Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn thi thpt 10 (537)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.67 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 1.

D. 2.

Câu 2. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 0.
C. Vô số.
D. 1.

Câu 3. [4] Xét hàm số f (t) =



Câu 4. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. .
C. .
D. 6.
2
2
Câu 5. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối lập phương.
Câu 6. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
x−3 x−2 x−1
x
Câu 7. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1

số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. (2; +∞).
log2 240 log2 15
Câu 8. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 1.
C. 4.
D. 3.
Câu 9. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối bát diện đều.
q
Câu 10. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].

D. m ∈ [−1; 0].
Câu 11. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1079
1637
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 12. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −15.
C. −9.
D. −12.
Câu 13. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) liên tục trên K.

D. f (x) có giá trị nhỏ nhất trên K.
Trang 1/11 Mã đề 1


Câu 14. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
6

24
12
1
Câu 15. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 16. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 7%.
C. 0, 6%.
D. 0, 5%.
[ = 60◦ , S A ⊥ (ABCD).
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là

√ S C là a. Thể tích khối
3
3

a 3
a 2
a3 2
3
A. a 3.

B.
.
C.
.
D.
.
6
4
12
Câu 18. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
Câu 19. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
.
B. a 6.
C. 2a 6.
D.
2

Câu 20. Cho chóp S .ABCD có đáy ABCD là hình vuông cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √

khối chóp S .ABCD là √
3

a3 3
a3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
12
4
8
Câu 21. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 96.
D. 64.

Câu 22. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




3a 38
a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 64cm3 .
C. 91cm3 .
D. 48cm3 .
x2 − 9
Câu 24. Tính lim
x→3 x − 3
A. +∞.
B. 3.
C. −3.
D. 6.
Câu 25. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của

mơđun z.




5 13
B. 26.
C. 2 13.
D.
A. 2.
.
13
Câu 26. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 10.
C. 12.
D. 11.
Trang 2/11 Mã đề 1


1 − 2n
Câu 27. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. .
3

3

2
C. − .
3

D. 1.

Câu 28. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 14 năm.
Câu 29. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
Câu 30. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là

1
1
A. −e.
B. − .
C. − .
2e
e
√3
Câu 31. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
A. − .
B. 3.
C. −3.
3
Câu 32. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.

D. m =

D. −

D.

1 − 2e
.
4 − 2e

1
.

e2

1
.
3

C. 4.

D. 24.

Câu 33. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18

36
6
6
Câu 34. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 35. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

3
3
2a 6
a 6
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
9
12
4

2
3

Câu 36. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e.
C. e5 .

D. e3 .
q
2
Câu 37. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 38. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.
Câu 39. [1] Tập xác định của hàm số y = 4
A. D = R.
B. D = (−2; 1).

x2 +x−2

C. 10 cạnh.


D. 9 cạnh.

C. D = R \ {1; 2}.

D. D = [2; 1].



Câu 40. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 18 tháng.
D. 16 tháng.
Trang 3/11 Mã đề 1


Câu 41. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

B. +∞.

C. −∞.

un
bằng
vn
D. 0.


Câu 42. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.

1
B. lim √ = 0.
n
D. lim un = c (Với un = c là hằng số).
1
Câu 43. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.

d = 120◦ .
Câu 44. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 3a.
B. 4a.
C. 2a.
D.
2
Câu 45. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
2n2 − 1
Câu 46. Tính lim 6
3n + n4
2
A. .
B. 2.
3
2−n
bằng
Câu 47. Giá trị của giới hạn lim
n+1
A. 0.
B. −1.

C. 0.

D. 1.

C. 1.

D. 2.

[ = 60◦ , S O
Câu 48. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S

√ BC) bằng

a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 49. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đơi.
Câu 50. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 51. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1

8
8
1
A. .
B. .
C. .
D. .
9
3
9
3
Câu 52.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
A.
dx = x + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z
Z
1
dx = ln |x| + C, C là hằng số.
D.
0dx = C, C là hằng số.
C.
x
Câu 53. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.

B. 3 mặt.
C. 9 mặt.

D. 4 mặt.

Câu 54. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 7, 2.
C. −7, 2.

D. 0, 8.
Trang 4/11 Mã đề 1


x+3
Câu 55. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.
C. 3.
D. Vô số.
Câu 56. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −5.

D. x = −8.


Câu 57. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.

D. 20.

C. 8.

Câu 58. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (−∞; 6, 5).

D. (4; +∞).

Câu 59. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 60. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 + 2; m = 1.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 61. Cho
x2

1
A. 0.
B. 3.
C. 1.
D. −3.
Câu 62. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
√3
4
Câu 63. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
7
5
B. a 3 .
C. a 3 .
D. a 3 .
A. a 8 .
Câu 64. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.

D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 65. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 2.
C. 3.

D. 5.

Câu 66. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).

D. (0; +∞).

Câu 67. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

D. Khối 12 mặt đều.

C. Khối bát diện đều.

Câu 68. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3
a3 15
a3 15
a3 5

A.
.
B.
.
C.
.
D.
.
25
3
25
5
1 − xy
Câu 69. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
18 11 − 29
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9

21
9
3
Trang 5/11 Mã đề 1


Câu 70. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. .
B. 2e.
C. 3.
e
Câu 71. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

D. 2e + 1.
1
3|x−1|

C. 1.

= 3m − 2 có nghiệm duy

D. 4.

Câu 72. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.

B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3

Câu 74. √Xác định phần ảo của số phức z = ( 2 + 3i)2

A. −6 2.
B. 7.
C. −7.
D. 6 2.
Câu 75. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức

P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B.
.
C. 27.
D. 12.
2
Câu 76. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp S .ABCD là

4a3
2a3 3
2a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
d = 60◦ . Đường chéo
Câu 77. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB

BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
2a3 6
a3 6
3
A.
C.
.
B. a 6.
.
D.
.
3
3
3
Câu 78. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1

d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (3; 4; −4).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 79. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
1

Câu 80. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R \ {1}.
C. D = (1; +∞).
!
1
1
1
Câu 81. Tính lim
+
+ ··· +
1.2 2.3

n(n + 1)
A. 2.

B. 1.

C. 0.

D. D = R.

D.

3
.
2
Trang 6/11 Mã đề 1


log 2x

Câu 82. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.

3
2x ln 10
2x ln 10
x ln 10
Câu 83. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.
C. 2.
Câu 84. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 1.
C. −1.

D. y0 =

1 − 2 log 2x
.
x3

D. 5.
D. 6.

Câu 85. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 34.

B. 5.
C. 68.
D.
.
17
Câu 86. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.
D. m > 1.
x+2
bằng?
Câu 87. Tính lim
x→2
x
A. 0.
B. 2.
C. 1.
D. 3.
Câu 88. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

1
2 x . ln

x


.

D. y0 =

1
.
ln 2


Câu 89. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã



√ cho là
πa3 3
πa3 6
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
2
6

6
3
Câu 90. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.
C. Ba mặt.
D. Hai mặt.
!
1
1
1
Câu 91. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
B. +∞.
C. 2.
D. .
A. .
2
2
Z 3
x
a
a
Câu 92. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá


d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 16.
C. P = −2.
D. P = 28.
1
Câu 93. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; +∞).
Câu 94. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B.
; +∞ .
C. −∞; .
2
2
2

!
1

D. − ; +∞ .
2

Câu 95. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 96. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).

D. R.
Trang 7/11 Mã đề 1


Câu 97. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (1; 3; 2).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 98. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
0 0 0 0
0

Câu 99.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.
2
7
3
2

d = 300 .
Câu 100. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của

√ khối lăng trụ đã cho.
3
3

a 3

3a 3
A. V =
.
B. V =
.
C. V = 3a3 3.
D. V = 6a3 .
2
2
2
3
7n − 2n + 1
Câu 101. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 0.
C. 1.
D. - .
3
3
1
Câu 102. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 103. √
Cho số phức z thỏa mãn |z√+ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 104. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √


a3 3
a3 3
2a3 3
3
B.
.
C.
.
D.
.
A. a 3.
3
6
3
Câu 105. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 106. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.

B. −1 + sin x cos x.
C. −1 + 2 sin 2x.

D. 1 − sin 2x.

Câu 107. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = 10.
D. P = −21.
Câu 108. Tính diện tích hình phẳng
giới hạn bởi các đường y = xe x , y = 0, x = 1.

1
3
3
A. .
B.
.
C. 1.
D. .
2
2
2
Câu 109. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. .
B. 2.
C. 1.
2


D.

ln 2
.
2

Câu 110. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4
4
4
Trang 8/11 Mã đề 1


Câu 111. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 64cm3 .
D. 27cm3 .
Câu 112. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

A. 6 mặt.
B. 10 mặt.
C. 4 mặt.


4n2 + 1 − n + 2
Câu 113. Tính lim
bằng
2n − 3
3
A. +∞.
B. 2.
C. .
2

D. 8 mặt.

D. 1.
!
3n + 2
2
Câu 114. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 2.
D. 5.
Câu 115. Khối đa diện đều loại {3; 3} có số cạnh

A. 8.
B. 4.

C. 6.

D. 5.

Câu 116. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = −1.
C. m = −3.
D. m = 0.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 117. Tìm m để hàm số y =
x+m
A. 45.
B. 26.
C. 67.
D. 34.
Câu 118. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√ thẳng BD bằng



abc b2 + c2
a b2 + c2
b a2 + c2

c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 119. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 27.
C. 10.

D. 3.

Câu 120.
√cạnh bằng a
√ Thể tích của tứ diện đều
3
3
a 2
a 2
.
B.
.

A.
2
6


a3 2
D.
.
12


a3 2
C.
.
4

Câu 121. Tính thể tích khối lập √
phương biết tổng diện tích tất cả các mặt bằng 18.
A. 9.
B. 3 3.
C. 8.
D. 27.
Câu 122. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.

.
C.
.
D.
.
c+3
c+1
c+2
c+2
Câu 123. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
Câu 124. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu

f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Trang 9/11 Mã đề 1


Câu 125. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. {4; 3}.

Câu 126. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).

D. (2; 2).



x=t





Câu 127. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x − 3) + (y + 1) + (z + 3) = .
4
4

Câu 128. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. a 2.
C.
.
D. 2a 2.
4
2
Câu 129. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
12 + 22 + · · · + n2
n3

2
B. .
3

Câu 130. [3-1133d] Tính lim
A. 0.

C.

1
.
3

D. +∞.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

4.


3. A
D

5.

D

11.

C
B

10.

D

12.

D

14.

D

15.

C

16.


17.

C

18. A

B

B

20. A

21. A
23.

C

8. A

9.

19.

B

6.

7. A


13.

C

22. A
24.

B

25.

D

D

26.

C

27.

C

28.

B

29.

C


30.

B

31.

D

32. A

33. A
35.

34. A
B

37.

D

36.

C

38.

C

41.


D

42.

43.

B

44.

45.

B

46.

47.

B

48.

49. A
C

52.

54.


C

55.

56.

D

57.

58. A

59.

60. A

61.
B

64.
66.
68.

C
D
C
B

50. A


51.

62.

D

40.

39. A

C
B
C
1

B
C
B
C
D

63.

B

65.

B

67.


D

69.

D


70.

71.

C

C
D

73.

72. A
D

74.

75. A

76. A

77.


78. A

79. A

80.

C

81.

82.

C

83. A
D

84.

B
B
D

85.

86. A

87.

88. A


89.

90. A

91.

C

92. A

93.

C

D

94.
96.

B

98.
100.

C

D

B


97.

C

99.

C

101.

B

102.
104.

95.

B

D

D

103. A

B

105.


D
D

106.

C

107.

108.

C

109.

110.

C

111.

D

112. A

113.

D

114. A


115.

116. A

117.

D

119.

D

118.

B

B

C

120.

D

121.

B

122.


D

123.

B

124.

C

126. A
128.

C

130.

C

125.

D

127.

D

129.


2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×