Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn thi thpt 2 (656)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.12 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 18 lần.
Câu 2. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 5.
Câu 3. Tính lim
x→3

A. −3.

x2 − 9
x−3

B. 0.

C. 9.


D. 7.

B. 6.

C. +∞.

D. 3.

Câu 4. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.
D. 3, 55.
Câu 5. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 6. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.

D. 1 nghiệm.

Câu 7. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.

C. 6 mặt.

D. 9 mặt.

Câu 8. Tính giới hạn lim
x→2

A. 5.
Câu 9. Tính lim

x2 − 5x + 6
x−2
B. 1.

C. 0.

D. −1.

2n2 − 1
3n6 + n4

2
.
D. 0.
3
Câu 10. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 11.
C. 12.

D. 4.
A. 2.

B. 1.

C.

Câu 11.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

C.

Câu 12. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.
Câu 13. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2

C. 8.
C. un =

D. 10.
n2 − 3n
.
n2

D. un =

n2 − 2
.
5n − 3n2
Trang 1/10 Mã đề 1



Câu 14. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 10 .(3)40
C 20 .(3)30
C 40 .(3)10
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 15. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.


!2x−1
!2−x
3
3
Câu 16. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. [3; +∞).
C. (+∞; −∞).

D. (−∞; 1].

d = 120◦ .
Câu 17. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 2a.
C. 3a.
D.
.
2
Câu 18. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 17.

C. |z| = 10.
D. |z| = 10.
Câu 19. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {3; 4}.

Câu 21. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim k = 0 với k > 1.
n

B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n

D. {5; 3}.
q
Câu 20. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].


2

Câu 22. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 5.
C. 8.

D. 7.

Câu 23. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.

D. 2.

Câu 24. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
a2 7
11a2
a2 2
a2 5
.
B.
.

C.
.
D.
.
A.
16
8
32
4
Câu 25. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Trang 2/10 Mã đề 1


Câu 26. [1-c] Giá trị của biểu thức
A. −2.


log7 16
log7 15 − log7

B. 4.

15
30

bằng
C. −4.

D. 2.

Câu 27. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n3 lần.
D. n lần.
Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



c a2 + b2
abc b2 + c2
b a2 + c2
a b2 + c2
.

B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2



x = 1 + 3t




Câu 29. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
7t
x
=
1
+
3t
x = −1 + 2t

















A. 
.
C. 
D. 
y = −10 + 11t . B. 
y=1+t
y = 1 + 4t .
y = −10 + 11t .

















z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
Câu 30. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối lập phương.

D. Khối bát diện đều.

Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 3
a3 5
.
B.
.
C.
.

D.
.
A.
12
6
4
12
Câu 32. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; −3).
Câu 33. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
A. 2.
B. 3.
C.
.
D. 1.
3

d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 34. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




a3 2
a3 3
a3 3
2
A. 2a 2.
B.
.
C.
.
D.
.
24
24
12
Câu 35. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 20.

C. 12.

D. 30.


Câu 36. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 2).

D. (−∞; 0) và (2; +∞).

Câu 37. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
Trang 3/10 Mã đề 1


Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2

.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
a
1
Câu 39. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 7.
D. 2.
Câu 40. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.
Câu 41. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. −6.
C. 3.
D. 0.
1
Câu 42. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.

Câu 43. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 10.

C. 6.

D. 8.

Câu 44. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
9x
Câu 45. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. 2.
D. −1.
2
Câu 46. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −10.
D. P = −21.
Câu 47. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a



a3 15
a3
a3 5
a3 15
.
B.
.
C.
.
D.
.
A.
25
3
25
5
Câu 48. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
C. 3.
D. 4.
Câu 49. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 4 mặt.

D. 6 mặt.


Câu 50. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 51. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2
Câu 52. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = 0.

1
D. V = S h.
3
D. m = −3.
Trang 4/10 Mã đề 1


Câu 53. Tính lim

x→+∞

A. 2.

x−2

x+3
B. 1.

C. −3.

Câu 54. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 9.
C. 13.
Câu 55. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.
1
bằng
Câu 56. [1] Giá trị của biểu thức log √3
10
1
A. −3.
B. 3.
C. − .
3

2
D. − .
3
D. Không tồn tại.
D. −1 + 2 sin 2x.

D.


1
.
3

Câu 57. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − .
D. − 2 .
2e
e
e
2
x
Câu 58. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = .
e
e
Câu 59. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1

1
.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
log2 a
loga 2
Câu 60. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.
D. 9 mặt.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 61. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey + 1.
B. xy0 = −ey − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 62. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 1.
C. 22016 .
D. 0.

Câu 63. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
A. 8 3.
B.
.
C.
.
D. 6 3.
3
3
1
Câu 64. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. m = 4.
D. −3 ≤ m ≤ 4.
Câu 65. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1

1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4
4
Câu 66. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. .
e
Câu 67. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.

D. 3.
D. {4; 3}.
Trang 5/10 Mã đề 1


Câu 68. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.

D. Tăng gấp 8 lần.
Câu 69. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. 2.
C. −2.
x+1
Câu 70. Tính lim
bằng
x→+∞ 4x + 3
1
A. 3.
B. 1.
C. .
4

D. −4.

D.

1
.
3

Câu 71. Các khẳng
!0 định nào sau đây là sai?
Z
Z
Z
A.
f (x)dx = f (x).

B.
k f (x)dx = k
f (x)dx, k là hằng số.
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 72. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Tứ diện đều.

D. Nhị thập diện đều.

x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].

B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
Câu 73. [4-1213d] Cho hai hàm số y =

Câu 74. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3
a3 3
.
B.
.
C.
.
D.
.
A.
8
4
12
4
Câu 75. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1

1
A. 2
.
C.
.
D.
.
.
B.



a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 76. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
A.
c+2
c+1
c+2


D.

3b + 2ac
.
c+3

Câu 77. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 27.
C. 12.
D.
.
2
Câu 78. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aαβ = (aα )β .

B. aα bα = (ab)α .

C. aα+β = aα .aβ .

D.

α

β.
=
a



Câu 79. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là
√ S H ⊥ (ABCD), S A =

3
3
4a 3
2a
4a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
cos n + sin n
Câu 80. Tính lim
n2 + 1
A. 0.
B. +∞.

C. −∞.
D. 1.
Trang 6/10 Mã đề 1


3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a 2
a
a
A.
.
B.
.
C. .
D. .
3
3
3
4
Câu 82. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 9 năm.

C. 7 năm.
D. 10 năm.
Câu 81. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 83. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 84. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Ba cạnh.

D. Hai cạnh.

Câu 85. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Một mặt.
C. Hai mặt.

D. Bốn mặt.

Câu 86. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

B. 8 3.
C. 7 3.

D. 16.
A. 8 2.
Câu 87. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.

C. 30.

D. 12.

Câu 88. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.
Câu 89. [3-1132d] Cho dãy số (un ) với un =

C. Cả hai câu trên sai.

D. Chỉ có (II) đúng.

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?

n2 + 1
B. Dãy số un khơng có giới hạn khi n → +∞.

A. lim un = 1.
1
C. lim un = .
D. lim un = 0.
2
Câu 90. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim = 0.
D. lim qn = 0 (|q| > 1).
n
Câu 91. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
.
C. 34.
D. 68.
17



Câu 92. Phần thực√và phần ảo của số phức
z
=
2

1

3i lần lượt l √


A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Trang 7/10 Mã đề 1


Câu 93. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 94. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.
C. log2 13.
D. 2020.
Câu 95. Khối chóp ngũ giác có số cạnh là

A. 12 cạnh.
B. 11 cạnh.

C. 10 cạnh.

D. 9 cạnh.

Câu 96. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Có một hoặc hai.
D. Khơng có.
Câu 97. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 3.
D. 4.
2
x − 12x + 35
Câu 98. Tính lim
x→5
25 − 5x
2
2
A. .
B. +∞.
C. −∞.
D. − .

5
5
Câu 99. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log π4 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log 14 x.
D. y = log √2 x.
4x + 1
Câu 100. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. −1.

C. 2.

Câu 101. [12210d] Xét các số thực dương x, y thỏa mãn log3

D. 4.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y

nhất Pmin của P√ = x + y.



9 11 − 19
9 11 + 19

18 11 − 29
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
9
21
3
Câu 102. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 103. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. √ .
B. .
n
n

C.

n+1
.
n


D.

sin n
.
n

3

Câu 104. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e.
D. e2 .
Câu 105. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 106. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m > 1.

D. m ≥ 0.

Câu 107. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và AD bằng





a 2
a 2
A. a 3.
B. a 2.
C.
.
D.
.
2
3
Câu 108. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 6 mặt.
D. 9 mặt.
Trang 8/10 Mã đề 1



Câu 109. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3 3
a3
.
B.

.
C.
.
D. a3 3.
A.
4
3
12
Câu 110. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = [2; 1].
2

D. D = R \ {1; 2}.

Câu 111.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
3
A.
.
B.
.
C.
.
D. .

12
2
4
4
3
2
Câu 112. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].
C. [−3; 1].
D. [1; +∞).
1
Câu 113. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 114. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.
2
7n − 2n3 + 1
Câu 115. Tính lim 3
3n + 2n2 + 1
7
B. 0.
A. .
3

2n − 3
Câu 116. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 1.

C. 30.

D. 8.

2
C. - .
3

D. 1.

C. 0.

D. −∞.

Câu 117. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 3 mặt.

D. 6 mặt.

Câu 118. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.

B. 1.
C. 2.
D. 7.
n−1
Câu 119. Tính lim 2
n +2
A. 2.
B. 1.
C. 3.
D. 0.
Câu 120. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
[ = 60◦ , S O
Câu 121. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng


2a 57
a 57
a 57
A. a 57.
B.
.
C.
.

D.
.
19
19
17
Câu 122. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
B. Nếu

f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z

Trang 9/10 Mã đề 1


Z
D. Nếu


f (x)dx =
0

Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 123. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.

D.
.
24
12
36
6
tan x + m
Câu 124. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; −1) ∪ (1; +∞).
Câu 125. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. +∞.
C. 2.
D. 1.
2n + 1
Câu 126. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. .

C. 0.
D. .
2
3
2
Câu 127. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
9
1
1
B. .
C.
.
D.
.
A. .
5
5
10
10
!x
1
1−x
Câu 128. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. − log2 3.
C. 1 − log2 3.

D. log2 3.
1
Câu 129. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 130. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. − ; +∞ .
C. −∞; − .
2
2
2

!
1
; +∞ .
D.
2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

B

4.

5. A
D

10.

C

B
B

13.

14.

B

15.

C

D

17.

16. A
D

18.

19. A

B

21. A

22.

D

23. A
25.

B
C

26.

B
C


27.
29.

28. A

D

31. A

B

32.
34.

D

11.

B

30.

C

9.

12.

24.


B

6.

8.

20.

C

2.

C

33. A

B

36.

D

38. A

35.

D

37.


D

39.

40.

41. A

C

42.

D

44.

C

43.
45.

C

D
B

46.

D


47. A

48.

D

49.

D

50.

D

51.

D

52.

B

53.
55.

54. A
56.
58.

59.


B

61.

62.

D

57. A

C

60. A
64.

B

D
C

63.

D
B

65.

66.


D

67.

68.

D

69.
1

D
C
D
C


71.

C

70.
72. A

73.

74. A

75.


76. A

77. A

78.

D

B
C

79.

80. A
82.

D

C

81. A
B

84.

C
D

86.
88. A

90.

D

83.

D

85.

D

87.

C

89.

C

91.

92. A

B

93. A

94.


C

95.

C

96.

C

97.

C

98. A
D

100.
C

99.

D

101.

D

103.


C

104. A

105.

C

106. A

107.

C

102.

108.
110.

D
B

112.
114.

109.
111.
115.

B

C

117.

118.

C

119.

120.

D
B

124.

C

113. A

C

116.

122.

B

C


C
B
D

121.

B

123.

B

125.

C

126.

B

127.

C

128.

B

129.


C

130.

B

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×