TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
√
Câu 1. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. .
B. −3.
C. 3.
D. − .
3
3
Câu 2. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
sai.
Câu 3. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
C. Câu (II) sai.
D. Câu (I) sai.
C. 4.
D. 3.
Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
2a3 3
a3
a3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 5. Cho số phức z thỏa mãn |z +√3| = 5 và |z − 2i| = |z − 2 √
− 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
cos n + sin n
Câu 6. Tính lim
n2 + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
√
Câu 7. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab. Giá
trị nhỏ
" nhất
! của biểu thức P = "x + 2y! thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. [3; 4).
D. (1; 2).
2
2
Câu 8. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
B. −2.
C. − .
A. .
2
2
2
Câu 9. Giá trị của lim (3x − 2x + 1)
x→1
A. 1.
B. 3.
C. 2.
D. 2.
D. +∞.
Câu 10. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ±3.
B. m = ± 2.
C. m = ± 3.
D. m = ±1.
Câu 11. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 12. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
C. 30.
D. 12.
Trang 1/10 Mã đề 1
Câu 13. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. −7, 2.
D. 7, 2.
Câu 14. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 0.
D. 1.
√
√
Câu 15. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 16. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
C. y = log 14 x.
Câu 17. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 18. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.
C. y0 = 1 + ln x.
D. y0 = x + ln x.
Câu 19. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (1; −3).
C. (−1; −7).
D. (0; −2).
log(mx)
= 2 có nghiệm thực duy nhất
Câu 20. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0 ∨ m > 4.
3
x −1
Câu 21. Tính lim
x→1 x − 1
A. 0.
B. +∞.
C. −∞.
D. 3.
Z 1
6
2
3
Câu 22. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.
B. 4.
x − 12x + 35
Câu 23. Tính lim
x→5
25 − 5x
A. +∞.
B. −∞.
C. 6.
D. −1.
2
.
5
2
D. − .
5
2
Câu 24. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C.
C. Khối tứ diện đều.
D. Khối bát diện đều.
Câu 25. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 25 m.
C. 1587 m.
D. 387 m.
d = 120◦ .
Câu 26. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B.
.
C. 2a.
D. 4a.
2
1
Câu 27. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 28. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 9.
D. 13.
Trang 2/10 Mã đề 1
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].
Câu 29. [4-1212d] Cho hai hàm số y =
Câu 30. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Có vơ số.
D. Khơng có.
Câu 31. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
2
Câu 32. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. √ .
C. 2 .
2e
e
2 e
D.
2
.
e3
Câu 33. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 34. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.
C. 6.
Câu 35. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.
B. 3.
C. 1.
D. 12.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 2.
Câu 36. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 37. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
Câu 38. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √
√
2 3
A. 1.
B. 3.
C.
.
D. 2.
3
Câu 39. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 40. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
π
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
3 π6
2 π4
A. e .
B. 1.
C.
e .
D.
e .
2
2
2
Trang 3/10 Mã đề 1
Câu 42.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
Câu 43. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
C.
.
D. 2.
A. 1.
B. .
2
2
Câu 44. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
8
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 45. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
4
8
Câu 46. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.
D. 2.
Câu 47. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
D. e.
Câu 48. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −10.
D. P = −21.
Câu 49. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].
D. (−∞; +∞).
Câu 50. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 20, 128 triệu đồng.
Câu 51. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
A. 26.
B.
.
C. 2 13.
D. 2.
13
x2 − 5x + 6
Câu 52. Tính giới hạn lim
x→2
x−2
A. 1.
B. −1.
C. 5.
D. 0.
Câu 53. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. log2 2020.
D. 13.
Câu 54. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
B. 4.
C. 2.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 3.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 55. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là
√
√
√
3
3
3
√
a
2
a
3
a
3
A. 2a2 2.
B.
.
C.
.
D.
.
24
12
24
Câu 56. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
Trang 4/10 Mã đề 1
Câu 57.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 58. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+3
c+2
c+1
Câu 59. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D.
3b + 3ac
.
c+2
x+1
Câu 60. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. 1.
D. .
3
4
Câu 61. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 62.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 1.
D. 2.
Câu 63. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. 3n3 lần.
D. n3 lần.
Câu 64. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 1.
D. 22016 .
Câu 65. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
q
2
Câu 66. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
!
3n + 2
2
Câu 67. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 2.
D. 4.
! x3 −3mx2 +m
1
Câu 68. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
Câu 69. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Trang 5/10 Mã đề 1
!
!
!
4x
1
2
2016
Câu 70. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2016.
A. T = 2017.
B. T = 1008.
C. T =
2017
Câu 71. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 7 mặt.
C. 8 mặt.
D. 6 mặt.
2−n
Câu 72. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 0.
C. 1.
D. −1.
Câu 73.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
xα+1
+ C, C là hằng số.
α+1
1
Câu 74. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
Z
C.
xα dx =
1
dx = ln |x| + C, C là hằng số.
Z x
D.
0dx = C, C là hằng số.
B.
C. 2.
D. −1.
Câu 75. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
C. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 76. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {3}.
C. {5; 2}.
D. {2}.
Câu 77. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. .
C. 1.
D. .
2
2
2
Câu 78. Tính
√ mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i. √4
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 79. [2] Phương trình log x 4 log2
12x − 8
A. 3.
B. Vơ nghiệm.
C. 2.
D. 1.
1 − 2n
Câu 80. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.
B. − .
C. .
D. .
3
3
3
x+2
Câu 81. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.
C. 3.
D. 1.
√3
4
Câu 82. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
A. a 3 .
B. a 3 .
C. a 8 .
D. a 3 .
Câu 83. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 6.
C. 10.
Câu 84. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.
D. 4.
D. Hình lập phương.
Trang 6/10 Mã đề 1
Câu 85. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.
D. {5; 3}.
Câu 86. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 6
a3 15
a3 5
3
A.
C.
.
B. a 6.
.
D.
.
3
3
3
Câu 87. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a3 3
4a3 3
a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 88. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =
A. Nếu
Z
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
B. Nếu
f 0 (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Câu 89. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai câu trên sai.
Câu 90. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.
D. Cả hai câu trên đúng.
D. m > 0.
Câu 91. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
√
Câu 92. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
6
36
Câu 93. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. .
D. 9.
2
2
Câu 94. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {5; 3}.
D. {3; 4}.
Trang 7/10 Mã đề 1
Câu 95. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.
C. 8.
D. 20.
x3 −3x+3
Câu 96. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
2
5
A. e .
B. e.
C. e .
D. e3 .
Câu 97. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 6.
D. 12.
C. 10.
Câu 98. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B. 2a 2.
C.
.
D. a 2.
A.
2
4
[ = 60◦ , S O
Câu 99. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng
√
√
a 57
a 57
2a 57
B.
.
C.
.
D.
.
A. a 57.
19
17
19
Câu 100. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 7 năm.
D. 9 năm.
!x
1
là
Câu 101. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. − log3 2.
B. log2 3.
C. − log2 3.
D. 1 − log2 3.
d = 300 .
Câu 102. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3
√
3
a 3
3a
.
C. V =
.
D. V = 3a3 3.
A. V = 6a3 .
B. V =
2
2
Câu 103. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 1; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e−2 + 2; m = 1.
!
1
1
1
Câu 104. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. 2.
C. .
D. +∞.
2
2
x−3 x−2 x−1
x
Câu 105. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (2; +∞).
D. (−∞; 2).
Câu 106. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
3
2
x
Câu 107. [2]
√ + 1)2 trên [0; 1] bằng 2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m
A. m = ± 3.
B. m = ±3.
C. m = ± 2.
D. m = ±1.
Câu 108. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
Trang 8/10 Mã đề 1
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 0.
C. 3.
Câu 109. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 =
.
ln 2
C. y0 = 2 x . ln x.
D. 1.
D. y0 =
1
2 x . ln
x
.
Câu 110. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 111. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 112. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
2n − 3
bằng
+ 3n + 1
A. 0.
B. 1.
x2 − 9
Câu 114. Tính lim
x→3 x − 3
A. −3.
B. +∞.
Câu 113. Tính lim
2n2
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
C. +∞.
D. −∞.
C. 6.
D. 3.
Câu 115. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 5 mặt.
D. 3 mặt.
Câu 116. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.
D. 8 mặt.
Câu 117. Giá trị lớn nhất của hàm số y =
A. 1.
B. −5.
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
C. 0.
D. −2.
Câu 118. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C.
.
D.
.
√
√
a + b2
a2 + b2
2 a2 + b2
a2 + b2
π π
3
Câu 119. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. −1.
D. 7.
a
1
Câu 120. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 2.
C. 7.
D. 1.
Câu 121. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m < 3.
D. m > 3.
Câu 122. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Trang 9/10 Mã đề 1
Câu 123. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; .
2
2
2
!
1
D. −∞; − .
2
Câu 124. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
=
=
.
D.
=
=
.
C.
2
2
2
2
3
4
Câu 125. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.
D. Khơng có.
x−1 y z+1
Câu 126. Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. 2x + y − z = 0.
Câu 127. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối 20 mặt đều.
D. Khối bát diện đều.
Câu 128. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
Câu 129. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
B. 6 3.
C.
.
D.
.
A. 8 3.
3
3
Câu 130. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) = 1.
C. f 0 (0) = 10.
D. f 0 (0) =
.
ln 10
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2. A
3.
5.
4.
C
B
C
11. A
13.
C
6.
7. A
9.
D
C
8.
B
10.
B
12.
C
14.
C
15.
B
16. A
17.
B
18.
C
19.
D
20.
B
21.
D
22.
B
23.
C
24. A
25. A
26.
B
27. A
28.
B
D
29.
30. A
31. A
33.
32.
37.
34.
B
C
35.
D
36. A
38.
B
C
39.
C
D
40. A
41.
D
42.
43.
D
44.
45.
D
46. A
47.
D
48.
D
49.
D
50.
D
51.
B
52.
53.
B
54. A
55.
B
56. A
D
C
B
57.
D
58.
D
59.
D
60.
D
62.
D
61. A
63.
65.
67.
D
64.
B
66.
D
68.
1
B
C
D
69.
70.
B
D
72.
71. A
C
73.
74. A
75. A
76. A
77.
D
78.
79.
D
80.
81.
B
C
B
82.
B
D
83. A
84.
85. A
86.
D
D
87.
D
88.
89.
D
90.
91.
D
92. A
93.
95.
94.
C
B
B
B
96.
B
97. A
C
98. A
99.
D
100.
D
101.
C
102.
B
103.
C
104.
B
107.
D
108. A
109. A
110. A
D
111.
B
116. A
118. A
C
119. A
120.
B
127.
129.
C
122. A
B
123. A
125.
C
114.
117.
121.
D
112.
113. A
115.
D
106.
105. A
C
B
124.
B
126.
B
128.
B
130. A
2