Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg (219)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.15 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {3; 5}.
D. {5; 3}.
!
3n + 2
2
Câu 2. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 4.
B. 2.
C. 3.
D. 5.
√3
4
2
Câu 3. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a bằng
5


7
5
2
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 4. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
A. β = a β .
a
Câu 5. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
D. 2.
Câu 6. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.

D. 4 mặt.

Câu 7. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27

.
C. 27.
D. 12.
A. 18.
B.
2
d = 30◦ , biết S BC là tam giác đều
Câu 8. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
26
9
16
3a
Câu 9. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là √
trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD) bằng
a
a 2
2a
a
A. .
B.
.
C.
.
D. .
4
3
3
3
Câu 10. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. 10.
D. 6.
Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
3
3


a 3
a 3
a 2
A.
.
B.
.
C. a3 3.
D.
.
2
4
2
Z 3
a
a
x
Câu 12. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 16.
C. P = 4.
D. P = 28.
Câu 13. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn

[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

Trang 1/11 Mã đề 1


d = 300 .
Câu 14. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
.
B. V = 6a3 .

C. V =
.
D. V = 3a3 3.
A. V =
2
2
Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
a 3
8a 3
4a 3
8a 3
.
B.
.
C.
.
D.
.
A.
3

9
9
9
Câu 16. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {5; 3}.

D. {3; 3}.

Câu 17.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
2


a3 2
C.
.
12



a3 2
D.
.
6

Câu 18. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 6510 m.
D. 1134 m.
log 2x

Câu 19. [1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1
1 − 2 log 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3

2x ln 10
2x ln 10
x
x ln 10
Câu 20. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −5.
C. x = 0.
D. x = −8.
Câu 21. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 34.
C. 5.
D.
.
A. 68.
17
Câu 22. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 4.
C. 10.
D. 6.
Câu 23. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.

C. 3.
D. 2.
Câu 24. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 4.
C. V = 6.
D. V = 5.
Câu 25. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
A.
.
B.
.
C.
.
D. a3 .
3
6
2



x=t





Câu 26. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4

Trang 2/11 Mã đề 1



Câu 27. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. −3.
C. .
3
3

D. 3.

Câu 28.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z


f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Câu 29. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 5.

D. 1.

Câu 30. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 2
11a
a2 5

a 7
.
B.
.
C.
.
D.
.
A.
8
4
32
16
Câu 31. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
D.
Câu 32. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.

f (x)dx = F(x) + C.

C. {4; 3}.


D. {3; 3}.



x = 1 + 3t




Câu 33. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
C. 
y = −10 + 11t . B. 
y=1+t
y = −10 + 11t . D. 
y = 1 + 4t .
















z = 6 − 5t
z = 1 + 5t
z = −6 − 5t
z = 1 − 5t


Câu 34. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
5
7
8
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).
B.
3
3
3
Câu 35. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.

B.
.
C.
.
D.
.
8
24
48
24
Câu 36. Xét hai câu sau
Trang 3/11 Mã đề 1


Z
(I)

( f (x) + g(x))dx =

Z

f (x)dx +

Z

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên

A. Cả hai câu trên sai.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (II) đúng.
1
Câu 37. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 2.
C. 1.
D. 3.


Câu 38.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6√− x

A. 3 2.
B. 3.
C. 2 3.
D. 2 + 3.
Câu 39. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.

2
x
Câu 40. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = 1.
A. M = e, m = .
e
e
Câu 41. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).
D. (0; +∞).
Câu 42. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 30.

C. 12.

D. 8.

Câu 43. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
a
8a

2a
A.
.
B.
.
C. .
D.
.
9
9
9
9
1
Câu 44. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (−∞; 3).
C. (−∞; 1) và (3; +∞). D. (1; 3).
3

Câu 45. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.

D. e5 .

Câu 46. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.

C. 3 nghiệm.

D. 2 nghiệm.

Câu 47. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 7.

B. 5.

C. 9.

D. 0.

Câu 48. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
!x
1

Câu 49. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. − log3 2.
B. log2 3.
C. 1 − log2 3.
D. − log2 3.

Trang 4/11 Mã đề 1


x2 − 5x + 6
x→2
x−2
B. 1.

Câu 50. Tính giới hạn lim
A. −1.

C. 0.

Câu 51. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
.
B.
.
C.
.
A.
c+1
c+3
c+2
Câu 52. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 0.


D. 5.

D.

3b + 3ac
.
c+2

D. 3.

Câu 53.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 54. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2

.
B.
.
C. a 2.
D. 2a 2.
A.
4
2
Câu 55. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 1.

C. f 0 (0) = 10.

D. f 0 (0) =

1
.
ln 10

x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x

x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].
Câu 56. [4-1212d] Cho hai hàm số y =

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x − y + 2z − 1 = 0.

Câu 57. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 58. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
log(mx)

= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m ≤ 0.

Câu 59. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m < 0 ∨ m > 4.

Câu 60. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 7.
C. 2.
D. 1.

Câu 61. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 62. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

D. Khối bát diện đều.
Trang 5/11 Mã đề 1



Câu 63. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n + n2
(n + 1)2

C. un =

n2 − 3n
.
n2

D. un =

n2 − 2
.
5n − 3n2

Câu 64. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng





14 3
20 3
A. 6 3.
B. 8 3.
C.
.
D.
.
3
3
Câu 65. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 66. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là


3

a3 3
a
3
2a3 3
.

B.
.
C. a3 3.
D.
.
A.
3
6
3
[ = 60◦ , S O
Câu 67. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
log 2x

Câu 68. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
A. y0 =
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 69. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 70. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và

a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
6
12
36
2mx + 1
1
Câu 71. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3

A. −2.
B. −5.
C. 1.
D. 0.
1
Câu 72. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 73. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; +∞).

D. (4; 6, 5].

Câu 74. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.

C.
.
D.
.
6
12
24
Trang 6/11 Mã đề 1


Câu 75. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
D.
.
A. 7.
B. 5.
C. .
2
2
1
Câu 76. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 4.
D. 3.
Câu 77. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√


a3
2a3 3
4a3 3
a3
.
B.
.
C.
.
D.
.
A.
3
6
3
3
Câu 78. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.

B.
.
C.
.
D.
.
6
12
12
4
2−n
bằng
Câu 79. Giá trị của giới hạn lim
n+1
A. −1.
B. 1.
C. 2.
D. 0.
Câu 80. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.

D. −1 + sin x cos x.

Câu 81.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.

0dx = C, C là hằng số.
A.
x
Z
Z
xα+1
α
C.
x dx =
+ C, C là hằng số.
D.
dx = x + C, C là hằng số.
α+1
d = 60◦ . Đường chéo
Câu 82. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
3
A. a 6.

B.
.
C.
.
D.
.
3
3
3

2
Câu 83.
√ Xác định phần ảo của số phức z = ( 2 + 3i)

A. 6 2.
B. 7.
C. −6 2.
D. −7.
x−2
Câu 84. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. −3.
D. 1.
3
Câu 85. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối 12 mặt đều.

D. Khối tứ diện đều.
Câu 86. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.

D. Không tồn tại.

x
Câu 87. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
A. .
B. 1.
C.
.
D. .
2
2
2
Câu 88. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.

.
C. .
D. a.
2
2
3

Trang 7/11 Mã đề 1


Câu 89. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 6.

C. 8.

D. 12.

d = 120◦ .
Câu 90. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.
B. 2a.
C. 4a.
D. 3a.
2
Câu 91. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?

!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
! 3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 92. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
x3 − 1
Câu 93. Tính lim
x→1 x − 1
A. +∞.
B. −∞.

C. 0.

D. 3.

Câu 94. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng




a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
2
2
3
x
Câu 95. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.
C. 1.
D. 3.
Câu 96. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
Câu 97. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm

S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √

3
3
3
4a
2a
4a 3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
 π π
3
Câu 98. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. 7.
D. −1.

Câu 99. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 4.
D. ln 12.
Câu 100. Tính mơ đun của số phức √
z biết (1 + 2i)z2 = 3 + 4i. √
C. |z| = 2 5.
A. |z| = 5.
B. |z| = 5.
Câu 101. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. −7, 2.
!2x−1
!2−x
3
3
Câu 102. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [1; +∞).
C. (+∞; −∞).

D. |z| =

√4

5.

D. 72.

D. [3; +∞).
Trang 8/11 Mã đề 1


tan x + m
Câu 103. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
!
1
1
1
+ ··· +
Câu 104. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .

C. +∞.
D. 2.
2
2
Câu 105. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 12.
C. 20.
D. 8.
Câu 106. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z
B. Nếu
Z

g(x)dx thì f (x) , g(x), ∀x ∈ R.

f 0 (x)dx =

Z

f (x)dx =

Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

g(x)dx thì f (x) = g(x), ∀x ∈ R.

Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
C. Nếu


Câu 107. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vơ số.
Câu 108. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.

D. 4 mặt.

Câu 109. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 110. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1

C. 2.
D.
.
A. 1.
B. .
2
2
Câu 111. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (−∞; −1) và (0; +∞). D. (0; 1).
1 + 2 + ··· + n
Câu 112. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
x−3 x−2 x−1
x
Câu 113. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1

số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2).
C. [2; +∞).
D. (−∞; 2].
2n + 1
Câu 114. Tính giới hạn lim
3n + 2
1
2
3
A. .
B. .
C. 0.
D. .
2
3
2
n−1
Câu 115. Tính lim 2
n +2
A. 0.
B. 3.
C. 1.
D. 2.
Trang 9/11 Mã đề 1


Câu 116. [2] Đạo hàm của hàm số y = x ln x là

A. y0 = x + ln x.
B. y0 = 1 − ln x.

C. y0 = ln x − 1.

D. y0 = 1 + ln x.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác

√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB có độ dài bằng
A. 2 3.
B. 6.
C. 2.
D. 2 2.
Câu 117. [3-1214d] Cho hàm số y =

Câu 118. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên n lần.
C. Không thay đổi.
D. Tăng lên (n − 1) lần.
9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 119. [2-c] Cho hàm số f (x) = x
9 +3
1

A. 1.
B. .
C. 2.
D. −1.
2
Câu 120. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
13
5
B.
.
C. −
.
D.
.
A. − .
16
25
100
100
!
5 − 12x
Câu 121. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 1.
C. 3.

D. 2.
Câu 122. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 6.
B. 9.
C. .
D. .
2
2
!
!
!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 123. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.

C. T = 2016.
D. T =
.
2017
Câu 124. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
Câu 125. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 11.
B. 4.
C. 10.
D. 12.
[ = 60◦ , S A ⊥ (ABCD).
Câu 126. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 2
a3 3
3
A.
.
B. a 3.
C.
.

D.
.
4
12
6
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 127. Cho hình chóp S .ABC có BAC
(ABC). Thể
√là
√ tích khối chóp S .ABC

3
3

a 3
a 2
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
12
24
24
Câu 128. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị

nhỏ nhất của hàm số. Khi đó tổng


√M + m
A. 16.
B. 8 3.
C. 8 2.
D. 7 3.
Trang 10/11 Mã đề 1


Câu 129. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
Câu 130. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 6.
C.
A. 2a 6.
.
D. a 3.
2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

3.

2. A
D

5.

4. A

C

6. A

7. A

8. A

9.


D

10.

C

11. A

12.

C
C

13.

C

14.

15.

C

16.

17.

C


18.

B
C

19.

D

20.

D

21.

D

22. A

23.

D

24.

B

25.

C


26.

B

27.

C

28.

B

29. A

30. A

31. A

32.

33. A

34.

35.

D

37.


C
B

36.

C

C

38. A

39.

B

40.

B

41.

B

42.

B

43.


D

44.

45.

D

46.

47.

C

C
D

48.

49.

D

50. A

51.

D

52.


C
C

53. A

54.

55. A

56.

D

57. A

58.

D

59. A

60.

C

62.

C


61.

C

63. A

64. A

65.
67.

B

D

66.

B

68.
1

D
C


69. A

70.


71.

D

72. A

73.

D

74.

C

75.
77.

D

79. A

D

85.
B

89.

D
D

C

95.
97. A

78.

B

84.

D

86.

D

88.

D

92.

C

94.

C

96.


C

100.

B
C

102.

D
B

104.

103. A
C

105.

D
C

106.
109.

107. A
110.

C


D

111. A
D

112.

113.

B

C

115. A

116.

D

117. A

118. A

119. A

120.

C


122.

D

121.

B

123.

B

124. A

125.

126. A

127.

128. A

129.

130.

C

98. A


101.

114.

B

90. A

B

93.

99.

76.

82. A

C

83. A

91.

C

80.

81.


87.

C

B

2

D
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×