Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg 9 (219)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.28 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) − g(x)] = a − b.

x→+∞

x→+∞

C. lim [ f (x)g(x)] = ab.
x→+∞

B. lim [ f (x) + g(x)] = a + b.
x→+∞
f (x) a
D. lim
= .
x→+∞ g(x)
b

Câu 2. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4


x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
3
4
1 1
1
x−2 y+2 z−3
x y−2 z−3
C.
=

=
.
D. =
=
.
2
2
2
2
3
−1
Câu 3. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
C. m ≥ 0.
D. − < m < 0.
A. m ≤ 0.
B. m > − .
4
4
x+1
Câu 4. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 3.
C. .

D. 1.
3
4
Câu 5. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vng góc
√ với đáy, S C = a 3. Thể tích khối chóp S .ABCD
√là
3
3
a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
9
3
3
Câu 6. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a

A. .
B.
.
C.
.
D.
.
9
9
9
9
Câu 7. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 6510 m.
C. 1202 m.
D. 1134 m.
Câu 8. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = 10.

B. f 0 (0) = ln 10.

C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = 1.


x2 − 5x + 6
x→2
x−2
A. 1.
B. −1.
C. 0.
D. 5.
x
9
Câu 10. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 1.
C. 2.
D. .
2
Câu 9. Tính giới hạn lim

Câu 11. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 2.

C. 4.

D. 5.
Trang 1/10 Mã đề 1



Câu 12. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.

C. 20.
D. 10.

Câu 13. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
!
x+1
Câu 14. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A.
.
B. 2017.
C.
.
D.
.
2018
2017
2018


Câu 15. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 14 năm.
D. 10 năm.
Câu 16. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 5
a 15
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
1

Câu 17. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 18. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 19. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 20. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln x.
A. y0 = x
2 . ln x

C. y0 =

1
.
ln 2


D. y0 = 2 x . ln 2.

Câu 21. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 22. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 23.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. (−1)−1 .

C. 0−1 .

D.


−1.

−3

Trang 2/10 Mã đề 1


mx − 4

Câu 24. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 67.
C. 45.
D. 34.
Câu 25. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
Câu 26. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.

C. D = R \ {1}.

Câu 27. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−1; 1).

D. D = (0; +∞).
D. (−∞; −1).

Câu 28. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.


A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
2n + 1
Câu 29. Tính giới hạn lim
3n + 2
3
1
2
C. .
D. .
A. 0.
B. .
3
2
2
Câu 30. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a

x→a

C. f (x) có giới hạn hữu hạn khi x → a.

x→a

x→a


D. lim f (x) = f (a).
x→a

Câu 31. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
4
8
12


Câu 32. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.

C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 33. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.

D. 2 nghiệm.

[ = 60◦ , S O
Câu 34. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng

2a 57
a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
19
19
17
Câu 35. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.

B. 3.
C. 2.
D. 1.
Câu 36. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. −7, 2.
C. 7, 2.

D. 72.

Câu 37. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. .
D. 6.
2
2
Câu 38. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Hai cạnh.
D. Năm cạnh.
Câu 39. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.

C. V = S h.
3
2

D. V = 3S h.
Trang 3/10 Mã đề 1


Câu 40. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
! x3 −3mx2 +m
1
nghịch biến trên
Câu 41. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m ∈ (0; +∞).
D. m , 0.
Câu 42. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 43. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.

B. 5.
C. .
5


D. 25.

Câu 44. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Câu 45. Tính lim
A. −∞.

cos n + sin n
n2 + 1
B. +∞.

C. 0.

D. 1.

Câu 46. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
Câu 47. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 48. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 8 năm.
B. 10 năm.
C. 7 năm.
D. 9 năm.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 49. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
2
.
B.
.
C. 2a 2.
D.
.
A.

12
24
24
log(mx)
Câu 50. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m ≤ 0.
D. m < 0.
Câu 51. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 5.
C. V = 6.
D. V = 3.
5
Câu 52. Tính lim
n+3
A. 1.
B. 3.
C. 2.
D. 0.
Trang 4/10 Mã đề 1



Câu 53. Thể tích của khối lập phương


cạnh
bằng
a
2

3


2a 2
.
C. V = a3 2.
A. 2a3 2.
B.
3
Câu 54. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.

D. V = 2a3 .

D. 3.

Câu 55. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
Câu 56. Tính lim

A. 3.

B. 3.
n−1
n2 + 2

C. 1.

D. 2.

B. 0.

C. 2.
D. 1.
1 + 2 + ··· + n
Câu 57. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. Dãy số un không có giới hạn khi n → +∞.
D. lim un = 0.
Câu 58. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy


S
C
=
a
3. √
Thể tích khối chóp S .ABC √là


3
3
a 3
a 6
2a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
2
12
9
4
Câu 59. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục thực.
C. Trục ảo.

D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 60. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Hai mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 61. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 62. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là

A. (−∞; −3].
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3).
Câu 63. [4-1212d] Cho hai hàm số y =

Trang 5/10 Mã đề 1


Câu 64. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.

.
D.
.
12
36
24
6
Câu 65. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 24 m.
D. 12 m.
Câu 66. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|



12 17
.
B. 68.
C. 34.
D. 5.
A.
17
x2 − 3x + 3
Câu 67. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.

B. x = 3.
C. x = 2.
D. x = 0.
Câu 68. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Bốn tứ diện đều và một hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Một tứ diện đều và bốn hình chóp tam giác đều.
D. Năm tứ diện đều.
1 − n2
bằng?
Câu 69. [1] Tính lim 2
2n + 1
1
1
A. − .
B. .
2
3

C.

1
.
2

D. 0.

Câu 70. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?

A. n3 lần.
B. 2n2 lần.
C. n3 lần.
D. 2n3 lần.
a
1
Câu 71. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 7.
D. 2.
1
Câu 72. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 73. Cho z là√nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2i.
D. P = 2.
2

2
Câu 74. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. Không tồn tại.

D. 13.

Câu 75. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C. 27.
D.
.
2
Câu 76. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα+β = aα .aβ .
B. aα bα = (ab)α .
C. β = a β .
D. aαβ = (aα )β .
a
Trang 6/10 Mã đề 1


Câu 77. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.

B. {3; 4}.
C. {3; 3}.

D. {4; 3}.

Câu 78. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −e2 .
D. −2e2 .
Câu 79. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log 14 x.
A. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
Câu 80. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 10.
C. 2.
D. 2.
1 − xy
Câu 81. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x +
√ y.




18 11 − 29
9 11 − 19
9 11 + 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
21
9
9
3
log7 16
Câu 82. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −4.
B. 2.
C. 4.
D. −2.
Câu 83. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. .
C.
.

D. 7.
2
2
Câu 84. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
B. m = ±3.
C. m = ±1.
D. m = ± 2.
A. m = ± 3.
Câu 85. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Câu 86. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có hai.
C. Có một.
D. Khơng có.

Câu 87. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là




a3
a3 3
a3 3
3
A. a 3.
B.
.
C.
.
D.
.
4
12
3
Câu 88. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.
C. 12.
D. 20.

Câu 89. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


a3 6

a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
18
6
Câu 90. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 20 mặt đều.
D. Khối 12 mặt đều.
Câu 91. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 5%.
D. 0, 8%.
Trang 7/10 Mã đề 1


log 2x


Câu 92. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 2 ln 2x
1
1 − 4 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
x
x ln 10
2x ln 10
2x3 ln 10
Câu 93. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

2

2

sin x
Câu 94. [3-c]
+ 2cos x √
lần lượt là
√ Giá trị nhỏ nhất và√giá trị lớn nhất của hàm số f (x) = 2
A. 2 và 2 2.
B. 2 2 và 3.
C. 2 và 3.
D. 2 và 3.
2mx + 1
1
Câu 95. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. −5.
C. 1.

D. 0.

Câu 96.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
6
2
12
Câu 97. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 15, 36.
C. 20.

D. 3, 55.
q
Câu 98. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 99. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 32π.
C. 8π.
D. 16π.
x+3
nghịch biến trên khoảng
Câu 100. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 101. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. 0.
D. −3.

Câu 102. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
1637
23
.
B.
.
C.
.
D.
.
A.
4913
4913
4913
68
Câu 103. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =

.
4e + 2
4 − 2e
4 − 2e
4e + 2
Câu 104. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.
C. 4.
D. 8.
Câu 105. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Z 2
ln(x + 1)
Câu 106. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 0.
C. 3.
D. 1.
Trang 8/10 Mã đề 1


Câu 107. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.

B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

Câu 108. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 109. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
Câu 110. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. −4.

Câu 111. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
C. 3.
A. −3.
B. .

3
Câu 112. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình lập phương.

D. 2.
1
D. − .
3
D. Hình tam giác.

Câu 113. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
2

Câu 114. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
.

C. 2 .
B.
3
2e
e
2 e

D.

2
.
e3

Câu 115. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
2
x
Câu 116. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m
2
√ + 1)2 trên [0; 1] bằng √
D. m = ± 3.
A. m = ±1.
B. m = ±3.
C. m = ± 2.

Câu 117. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

A. 8 mặt.
B. 6 mặt.
C. 7 mặt.

D. 9 mặt.

Câu 118. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (0; 2).

D. (2; +∞).

2x + 1
Câu 119. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 1.
2

C. 2.

D. −1.

Câu 120. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.

Câu 121. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.

C. 6.

D. 8.
Trang 9/10 Mã đề 1


2

Câu 122. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 8.
C. 5.
D. 6.
2
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là
Câu 123. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 32.
C. S = 24.
D. S = 22.
Câu 124. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng

cách giữa hai đường thẳng BD và√S C bằng



a 6
a 6
a 6
.
C.
.
D.
.
A. a 6.
B.
2
6
3
!4x
!2−x
2
3
Câu 125. Tập các số x thỏa mãn


3
2
"
!
#
#

"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5
3
5
 π π
Câu 126. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. 7.
D. −1.
0 0 0 0
Câu 127.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 3
a 6

a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7

Câu 128. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 63.
D. 64.

Câu 129. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.

C. 12.

D. 8.


Câu 130. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 4.
D. ln 12.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D

2.

B

B
C

4.

5.

D


6.

B

7.

B

8.

B

9.

B

10.

B

11.

C

12. A

13.

C


14. A

15. A

16.

17. A

18.

19.
21.

C

22. A

23.

C

24.

25. A
29.

26.
C
B

C

31.
33.

C

39. A
B

43.

B
D

30.

D
B

D

36.

B

38.

B


40.

C

42.

C

44. A

45.

C

46. A

47.

C

48.

49.

D

34. A

35. A


41.

D

28.
32.
D

37.

B

20.

D

27.

C

B

50.

51. A

52.

53. A


54. A

D
B
D

55.

B

56.

B

57.

B

58.

B

59.

60.

D

61. A


62. A

63. A

64. A

65. A

66. A

67. A

68.
1

D

C


69. A

70.
C

71.
73.
75.

72. A

D

74.

B

77. A

C

78.

C

D

80. A

81.

D

82. A
84.

B

85. A

86.


87.

D

89.
91.

C
B
C

93.
95.
97.

B
D
C

104.

B

88.

D

90.


D

92.

B

94.

B

98.

100.

D

96.

D

102.

B

76.

79.
83.

C


D

D
B

101.

D

103.

D

105. A

106. A

107. A

108.

B

109. A

110.

B


111.

112.

D

114.

B
C

113.

C

116. A

115.

D

117.

D

119.

C

120. A


121.

C

122. A

123.

118.

C

124.
126.

C

125. A

B

127.
129.

128. A
130.

B


B

2

C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×