(5-2)
2,9979.10 8 m s vận tốc ánh sáng trong chân không
Nguyễn toàn phong
1 of 41
n ~ 1,33 cho trường hợp nước
n ~ 1,5 trong trường hợp kính
Chương V – Bức Xạ Nhiệt
n ~ 1 đối với không khí và hầu hết chất khí
n - gọi là chiết suất của môi trường,
co
Tốc độ lan truyền của sóng trong môi trường đang
khảo sát có quan hệ với tốc độ ánh sáng trong chân
không như sau
co
c
,ms
n
Ta có biểu thức mô tả quan hệ giữa chiều dài bước
sóng O, tần số Q và tốc độ lan truyền sóng c trong môi
trường khảo sát bởi James Clerk Maxwell
c
O
,m
(5-1)
Q
Một vật bất kỳ có nhiệt độ lớn hơn độ không tuyệt đối
( 0 K) thì luôn có sự biến đổi nội năng của vật thành năng
lượng sóng điện từ, các sóng này truyền đi trong không
gian theo mọi phương với tốc độ ánh sáng và với mọi
bước sóng có chiều dài O 0 y f
§ 5.1. Các Khái Niệm Cơ Bản
TRAO ĐỔI NHIỆT BỨC XẠ
Wednesday, November 19, 2008
TRONG MÔI TRƯỜNG TRONG SUỐT
Chương V
6,6256.10 34 J s gọi là hằng số Planck
Nguyễn toàn phong
2 of 41
Chương V – Bức Xạ Nhiệt
x Nếu vật có nhiệt độ khác nhau, vật có nhiệt độ
lớn hơn sẽ phát xạ lượng nhiệt lớn hơn lượng nhiệt
mà nó hấp thụ, như vậy xét tổng nhiệt lượng thì
nó đang truyền nhiệt cho vật kia có nhiệt độ thấp
hơn, như vậy đúng với quy luật truyền nhiệt: nhiệt
lượng đi từ nơi có nhiệt độ cao đến nơi có nhiệt độ
thấp
x Nếu nhiệt độ chúng bằng nhau, thì mỗi vật sẽ hấp
thụ và phát xạ lượng nhiệt bằng nhau, ta gọi hệ ở
trạng thái cân bằng (cân bằng động)
Xét hệ gồm 2 vật trao đổi nhiệt bức xạ với nhau:
Vật có nhiệt độ lớn hơn độ không tuyệt đối thì có khả
năng phát ra các tia bức xạ nhiệt, nhưng đồng thời nó
cũng có khả năng hấp thụ bức xạ từ các vật khác chiếu
đến. Quá trình phát xạ và hấp thụ luôn diễn ra đồng thời,
và ta gọi là quá trình trao đổi nhiệt bằng bức xạ.
Biểu thức trên thể hiện rằng bước sóng càng ngắn thì
mang năng lượng càng lớn
Với h
Mỗi photon có tần số Q mang năng lượng theo Max
Planck như sau
hc
e hQ
,J
(5-3)
O
Nguyễn toàn phong
3 of 41
Chương V – Bức Xạ Nhiệt
Quá trình phát sinh và truyền những tia nhiệt được gọi
là quá trình bức xạ nhiệt.
năng), chúng được gọi là các tia nhiệt.
Khả năng hấp thụ các bước sóng điện từ của vật có
tính chọn lọc, khả năng hấp thụ lớn nhất đối với các bước
sóng trong khoảng O 0,4 y 40 Pm (để biến thành nhiệt
Q
³F E dF , W
Nguyễn toàn phong
Q
4 of 41
E F, W
(5-6)
(5-5)
Chương V – Bức Xạ Nhiệt
Nếu trên toàn bề mặt có mật độ bức xạ đồng đều và
không thay đổi thì:
Do đó:
GQ là dòng bức xạ toàn phần (năng lượng bức xạ
bán cầu) phát ra từ bề mặt nhân tố dF
Hay còn gọi mật độ bức xạ bán cầu, là dòng bức xạ
toàn phần phát ra trên một đơn vị diện tích
GQ
, W m2
(5-4)
E
dF
5.2.3 Khả năng bức xạ bán cầu E [W/m2]
Là dòng bức xạ chỉ xét ứng với một dãi hẹp bước sóng
từ O đến O dO (trên không gian nửa bán cầu)
5.2.2 Dòng bức xạ đơn sắc Q O [W/m]
Là năng lượng bức xạ phát ra trên bề mặt F của vật
trong một đơn vị thời gian trên toàn bộ không gian nửa
bán cầu ứng với tất cả các bước sóng O 0 y f
5.2.1 Dòng bức xạ toàn phần Q [W]
§ 5.2. Các Định Nghóa Cơ Bản
Nguyễn toàn phong
hoặc
G
5 of 41
DG UG WG
(5-8)
Chương V – Bức Xạ Nhiệt
DG - lượng bức xạ vật hấp thu được (thành nhiệt)
UG - lượng bức xạ vật phản xạ lại môi trường
WG - lượng bức xạ đi xuyên qua vật
Dòng bức xạ G chiếu đến vật sẽ phân thành những
thành phần sau:
5.2.5 Khái niệm về các hệ số bức xạ của vật
Hay còn gọi cường độ bức xạ đơn sắc o là mật độ bức
xạ bán cầu ứng với một giải hẹp của chiều dài bước sóng
dE
(5-7)
EO
, W m3
dO
5.2.4 Khả năng bức xạ đơn sắc EO [W/m3]
DUW 1
(5-9)
Nguyễn toàn phong
6 of 41
Chương V – Bức Xạ Nhiệt
o khả năng xuyên qua bằng không và được gọi là vật đục
DU 1
Trong thực tế ta gặp trường hợp sau:
W 0
o vật sẽ cho xuyên qua toàn bộ năng lượng bức xạ
chiếu tới và được gọi là vật trong suốt tuyệt đối
o vật sẽ phản xạ toàn bộ năng lượng bức xạ chiếu
tới và được gọi là vật trắng tuyệt đối (vật gương)
D U 0
W 1
o vật có khả năng hấp thu toàn bộ năng lượng bức
xạ chiếu tới nó và được gọi là vật đen tuyệt đối
D W 0
U 1
Như vậy ta có các trường hợp sau:
U W 0
D 1
Các hệ số D, U, W không có thứ nguyên và biến đổi
từ 0 đến 1, trị số của chúng phụ thuộc vào bản chất vật lý
của vật, nhiệt độ, và chiều dài bước sóng mà vật đó phát đi
Trong đó
DG
D
hệ số hấp thu của vật
G
UG
U
hệ số phản xạ của vật
G
WG
W
hệ số xuyên qua của vật
G
DG UG WG
G
G G
C1 O5
W m3
C 2 ( O T )
e
1
2S.h.c2o
0,3742.10 15 W.m 2
Nguyễn toàn phong
7 of 41
(5-10)
Chương V – Bức Xạ Nhiệt
Công thức 5-10 được biểu diễn trên đồ thị sau:
C2 h.co k 1,4388.10 2 m.K
O – chiều dài bước sóng, m
T – nhiệt độ tuyệt đối của vật, K
k 1,38065.10 23 J K – hằng số Boltzmann
C1
Với C1, C2 là hằng số Planck thứ nhất và thứ hai
E oO
Định luật thiết lập mối quan hệ giữa khả năng bức xạ
đơn sắc của vật đen tuyệt đối với nhiệt độ và chiều dài
bước sóng:
5.3.1 Định luật Plank
§ 5.3. Các Định Luật Cơ Bản Của Bức Xạ Nhiệt
Nguyễn toàn phong
8 of 41
Chương V – Bức Xạ Nhiệt
Đồ thị Mật độ dòng đơn sắc – chiều dài bước sóng
0 khi O
0 , sau đó
2,8978 mm.K
(5-11)
Nguyễn toàn phong
9 of 41
Chương V – Bức Xạ Nhiệt
Vật xám là vật có quang phổ đồng dạng với vật
đen tuyệt đối ở tất cả các bước sóng: E O E oO const .
Thực nghiệm chứng tỏ phần lớn vật liệu trong kỹ thuật là
vật xám.
Om T
Nhiệt độ càng tăng thì giá trị cực đại O m của quang
phổ càng dịch về phía bước sóng ngắn theo Định luật Vien
Nhiệt độ càng cao bức xạ càng mạnh, ở khoảng
nhiệt độ thường gặp trong kỹ thuật, năng lượng bức xạ
chủ yếu tập trung ở giải bước sóng O 0,8 y 10
Pm
E oO tăng dần đạt đến giá trị cực đại ở chiều dài bước sóng
O m , sau đó E oO giảm dần đến 0 khi O o f .
một nhiệt độ nhất định, E oO
Nhận xét
³0 E oO dO
f
Vo T 4 W m 2
5,67.10 8 W (m 2 .K 4 )
Nguyễn toàn phong
10 of 41
(5-13)
(5-12)
Chương V – Bức Xạ Nhiệt
Khả năng bức xạ bán cầu chính là diện tích giới hạn
bởi đường cong thể hiện trên đồ thị sau
Vo
V o hằng số chỉ phụ thuộc vào đơn vị đo lường,
trong hệ SI
Eo
Định luật này thiết lập mối quan hệ giữa khả năng bức
xạ bán cầu của vật đen tuyệt đối phụ thuộc vào nhiệt độ.
5.3.2 Định luật Stefan – Boltzmann
4
E
Eo
C
Co
Nguyễn toàn phong
11 of 41
§ T ·
2
E H Co ă
á ,W m
â 100 ạ
4
Phửụng trỡnh 5-15 ủửụùc vieỏt lại
(5-17)
(5-16)
Chương V – Bức Xạ Nhiệt
Độ đen biến thiên trong khoaỷng: 0 H 1
H
Đ T Ã
Că
á
â 100 ạ
4
Đ T Ã
Co ă
á
â 100 ạ
4
Khi so saựnh khaỷ naờng bức xạ của vật xám và vật đen
tuyệt đối ở cùng điều kiện nhiệt độ như nhau, ta được một
đại lượng đặc trưng nữa của vật gọi là độ đen H
0 C C o - hệ số bức xaù cuỷa vaọt xaựm
E
Đ T Ã
2
Că
á ,W m
â 100 ạ
4
E1
(1-D1).Eo
Eo
D1.Eo
T1
D1
Vaọt xám
Nguyễn toàn phong
Hay
E1 D1 E o
12 of 41
0
E1
D1
điều kiện cân bằng nhiệt động: To
Eo
0
Chương V – Bức Xạ Nhiệt
T1 thì q
Nhiệt lượng trao đổi bằng bức xạ giữa 2 tấm phẳng là:
q E1 D1 E o
To
Do=1
Vật đen
x Vật xám còn lại có nhiệt độ T1, khả năng bức xạ
E1, hệ số hấp thụ D1
x Kích thước lớn so với khoảng cách
Xét hai tấm phẳng đặt song song như hình vẽ với đặc điểm
Trong trường hợp vật xám, ta có phương trình đồng
dạng (đã được thực nghiệm kiểm chứng)
(5-15)
(5-14)
x Vật đen có nhiệt độ To, khả năng bức xạ Eo
5,67 W (m .K ) - hệ soỏ bửực xaù cuỷa vaọt ủen
2
Đ T Ã
2
Co ă
á ,W m
â 100 ạ
ẹũnh luaọt naứy thieỏt laọp moỏi quan hệ giữa khả năng bức
xạ H của vật với hệ số hấp thụ A.
5.3.3 Định luật Kirchhof
tuyệt đối
Co
Eo
4
Trong kỹ thuật, để thuận tiện cho tính toán người ta
thường viết ở daïng sau:
E2
D2
...
Eo
En
Dn
E3
D3
Eo
Eo
f T
...
(5-18)
E
Eo
4
Đ T Ã
Că
á
â 100 ạ
4
Đ T Ã
Co ă
á
â 100 ¹
H D
(5-19)
Nguyễn toàn phong
E1O
D1O
E2O
D 2O
...
13 of 41
E oO
D oO
Eo
f O, T
Chương V – Bức Xạ Nhiệt
(5-20)
Các công thức trên thành lập cho khả năng bức xạ bán
cầu, và cũng đúng cho trường hợp của khả năng bức xạ
đơn sắc:
Điều này khẳng định: vật có khả năng hấp thụ mạnh
thì cũng có khả năng bức xạ mạnh.
Ta có:
“Trong điều kiện cân bằng nhiệt động, tỷ số giữa khả
năng bức xạ và hệ số hấp thụ của vật xám đều bằng
nhau và bằng khả năng bức xạ của vật đen tuyệt đối Eo”
Hay phát biểu thành lời như sau:
E1
D1
Tổng quát ta có:
E2
D2
Thay vật xám 1 bằng vật xám khác, xét tương tự, ta coù:
2S
0
0
³ sin T dT ³ dI 4S , sr
S
Nguyễn toàn phong
Z
2S
0
0
14 of 41
³ sin T dT ³ dI 2S , sr
S2
Trường hợp bán cầu
Z
Trường hợp góc đặc của một khối cầu
Chương V – Bức Xạ Nhiệt
(5-23)
(5-22)
Góc khối của một diện tích dS so với một điểm được
xác định theo tỷ số giữa diện tích thẳng góc với điểm
đang xét cos D.dS và khoảng cách r2
dS cos D
dZ
, sr
(5-21)
r2
5.4.1 Khái niệm về góc khối
§ 5.4. Cường Độ Bức Xạ (theo phương)
Nguyễn toàn phong
15 of 41
(5-25)
Chương V – Bức Xạ Nhiệt
Và bức xạ trên một đơn vị diện tích được xác ñònh
dQ e
dE
I e T, I
cos T sin T dT dI , W m 2
dA
Cường độ bức xạ theo phương I e T, I
là tỷ số năng
lượng bức xạ phát ra ứng với một đơn vị diện tích và một
đơn vị góc đặc theo phương này
dQ e
I e T, I
dA cos T dZ
, W (m 2 sr)
(5-24)
dQ e
dA cos T sin T dT dI
Công thức xác định mật độ bức xạ theo 5-4 được tính
trung bình theo tất cả các phương, trong phần này ta xác
định cường độ bức xạ phụ thuộc theo phương
5.4.2 Bức Xạ Theo Phương
S2
Nguyễn toàn phong
2S
0
I b T
Vo T 4
, W m2
S
16 of 41
E o T
S
0
(5-27)
(5-26)
Chương V – Bức Xạ Nhiệt
I n ³ cos T sin T dT ³ dI S.I n , W m 2
Trường hợp vật đen
E
Nếu xem cường độ bức xạ theo phương trực tuyến là
hằng số, nó sẽ được xác định như sau
Nguyễn toàn phong
17 of 41
Chương V – Bức Xạ Nhiệt
Lý luận tương tự, ta xác định được nhiệt lượng bức xạ
phát ra từ bề mặt dA2 chiếu lên bề mặt dA1
dA cos T1
Q dA 2 odA1 I 2 cos T2 dA 2 1 2
(5-28.b)
r
Thành phần năng lượng bức xạ từ phân tố dA1 phát ra rơi
trên phân tố dA2 là
Q dA1 odA 2 I1 T1
dA1 dZ12
(5-28.a)
dA cos T2
I1 cos T1 dA1 2 2
r
Bức xạ từ phân tố dA1 theo phương T1 là
I1 T1
dA1 I1 cos T1 dA1 , góc khối từ diện tích dA2 nhìn từ
dA1 là dZ21 dA 2 cos T2 r 2
Xét trao đổi nhiệt giữa hai mặt sau
5.5.1 Khái niệm hệ số góc
§ 5.5. Trao Đổi Nhiệt Bức Xạ
Giữa Hai Bề Mặt Đen
A1 A 2
Sr
T2
E 01 E 02
³ ³ cos T1 cos
dA1 dA 2
2
S.I1 dA1
S.I1 A1
(5-32.a)
(5-31.c)
(5-31.b)
(5-31.a)
(5-30)
(5-29)
Nguyễn toàn phong
18 of 41
Chương V – Bức Xạ Nhiệt
Bức xạ từ diện tích A1 lên phân tố diện tích dA2 là
I cos T1 cos T2 dA 2
Q A1 odA 2 ³ Q dA1 odA 2 ³ 1
dA1 (5-32.b)
r2
A1
A1
Q A1
Tổng bức xạ từ phân tố A1 phát ra là
Phần (%) bức xạ từ dA1 phát ra rơi trên A2 là
cos T1 cos T2
FdA1 oA2 ³
dA 2
2
S
.
r
A2
Phần (%) bức xạ từ dA1 phát ra rơi trên dA2 là
Q dA1 odA 2 cos T1 cos T2
dFdA1 odA 2
dA 2
Q dA1
S.r 2
Q dA1
Ta có tổng bức xạ từ phân tố dA1 phát ra là
Q12
Tích phân phương trình 5-29 trên toàn diện tích
A1 và A2 ta được năng lượng trao đổi bức xạ giữa hai bề
mặt nhìn thấy nhau
E 01 E 02 cos T1 cos T2
dA1 dA 2
S
r2
Nhiệt lượng trao đổi giữa hai phân tố bề mặt
Q dA12 Q dA1 odA 2 Q dA 2 odA1
(5-33)
A 2 F21
cos T1 cos T2
dA1 dA 2
2
S
.
r
1
2
³³
A A
(5-35)
E 01 E 02
A1 F12 E 01 E 02