Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn thi thpt 1 (53)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.66 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [1] Đạo hàm của làm số y = log x là
1
1
B. y0 =
.
A. y0 = .
x
x ln 10

C. y0 =

ln 10
.
x

D.

1
.
10 ln x



Câu 2. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vơ số.
D. 62.
Câu 3. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 4. [3-1229d] Đạo hàm của hàm số y =
A. y0 =

1 − 2 log 2x
.
x3

B. y0 =

log 2x

x2

1
.
2x3 ln 10

C. y0 =


1 − 2 ln 2x
.
x3 ln 10

ln x p 2
Câu 5. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) =
x
1
8
8
B. .
C. .
A. .
3
9
9
x−3
bằng?
Câu 6. [1] Tính lim
x→3 x + 3
A. −∞.
B. 0.
C. +∞.

D. y0 =

1 − 4 ln 2x
.

2x3 ln 10

1
. Giá trị của F 2 (e) là:
3
1
D. .
3

D. 1.

Câu 7. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
9
15
18
Câu 8. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (−∞; 6, 5).
C. [6, 5; +∞).


D. (4; +∞).

Câu 9. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

D. Khối tứ diện đều.

C. Khối 20 mặt đều.

Câu 10. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 3.
C. 1.
D. 7.
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là

√ phẳng vng góc với 3(ABCD).
3
3

a 3
a 3
a 2
A.
.
B.
.

C.
.
D. a3 3.
4
2
2
Câu 12. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Trang 1/10 Mã đề 1


Câu 13. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3

A.
.
B.
.
C.
.
D.
.
6
12
36
24
Câu 14. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 15. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.


B. Cả hai câu trên sai.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 16. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 23.
C. 22.
D. 24.
1
Câu 17. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 18. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.

log(mx)
Câu 19. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 20. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
0 0 0 0
0
Câu 21.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
3
2
7

2
Câu 22. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.

Câu 23. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
Câu 24. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 25. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (−∞; 1).

D. (2; +∞).
Trang 2/10 Mã đề 1


! x3 −3mx2 +m
1
Câu 26. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =

nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m = 0.
C. m , 0.
D. m ∈ R.
Câu 27. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

C. lim f (x) = f (a).
x→a

1

= m − 2 có nghiệm
3|x−2|
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.

Câu 28. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

x→a


D. f (x) có giới hạn hữu hạn khi x → a.

B. 2 ≤ m ≤ 3.

Câu 29. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
x+2
Câu 30. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. 2.
D. Vô số.
3

Câu 31. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e.
2x + 1
Câu 32. Tính giới hạn lim

x→+∞ x + 1
1
A. .
B. 2.
C. 1.
2

D. e3 .

D. −1.

Câu 33. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 34. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.
2n − 3
bằng
Câu 35. Tính lim 2
2n + 3n + 1
A. 1.
B. −∞.

C. D = R \ {0}.

D. D = (0; +∞).


C. 0.

D. +∞.

Câu 36. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
Câu 37. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.
12 + 22 + · · · + n2
n3
1
B. .
3

D. 9.

Câu 38. [3-1133d] Tính lim
A. 0.

C.

2
.
3


D. +∞.

Câu 39. [2] Ơng A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
Trang 3/10 Mã đề 1


100.1, 03
triệu.
3
100.(1, 01)3
C. m =
triệu.
3

A. m =

120.(1, 12)3
triệu.
(1, 12)3 − 1
(1, 01)3
D. m =
triệu.
(1, 01)3 − 1
B. m =



Câu 40. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
3
πa3 3
πa3 6
πa3 3
πa 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
3
6
2
Câu 41. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √

a 3
a3 3
2a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
12
4
2
9
Câu 42.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
A.
.
B.
.
C.
.
D. .

2
12
4
4
Câu 43. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 44. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 45. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √


3
3


3
a
3
a
2a3 3
.
B. a3 3.
.
D.
.
C.
A.
3
3
6
1
Câu 46. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).


Câu 47. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x

A. 3.
B. 3 2.
C. 2 + 3.
D. 2 3.

Câu 48. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vơ nghiệm.
C. 3 nghiệm.

D. 1 nghiệm.

Câu 49. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 5%.
C. 0, 6%.
D. 0, 7%.
Câu 50. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
1
Câu 51. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 52.
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
k f (x)dx = f


A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

f (x)g(x)dx =

B.
Z
D.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Trang 4/10 Mã đề 1


Câu 53. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 5.

D. 3.
Câu 54. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.

C. 6.

D. 12.

Câu 55. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
!
1
1
1
+ ··· +
Câu 56. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. .
D. +∞.
2

2
Câu 57. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
.
D.
.
A.
C.
6
2
3
1
Câu 58. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.
C. 1.
D. 3.
Câu 59. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2

2
A. T = 4 + .
B. T = e + .
C. T = e + 3.
D. T = e + 1.
e
e
Câu 60. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 10.
C. 4.
D. 8.
Câu 61. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 62. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.

D. −2 + 2 ln 2.

Câu 63. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.

Câu 64. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 24 m.
D. 16 m.
2
3
7n − 2n + 1
Câu 65. Tính lim 3
3n + 2n2 + 1
7
2
A. 1.
B. 0.
C. .
D. - .
3
3
Câu 66. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 67. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
Trang 5/10 Mã đề 1


(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.

Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Cả hai đều đúng.

Câu 68. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
Câu 69.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
.
B.
.
A.
3
e

!n
5
C. − .
3


!n
1
D.
.
3




x=t




Câu 70. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4

9
9
2
2
2
2
2
2
D. (x + 3) + (y + 1) + (z − 3) = .
C. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 71. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.
C. V = 4π.
D. 8π.
Câu 72. Tính lim
x→1

x3 − 1
x−1

C. +∞.

D. −∞.

Câu 73. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.

B. 4.

C. 3.

D. 2.

Câu 74. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.

C. 20.

D. 8.

A. 3.

B. 0.

Câu 75. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 10.
C. 11.
D. 4.
tan x + m
Câu 76. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .

4
A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
Câu 77. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.
Câu 78. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x3 − 3x.
2x + 1

C. y = x4 − 2x + 1.

Câu 79. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 10.
C. f 0 (0) = 1.
ln 10

1
D. y = x + .
x
D. f 0 (0) = ln 10.
Trang 6/10 Mã đề 1



1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y



18 11 − 29
9 11 + 19
9 11 − 19
=
. C. Pmin =
. D. Pmin =
.
21
9
9

Câu 80. [12210d] Xét các số thực dương x, y thỏa mãn log3

Pmin của P = x√+ y.
2 11 − 3
A. Pmin =
.
B. Pmin
3
x+1
bằng
Câu 81. Tính lim

x→−∞ 6x − 2
1
1
A. .
B. .
C. 1.
2
6
Câu 82. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
4
8
12
Câu 83. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −2.
Câu 84. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.

B. 3 mặt.
C. 6 mặt.

1
.
3
⊥ (ABC) và (S BC) hợp với

D.

D.

a3
.
4

D. x = −8.
D. 4 mặt.

d = 120◦ .
Câu 85. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 4a.
C. 2a.
D. 3a.
A.
2
Câu 86. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là

A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 87. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.


Câu 88. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
3a 38
a 38
A.
.
B.
.
C.
.
D.
.
29

29
29
29
Câu 89. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
1
Câu 90. Hàm số y = x + có giá trị cực đại là
x
A. 1.
B. 2.

C. −1.

Câu 91. [1] Tập
!
! xác định của hàm số y! = log3 (2x + 1) là
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .

2
2
2
2n2 − 1
Câu 92. Tính lim 6
3n + n4
2
A. .
B. 0.
3

C. 2.

D. −2.
!
1
D. −∞; .
2

D. 1.
Trang 7/10 Mã đề 1


Câu 93. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 3.

B. 1.


Câu 94. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là √2, phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.



C. 2.
D. +∞.

2 − 1 − 3i lần lượt l √

B. Phần thực là 1√− 2, phần ảo là −√ 3.
D. Phần thực là 2 − 1, phần ảo là 3.

Câu 95. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −2.

D. −4.

Câu 96. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.

n
n

1
D. √ .
n

Câu 97. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C.

1
.
n

C. Khối bát diện đều.

D. Khối 12 mặt đều.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
2a
a
a
a 2

.
B.
.
C. .
D. .
A.
3
3
3
4
!2x−1
!2−x
3
3
Câu 99. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [1; +∞).
D. [3; +∞).
Câu 98. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 100. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 9 năm.

C. 8 năm.
D. 10 năm.
Câu 101. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
23
1079
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 102. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
1
Câu 103. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.

C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 104. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 3.
C. 8.
D. 4.
Câu 105. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Ba mặt.
C. Hai mặt.
D. Bốn mặt.

Câu 106. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.
D. 64.
Trang 8/10 Mã đề 1


Câu 107. Cho hình chóp S .ABCD có√đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là
4a3 3
2a3 3
4a

2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 108. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
A.
.
B.
.
C. a 2.
D. 2a 2.
4
2
Câu 109. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là

A. M = e−2 + 1; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 − 2; m = 1.
1

Câu 110. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = (1; +∞).
C. D = R.
D. D = R \ {1}.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 111. Cho hình chóp S .ABC có BAC
(ABC). Thể
√là
√ tích khối chóp S .ABC

3
3

a 3
a 2
a3 3
2
A.
.
B.
.
C. 2a 2.

D.
.
12
24
24
Câu 112. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
2

Câu 113. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log3 2.
C. 1 − log2 3.

D. 3 − log2 3.

Câu 114. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.

C. 8.

D. 6.

Câu 115. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.


C. 12.

D. 20.

Câu 116. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.

C. 12 cạnh.

D. 10 cạnh.

Câu 117. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD
√ là
3
3
3
a
4a 3
a3
2a 3
.
B.
.
C.
.
D.
.

A.
3
3
3
6
Câu 118. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
1
2
A. .
B.
.
C.
.
D. .
5
10
10
5
2
2
Câu 119. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 6.
C. .

D. 9.
2
2
 π
Câu 120. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
1 π3
2 π4
A.
e .
B. e .
C. 1.
D.
e .
2
2
2
Trang 9/10 Mã đề 1


log23

q
x + log23 x + 1 + 4m −

Câu 121. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i

h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].

Câu 122. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 17 tháng.
D. 16 tháng.
Câu 123. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
B. 5.
C. 25.
D. 5.
A. .
5
Câu 124. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.



x2 − 5x + 6
Câu 125. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.

C. −1.

Câu 126. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −2.

D. 1.
D. m = −3.

Câu 127. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C. 7.
D.
.
2
2
Câu 128. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.

C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
Câu 129. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 6.

D. 1.

Câu 130. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C. 18.
D.
.
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D


5.

D

2.

B

4.

C

6.

B

8. A

9.

B

10. A

11.

B

13.


B

12.

C

B
D

14.
16.

C

18.

D

17.

D

21. A
B

24.
26.

D


19. A

20. A
22.

15.

23.
C

25. A

B

28. A
30.

C

27.

C

29.

C

31.


C

B

32.

B

33.

C

34.

B

35.

C

37.

C

36. A
38.

B

39.


40.

B

41. A

42.

C

43.

44.

C

45.

46.

D

47.

48. A
50.
52.

D

B
D

C
B

49.

D

51.

D

55. A

56. A

57. A

58.

C

59.

C

61.


60. A
64.

D

53. A

54.

62.

D

B

63.
D

D
B

65.

66. A

67.

68. A

69.

1

D
B
D


70.

B

72. A

73.

B

74. A

75. A

76. A

77. A

78. A

79.
81.


D

82.

B
D

83.
86.

80. A
85. A

B

87. A

88. A

89.

90.
92.

D

B

91. A


B

94.

B

C

96. A

93.

C

95.

C

97.

B

98.

B

99.

C


100.

B

101.

C

102.
104.

D
B

106. A

103.

D

105.

D

107.

108.

B


109.

110.

B

111.

C
D
B

112.

D

113. A

114.

D

115.

C

116.

D


117.

C

118.

B

119. A

120.

D

121.

C

122.

D

123.

C

125.

C


124.
126.

B

128.
130.

127.

C
D

129.

C

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×