Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (616)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.13 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. +∞.

C. 3.

D. 1.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


9 11 − 19
18 11 − 29
C. Pmin =
. D. Pmin =
.
9


21

Câu 2. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
2 11 − 3
A. Pmin =
.
3

B. Pmin


9 11 + 19
=
.
9

Câu 3. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối tứ diện.
Câu 4. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng d
2
2

−1
đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
1
Câu 5. [1] Giá trị của biểu thức log √3
bằng
10
A. −3.

B. 3.

C.

1
.
3

Câu 6. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 1.
C. 0.
Câu 7. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. .

C. 1.
2
2

1
D. − .
3
D. 3.

D. 2.

Câu 8. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều rộng
bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .


2

1

3i lần lượt l√
Câu 9. Phần thực √
và phần ảo của số phức
z
=



A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
D. Phần thực là 2 − 1, phần ảo là 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
Câu 10. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4e + 2
Câu 11. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. 1.

D. m =

1 + 2e
.
4 − 2e

D. −2 + 2 ln 2.


Câu 12. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. 8π.
D. V = 4π.
Câu 13. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.

C. 20.

D. 12.
Trang 1/11 Mã đề 1


Câu 14. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 15. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.

B. 2.
C. 5.
D. 4.
Câu 16. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a3 3
a3 3
4a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 17. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.

B. 0, 5.
C. 0, 2.
D. 0, 4.
x−3
bằng?
Câu 18. [1] Tính lim
x→3 x + 3
A. 1.
B. −∞.
C. 0.
D. +∞.
2
3
7n − 2n + 1
Câu 19. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 0.
C. 1.
D. - .
3
3
Câu 20. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.
un

Câu 21. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. +∞.
D. 1.

Câu 22. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
3
2
6
!

x+1
Câu 23. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A. 2017.
B.
.
C.
.
D.
.
2018
2017
2018
Câu 24. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 25. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 6%.
C. 0, 8%.
D. 0, 5%.
Câu 26. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
Trang 2/11 Mã đề 1


(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.

Câu 27. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 7.
C. 3.
D. 2.
Câu 28. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 16 m.
C. 24 m.
D. 8 m.
Câu 29. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = −2.
D. x = 0.

1
Câu 30. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (1; 3).
D. (−∞; 1) và (3; +∞).

Câu 31. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
Câu 32. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 33. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3 15
a3 15
a3 5
a3
.
B.
.

C.
.
D.
.
A.
3
5
25
25
Câu 34. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).

D. (−1; 1).

Câu 35. [1] Đạo hàm của làm số y = log x là
1
ln 10
.
B.
.
A. y0 =
x
10 ln x

1
D. y0 = .
x


C. y0 =

1
.
x ln 10

Câu 36. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 13 năm.
D. 10 năm.
Câu 37. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
1728
23
A.
.
B.
.
C.
.
D.
.
4913
4913

4913
68
Câu 38. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.

C. D = (0; +∞).

D. D = R \ {1}.

Câu 39. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Giảm đi n lần.
Trang 3/11 Mã đề 1


Câu 40. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 8 năm.
D. 9 năm.

x2 + 3x + 5
Câu 41. Tính giới hạn lim
x→−∞
4x − 1

1
1
A. 1.
B. − .
C. 0.
D. .
4
4
0 0 0
d = 300 .
Câu 42. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên

√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
3

a3 3
3a 3
3
3
C. V = 6a .
D. V =
A. V =
.
B. V = 3a 3.
.
2
2
Câu 43. Mệnh đề nào sau đây sai?

A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 44. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m = 0.

D. m > 0.
8
Câu 45. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 82.
C. 96.
D. 81.
[ = 60◦ , S O
Câu 46. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
.
B.
.
C.
.
D. a 57.
A.
19
17
19
Câu 47. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 3}.
Câu 48. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.

C. 20.

D. 30.

Câu 49.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?

( f (x) − g(x))dx =

A.
Z
C.

( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.

B.

Z

Z
g(x)dx.

Câu 50. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.
B. .
n
n


D.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

1
C. √ .
n

D.

sin n
.
n

Câu 51. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {2}.
C. {5}.
D. {5; 2}.
2
Câu 52. Tính
√ mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √4
B. |z| = 5.
C. |z| = 5.
A. |z| = 2 5.


D. |z| = 5.

Câu 53. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C.
.
D. 7.
2
2
Trang 4/11 Mã đề 1


Câu 54. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. m ≤ 3.
!
1
1
1
Câu 55. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)

3
A. 1.
B. 0.
C. .
D. 2.
2

Câu 56. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 5.
C. 5.
D. 25.
5
Câu 57. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.

C.
.
D.
.
24
24
48
8
Câu 58. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
p
ln x
1
Câu 59. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
B. .
C. .
D. .
A. .
9

3
3
9
Câu 60. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
C. .
D.
.
A. a.
B. .
3
2
2
1
Câu 61. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
4x + 1
bằng?
Câu 62. [1] Tính lim
x→−∞ x + 1
A. −1.
B. −4.

C. 4.
D. 2.
Câu 63. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối 20 mặt đều.

Câu 64. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −7.

B. −4.

C. −2.

D.

67
.
27

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.


Câu 65. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 66. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
log 2x
Câu 67. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x

A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 68. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. (1; 2).
D. [−1; 2).
Trang 5/11 Mã đề 1


x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

A. 6.
B. 2.

C. 2 2.
D. 2 3.
Câu 69. [3-1214d] Cho hàm số y =

Câu 70. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 2.
C.
.
D. a 3.
3
2
Câu 71. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 8 mặt.
D. 6 mặt.
Câu 72. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 6.


D. 8.

d = 30◦ , biết S BC là tam giác đều
Câu 73. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
13
9
16
26
q
2
Câu 74. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3

A. m ∈ [−1; 0].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Câu 75. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
A. log2 a =
loga 2
log2 a
Z 3
x
a
a
Câu 76. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 28.
B. P = −2.
C. P = 16.
D. P = 4.

1
Câu 77. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = −3, m = 4.
x−2
Câu 78. Tính lim
x→+∞ x + 3
2
A. 2.
B. 1.
C. −3.
D. − .
3
x−1 x2
x−2
Câu 79. [2] Tổng các nghiệm của phương trình 3 .2 = 8.4 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 2 − log2 3.
D. 1 − log3 2.
Câu 80. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
√ S H ⊥ (ABCD), S A =
√a 5. Thể tích khối chóp3 S .ABCD là

3
3
2a 3
4a 3
4a
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 81. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là −1.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 82. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
A.

.
B.
.
C. .
D. .
10
10
5
5
Trang 6/11 Mã đề 1


Câu 83. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vơ nghiệm.
D. 3.
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
a 3
4a 3

8a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
9
9
3
Câu 85. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

x→a

x→a

C. lim+ f (x) = lim− f (x) = a.

D. lim f (x) = f (a).
x→a


d = 60◦ . Đường chéo
Câu 86. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
2a3 6
4a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
x
x
Câu 87. [2] Tổng các nghiệm của phương trình 9 − 12.3 + 27 = 0 là
A. 3.
B. 12.

C. 10.
D. 27.
Câu 88.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

A.

Z

x+1
bằng
x→+∞ 4x + 3

1
1
A. 1.
B. .
C. .
D. 3.
4
3
Câu 90. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
8
4
12
4
Câu 91. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là

A. −2e2 .
B. 2e4 .
C. −e2 .
D. 2e2 .
9t
Câu 92. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vơ số.
C. 2.
D. 0.
Câu 89. Tính lim

Câu 93. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 3, 03 triệu đồng.
Câu 94. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.

C. 12.


D. 10.
Trang 7/11 Mã đề 1


Câu 95. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B.
; +∞ .
C. − ; +∞ .
A. −∞; .
2
2
2

!
1
D. −∞; − .
2

Câu 96. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.

D. 12 cạnh.

C. 11 cạnh.


Câu 97. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
D. 2a 2.
.
B.
.
C. a 2.
A.
2
4
x+2
Câu 98. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. Vô số.
D. 2.
Câu 99. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 64cm3 .

D. 72cm3 .
Câu 100. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
A. un =
.
B. un =
.
2
5n − 3n
5n + n2

n2 + n + 1
.
(n + 1)2

Câu 101. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3 3
a3
3
A.
.
B. a 3.
C.

.
D.
.
3
12
4
C. un =

n2 − 3n
.
n2

D. un =

Câu 102. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 103. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 104. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5

a3 5
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 105. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 8.
D. 5.
Z 1
Câu 106. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B. 0.

C. 1.


D.

1
.
4

3
2
x
Câu 107. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 3.
B. m = ±1.
C. m = ±3.
D. m = ± 2.

Trang 8/11 Mã đề 1


Câu 108. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng 2n+1.
Câu 109.
√ Thể tích của tứ diện đều
√cạnh bằng a



3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
2
12
6
Câu 110. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 111. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 3.
D. 4.

Câu 112.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 1.
C. 2.
D. 10.
Câu 113. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 5.
C. 6.
2

D. −5.

Câu 114. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
b a2 + c2
c a2 + b2
abc b2 + c2
a b2 + c2
.
B. √
.
C. √

.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

Câu 115. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
1
Câu 116. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 1.
C. 2.
D. 3.
x+1
Câu 117. Tính lim
bằng
x→−∞ 6x − 2
1
1
1

A. .
B. .
C. 1.
D. .
3
6
2
x
x
x
Câu 118. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 + 6.9 = 0 là
A. 1.
B. 2.
C. 0.
D. 3.
Câu 119. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(4; −8).
D. A(−4; −8)(.
!
1
1
1
Câu 120. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5

B. +∞.
C. .
D. 2.
A. .
2
2
2
Câu 121. Cho z là nghiệm của phương trình
= z4 + 2z3 − z
√ x + x + 1 = 0. Tính P √
−1 − i 3
−1 + i 3
A. P = 2.
B. P =
.
C. P =
.
D. P = 2i.
2
2
Câu 122. Xét hai khẳng đinh sau
Trang 9/11 Mã đề 1


(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.


C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 123. Trong khơng gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 3.
D. 1.
2
2

Câu 124. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 6
a3 2
A.
.
B.
.

C.
.
D.
.
18
36
6
6
Câu 125. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
!2x−1
!2−x
3
3
Câu 126. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [3; +∞).
C. (−∞; 1].
D. [1; +∞).
Câu 127. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.

n−1
Câu 128. Tính lim 2
n +2
A. 0.
B. 3.
C. 2.

D. 5 mặt.

D. 1.

Câu 129. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − 2 .
C. −e.
D. − .
2e
e
e
2
Câu 130. [2-c] Giá trị lớn nhất của hàm số y = ln(x + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.
D. ln 14.
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A

3.

D

4.

5.

D

6.

C

7.

D

8.


C

9. A

10. A

11. A
14.

13.
C

17. A

18.

C

19.

20. A

D
D

21.

B
B


22.

B

23.

24.

B

25. A

26.

C

15.

B

16.

28.

B

27.

C


D

29. A

B
D

30.

31. A

32. A
34.

D

33.

C

35.

C

36.

B

37. A


38.

B

39.
D

40.

41.

D
B

42. A

43.

D

44. A

45.

D

46. A

47.


D

48.

D

49.

50. A

B

51.

52.

C

53.

54. A

C
B

55. A

56.

D


57.

B

58. A

59.

D

60. A

61.

D
D

62.

C

63.

64.

C

65.


C

67.

C

66. A
68.

69.

B
1

D


71.

C

70.
72.

D

73. A

74. A


75. A
D

76.
78.

77.

B

83. A

84. A

85.
D

86.
B

89.

B

91.
C

92.

93.


94. A

C
B

95.
B

C

97. A
D

98.

99.

B

B

101. A

102.
104.

D

87. A


90. A

100.

C

81. A

82. A

96.

D

79.
C

80.

88.

D

D

103.

B


B

105. A
B

106. A

107.

108. A

109.

C
C

110.

B

111.

112.

B

113.

114.
116.


D
C

120.
122.

115.

B

118.

D
B

117.

B

119.

B

123. A
125.
D

127.


128. A
130.

C

121. A

124. A
126.

D

129. A
D

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×