. .
2
2
3
2
Câu 24. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Trang 2/10 Mã đề 1
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 25. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C. a 6.
D.
.
A.
6
3
2
Câu 26. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).
C. (−∞; 0) và (2; +∞). D. (0; 2).
Câu 27. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.
C. − .
2
Câu 28. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 20.
D.
1
.
2
D. 12.
Câu 29. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. −e2 .
D. 2e2 .
x+2
Câu 30. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vơ số.
C. 1.
D. 2.
x
Câu 31.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
.
B. .
C. 1.
D. .
A.
2
2
2
Câu 32. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 33. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (1; −3).
Câu 34. Tính lim
x→5
2
A. − .
5
x2 − 12x + 35
25 − 5x
B. +∞.
C.
2
.
5
D. (2; 2).
D. −∞.
Câu 35. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Câu 36. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.
Câu 37.
bằng 1 là:
√ Thể tích của khối lăng trụ tam giác đều có cạnh √
3
3
3
A.
.
B. .
C.
.
12
4
4
D. Cả hai câu trên sai.
√
3
D.
.
2
Trang 3/10 Mã đề 1
Câu 38. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
8a 3
8a 3
a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 39. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
4
6
12
12
Câu 40. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).
log2 240 log2 15
Câu 41. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. 4.
C. 3.
D. −8.
Câu 42. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 43. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
24
12
6
Câu 44. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 5.
C. 0.
D. 9.
2
Câu 45. Tính
√ (1 + 2i)z = 3 + 4i.
√4 mô đun của số phức z biết
B. |z| = 2 5.
C. |z| = 5.
A. |z| = 5.
Câu 46. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vơ nghiệm.
2
x −9
Câu 47. Tính lim
x→3 x − 3
A. −3.
B. 3.
C. 6.
D. |z| =
√
5.
D. 2.
D. +∞.
Câu 48. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
Câu 49. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.
C. 8.
D. 10.
Câu 50. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a3 6
a3 6
a 6
A.
.
B.
.
C.
.
D.
.
48
24
24
8
Câu 51. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
q
Câu 52. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Trang 4/10 Mã đề 1
Câu 53. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. .
D. 6.
2
2
Câu 54. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
.
D. √
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
√
Câu 55. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
B. .
C. 3.
D. −3.
A. − .
3
3
Câu 56. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.
D. Năm cạnh.
Câu 57. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.
B. f 0 (0) = ln 10.
C. f 0 (0) =
1
.
ln 10
D. f 0 (0) = 1.
Câu 58. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 59. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình tam giác.
!2x−1
!2−x
3
3
≤
là
Câu 60. Tập các số x thỏa mãn
5
5
A. (−∞; 1].
B. [3; +∞).
C. [1; +∞).
D. Hình lập phương.
D. (+∞; −∞).
Câu 61. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2.
C. P = 2i.
D. P =
.
2
2
2
Câu 62. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
2
A. √ .
B. 2 .
C. 3 .
e
e
2 e
Câu 63. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).
D.
1
.
2e3
D. (4; 6, 5].
Câu 64. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 65. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. Không tồn tại.
C. 0.
D. 13.
x2
trên đoạn [−1; 1]. Khi đó
ex
1
C. M = e, m = 0.
D. M = , m = 0.
e
Câu 66. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
A. M = e, m = 1.
1
B. M = e, m = .
e
Trang 5/10 Mã đề 1
Câu 67. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
√
√
18 11 − 29
2 11 − 3
C. Pmin =
. D. Pmin =
.
21
3
Câu 68. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
9 11 + 19
.
A. Pmin =
9
B. Pmin
√
9 11 − 19
=
.
9
Câu 69. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 70. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±3.
B. m = ± 3.
C. m = ±1.
D. m = ± 2.
Câu 71. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.
B. y0 = 2 x . ln x.
ln 2
C. y0 =
1
2 x . ln
x
.
D. y0 = 2 x . ln 2.
Câu 72. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
Câu 73.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.
Câu 74. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. − 2 .
B. − .
C. −e.
e
2e
2n + 1
Câu 75. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 3.
1 − 2n
Câu 76. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. .
C. 1.
3
3
1
D. − .
e
D. 0.
2
D. − .
3
Câu 77. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.
√
A. 9.
B. 3 3.
C. 27.
D. 8.
Câu 78. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).
C. D = R.
D. D = R \ {1}.
Trang 6/10 Mã đề 1
Câu 79. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 15, 36.
D. 24.
Câu 80. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. .
C. 2.
D. 1.
2
2
Câu 81. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có một hoặc hai.
!
1
1
1
Câu 82. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 2.
C. 0.
D. .
2
un
Câu 83. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 84. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.
C. 10.
D. 6.
Câu 85. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 9 cạnh.
C. 10 cạnh.
D. 12 cạnh.
Câu 86. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 87. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = −3.
D. m = 0.
◦
◦
d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 88. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 2
a3 3
a3 3
2
A.
.
B.
.
C. 2a 2.
.
D.
24
24
12
π
Câu 89. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
2 π4
1 π
A.
e .
B.
e .
C. 1.
D. e 3 .
2
2
2
Câu 90. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
A. 8 2.
B. 7 3.
C. 8 3.
D. 16.
Câu 91. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.
Câu 92. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
◦
hợp với đáy
√ một góc 60 . Thể tích khối chóp S .ABCD là 3 √
√
3
√
2a 3
a 3
a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
6
3
Câu 93. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 7/10 Mã đề 1
Câu 94.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.
f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).
f (t)dt = F(t) + C. B.
Z
Z
D.
k f (x)dx = k
Z
f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 95. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 96. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m ≥ 0.
C. m > −1.
D. m > 1.
1
Câu 97. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 1) và (3; +∞). C. (−∞; 3).
D. (1; 3).
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 98. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Câu 99. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 100. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Câu 101. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 387 m.
D. 1587 m.
Câu 102. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. 0.
C. +∞.
D. 1.
Câu 103. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
mx − 4
Câu 104. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 45.
C. 34.
D. 67.
Câu 105. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 5 mặt.
D. 4 mặt.
Câu 106. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 1.
D. 2.
π
Câu 107. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 2 3.
B. T = 3 3 + 1.
C. T = 2.
D. T = 4.
Trang 8/10 Mã đề 1
[ = 60◦ , S O
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
A. a 57.
B.
.
C.
.
D.
.
19
17
19
Câu 109. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.
Câu 110. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
C. 2.
log7 16
Câu 111. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. 4.
B. −2.
C. 2.
D. 4.
D. −4.
Câu 112. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. (1; 2).
B. [3; 4).
C.
;3 .
D. 2; .
2
2
√
ab.
3
2
x
Câu 113. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
B. m = ±1.
C. m = ±3.
D. m = ± 2.
A. m = ± 3.
d = 120◦ .
Câu 114. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 4a.
B. 2a.
C. 3a.
D.
2
Câu 115. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un
!
un
= −∞.
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
v
n
!
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 116. Tính lim
x→2
A. 3.
x+2
bằng?
x
B. 1.
Câu 117. Khối lập phương thuộc loại
A. {3; 3}.
B. {3; 4}.
C. 2.
D. 0.
C. {4; 3}.
D. {5; 3}.
Câu 118. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√ chóp S .ABMN là 3 √
√
√
3
5a 3
4a 3
a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
x−3
Câu 119. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 120. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 12.
C. 30.
D. 8.
Trang 9/10 Mã đề 1
Câu 121. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
C. a b = (ab) .
α
aα
D. β = a β .
a
Câu 122. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.
C. 12.
D. 6.
Câu 123. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.
C. 24.
D. 4.
A. a
αβ
α β
= (a ) .
B. a
α+β
α
β
= a .a .
α α
α
Câu 124. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 5%.
D. 0, 6%.
Câu 125. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
Câu 126. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. m > − .
D. m ≥ 0.
A. m ≤ 0.
B. − < m < 0.
4
4
2−n
Câu 127. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 0.
D. 1.
2
2
2
1 + 2 + ··· + n
Câu 128. [3-1133d] Tính lim
n3
1
2
D. .
A. +∞.
B. 0.
C. .
3
3
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 129. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 130. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
A.
.
B.
.
C. 2a 2.
D. a 2.
2
4
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
2. A
3.
B
4.
B
6.
B
5.
D
7.
B
8.
9.
B
10.
11.
B
12. A
13.
15.
D
B
14. A
C
B
17. A
16.
C
18.
C
19.
D
20. A
21.
D
22. A
23. A
24.
25. A
26.
27. A
28.
D
D
29.
C
30.
31.
C
32.
B
C
B
33.
B
34.
C
36.
B
37.
C
39.
C
38.
C
40.
D
42. A
43.
44.
D
47.
48.
C
49.
50.
C
51. A
52.
D
C
B
60.
62.
C
B
53. A
B
56.
58.
B
45. A
46. A
54.
D
41.
55.
B
57.
B
59.
C
61.
C
B
63.
B
D
64.
C
65.
66.
C
67.
D
69.
D
68.
D
1
C
71.
C
70.
72. A
74.
73.
B
D
B
75. A
76.
D
77.
78.
C
79.
80.
C
81.
82. A
83.
84.
B
85.
86.
B
87. A
88. A
89.
B
C
D
B
C
B
90.
D
91.
D
92.
D
93. A
94.
D
95.
B
96.
C
97.
B
98.
C
99.
B
100.
B
101. A
102.
B
103.
D
105.
D
107.
D
C
104.
D
106.
108.
B
109.
110.
D
C
112.
114.
D
B
111.
D
113.
D
115.
B
116.
C
117.
118.
C
119.
D
121.
D
120.
B
122.
124.
126.
128.
C
123. A
C
125.
B
B
127. A
C
D
129.
130. A
2
B