Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (211)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.27 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
.
A. √
.
B. √
.
C. √
.
D. 2
a + b2
a2 + b2
2 a2 + b2
a2 + b2
1
Câu 2. Hàm số y = x + có giá trị cực đại là
x
A. −1.


B. −2.
C. 2.
D. 1.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 3. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
0
3x + 1
A. 6.

B. 2.

C. −1.

D. 4.

Câu 4. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {3; 4}.

C. {4; 3}.

D. {5; 3}.

Câu 5. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).

1
C. lim k = 0 với k > 1.
n

B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n

Câu 6. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. .
C. .
D. 3.
2
2
Câu 7. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m ≥ .
D. m < .
4
4

4
4
Câu 8. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. 30.

D. 20.

Câu 9. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −2.
D. −7.
27
Câu 10. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 2ac
A.
.
B.
.
C.
.
c+1
c+3

c+2
log 2x
Câu 11. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 log 2x
1
A. y0 =
.
B. y0 =
.
C. y0 = 3
.
3
3
2x ln 10
x
2x ln 10

D.

3b + 3ac
.
c+2

D. y0 =

1 − 2 ln 2x
.

x3 ln 10

Câu 12. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 24.
D. 22.
Câu 13. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −1.

D. m = −2.
Trang 1/10 Mã đề 1


Câu 14. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.

D. −2 + 2 ln 2.

Câu 15. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng



14 3
20 3
.
B.
.
C. 6 3.
D. 8 3.
A.
3
3
√3
4
Câu 16. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
2
7
B. a 3 .
C. a 8 .
D. a 3 .
A. a 3 .
Câu 17. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3

A.
.
B.
.
C.
.
D.
.
12
6
4
12
2

Câu 18. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 3.
C. 5.

D. 2.

Câu 19. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).

(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

D. Chỉ có (I) đúng.

Câu 20. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 27.
B. 3 3.
C. 9.
D. 8.
2

Câu 21. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.

D. 2 − log2 3.

Câu 22. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. 2020.
D. log2 13.
[ = 60◦ , S O

Câu 23. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
B.
.
C.
.
D.
.
A. a 57.
17
19
19
Câu 24. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d ⊥ P.
Câu 25. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 26. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường

thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. 2
.
D.
.

a + b2
a2 + b2
2 a2 + b2
a2 + b2
Trang 2/10 Mã đề 1


Câu 27. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
2

Câu 28. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.

B. 7.
C. 8.
2n − 3
Câu 29. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.
C. 1.

D. 6.

D. −∞.

3

Câu 30. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e.
C. e5 .

D. e2 .
3a
, hình chiếu vng
Câu 31. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a

2a
a
a 2
A. .
B.
.
C. .
D.
.
4
3
3
3
1

Câu 32. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = R.
C. D = (1; +∞).
D.
1 − 2n
Câu 33. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. 1.
C. − .
D.

3
3
Câu 34. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
A. log2 a = − loga 2.
B. log2 a = loga 2.
C. log2 a =
.
D.
log2 a

D = (−∞; 1).

2
.
3
log2 a =

1
.
loga 2

Câu 35. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
Câu 36. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là

27
.
A. 18.
B. 12.
C. 27.
D.
2
Câu 37. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).
C. (−∞; 2).
D. (−∞; 0) và (2; +∞).
d = 60◦ . Đường chéo
Câu 38. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
A. a 6.
B.
.
C.
.
D.

.
3
3
3
1
Câu 39. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).
Câu 40.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
2
12


a3 2
C.
.
6



a3 2
D.
.
4
Trang 3/10 Mã đề 1



Câu 41. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.
D. 3 nghiệm.
Câu 42. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
A. − < m < 0.
4
4
Câu 43. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 44. [1] !Tập xác định của hàm số y != log3 (2x + 1) là

!
!
1
1
1
1
A.
; +∞ .
B. −∞; − .
C. −∞; .
D. − ; +∞ .
2
2
2
2
!2x−1
!2−x
3
3
Câu 45. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [1; +∞).
D. [3; +∞).
1
Câu 46. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm

3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
un
Câu 47. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 48. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 4}.

D. {3; 3}.

Câu 49. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. 2.
C. −2.
D. − .
A. .
2
2
0 0 0

Câu 50. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
3
a3
a
a
3
3
A.
.
B. a3 .
C.
.
D.
.
3
2
6
Câu 51. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 8%.
D. 0, 7%.
Câu 52. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.

B. 4.

C. 3.

D. 2.

Câu 53. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.

C. 0.

D. 7.

Câu 54. Hàm số y = −x + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; −1).
3

D. (−∞; 1).

Câu 55.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z

C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Trang 4/10 Mã đề 1


Câu 56. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 25.
C. 5.
5


D. 5.

Câu 57. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).


3
3

a 2
a 3
a 3
A.
.
B.
.
C.
.
D. a3 3.
2
4
2
Câu 59. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > −1.
Câu 60. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.

D. m > 1.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.

Câu 61. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 62. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 3.
C. T = e + 1.
D. T = e + .
e
e
Câu 63. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B. y0 =
.
x
x ln 10

1
C. y0 = .
x

Câu 64. [1] Đạo hàm của hàm số y = 2 x là
1

A. y0 = 2 x . ln 2.
B. y0 =
.
ln 2

1
C. y0 = x
.
2 . ln x


Câu 65.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x

A. 2 3.
B. 3.

C. 3 2.

2
Câu 66. √Xác định phần ảo của số
√ phức z = ( 2 + 3i)
A. −6 2.
B. 6 2.
C. −7.
Câu 67. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.

C. 20.

D.

1
.
10 ln x

D. y0 = 2 x . ln x.
D. 2 +


3.

D. 7.
D. 12.

Câu 68. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích

hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 8, 16, 32.
B. 2, 4, 8.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 69. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.
Trang 5/10 Mã đề 1


8
Câu 70. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 96.
C. 81.
D. 64.
Câu 71. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 72. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.

C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 73. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
!4x
!2−x
3
2


Câu 74. Tập các số x thỏa mãn
3 # 2
"
!
#
"
!
2
2
2
2
A.
; +∞ .
B. −∞; .
C. −∞; .
D. − ; +∞ .

5
3
5
3
Câu 75. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.

C. 8.

D. 12.
[ = 60◦ , S A ⊥ (ABCD).
Câu 76. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a 2
a 3
a 2
A.
.
B.
.
C.
.
D. a3 3.

4
12
6
Câu 77. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

3
3
4a 3
4a
2a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 78. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả

vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 18 tháng.
D. 16 tháng.
2x + 1
Câu 79. Tính giới hạn lim
x→+∞ x + 1
1
C. −1.
D. 1.
A. 2.
B. .
2
Câu 80. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 4.
D. 12.
log2 240 log2 15
Câu 81. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 4.
D. 1.
Câu 82. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của

mơđun z.




5 13
A. 2.
B. 2 13.
C.
.
D. 26.
13
Câu 83. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Trang 6/10 Mã đề 1


Câu 84. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
c a2 + b2

abc b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x−3
Câu 85. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. −∞.
C. 1.
D. +∞.
Câu 86. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 87. Dãy số nào sau đây có giới hạn là 0?
1 − 2n

n2 − 2
A. un =
.
B.
u
=
.
n
5n + n2
5n − 3n2

C. un =

n2 + n + 1
.
(n + 1)2

D. un =

n2 − 3n
.
n2

Câu 88. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.

D. 13 năm.
Câu 89.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Câu 90. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.

C. n3 lần.
D. 2n2 lần.
Câu 91.
Z Các khẳng định nào sau
Z đây là sai?

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

Z

A.

f (u)dx = F(u) +C.

Câu 92. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].

C. (4; +∞).

D. [6, 5; +∞).

Câu 93. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.

D. 4.

C. 6.

Câu 94. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−∞; 0) và (1; +∞). D. (−1; 0).
mx − 4
Câu 95. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 34.
C. 45.
D. 67.
Trang 7/10 Mã đề 1


Câu 96. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 6 mặt.
C. 9 mặt.

D. 8 mặt.

Câu 97. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 64.
D. 62.
Câu 98. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

Câu 99. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
π
Câu 100. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


D. T = 2 3.

A. T = 4.
B. T = 2.
C. T = 3 3 + 1.
1
Câu 101. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 102. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 5.
C. 2.
D. 3.
x−2 x−1
x
x+1
Câu 103. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham

x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. (−3; +∞).
Câu 104. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
x−2
Câu 105. Tính lim
x→+∞ x + 3
2
A. 2.
B. −3.
C. 1.
D. − .
3
Câu 106. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.

B. .
C. .
D. a.
2
2
3
Câu 107. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 108. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y−2 z−3
A.
=

=
.
B. =
=
.
2
3
4
2
3
−1
Trang 8/10 Mã đề 1


x y z−1
x−2 y+2 z−3
= =
.
D.
=
=
.
1 1
1
2
2
2
Câu 109. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.

B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
C.

Câu 110. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.

C. 12.

D. 30.

Câu 111.
√ [4-1245d] Trong tất cả
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 1.
D. 2.

Câu 112.√Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
.
B. 2a3 2.
A.
C. V = a3 2.
D. V = 2a3 .

3
Câu 113. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
!
1
1
1
Câu 114. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 1.
C. .
D. 0.
2
2

2


Câu 115.
f (x) = 2sin x + 2cos x lần lượt là
√ [3-c] Giá trị nhỏ nhất√và giá trị lớn nhất của hàm số √
B. 2 và 3.
C. 2 và 2 2.
D. 2 và 3.
A. 2 2 và 3.
Câu 116. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
2
3
2
Câu 117. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.


B. 0.

C. 2.

Câu 118. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
3
Câu 119. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 120. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 12.

D. 3.
D. V = S h.

D. 3.
Trang 9/10 Mã đề 1



x3 − 1
Câu 121. Tính lim
x→1 x − 1
A. 0.
B. −∞.

C. +∞.
D. 3.
1
Câu 122. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = −ey + 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.
Câu 123. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
1
3
A. .
B. .
C. 1.
D.
.
2
2
2

Câu 124. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 27 m.
D. 387 m.
Câu 125. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 2.

D. +∞.

C. 1.

Câu 126. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng

√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD là
3
3
a
a
3
a 3
.

B. a3 .
C.
.
D.
.
A.
3
3
9
Câu 127. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
Câu 128. Dãy
0?
!n số nào có giới hạn bằng
3
n − 3n
6
A. un =
.
B. un =
.
5
n+1

C. un = n − 4n.
2


!n
−2
D. un =
.
3

Câu 129. [4-1246d] Trong tất cả
√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 2.
B. 5.
C. 1.
D. 3.
Câu 130. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 6.

D. 8.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A


2.

3.

D

B

4. A

5.

B

6.

C

7.

B

8.

C

9.

C


10.

D
D

11.

D

12.

13.

D

14.
16.

C

15.
17. A
19.

D

18. A
B


20.

21.

D

22.

23.

D

24. A

25.

C

26.

27.

C

28.

29. A
31.

B


B

33.

D
D
B

30.

C

32.

C

34.

C

35.

D

36. A

37.

D


38. A

39.

B

D

40.

B

41. A

42.

B

43. A

44.

C

45.
47.

C


51.

52.

B

56.

B
C

61. A
63.
65.
67.

C
B

54. A
D

59.

D

50.
D

55.

57.

B

48.

B

49.
53.

46.

C

D

B

58.

C

60.

C

62.

B


64. A

B
C

66.
D

68.
1

B
C


69.

70.

C

71. A

72.

73. A

74.


C
B
D

75.

B

76. A

77.

B

78.

D

80.

D

79. A
81.

82.

B

83.


84.

C

C
B

85. A

86.

C

87. A

88.

C
C

89.

B

90.

91.

B


92.

93.
95.

B

94.

C
B

D

96.

97.

D

98.

99. A

100. A

101. A

102. A


103.

C

104.

105.

C

106.
D

107.

C
B

C
D

108.

C
C

109.

C


110.

111.

C

112.

B

114.

B

116.

B

113.

D

115. A
117.

118.

C


120.

119. A
121.

D

123.
125.

C
D

122. A

C
B

124.

C

126.

C

127. A

128.


D

129. A

130.

D

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×