Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (386)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.87 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = 10.
D. P = −21.
Câu 2. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.

D. {4; 3}.
x−1
y
z+1
= =

Câu 3. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ


nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 2x + y − z = 0.
Câu 4. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 3.
D. 0, 4.
Câu 5. √
Thể tích của tứ diện đều cạnh
√ bằng a

a3 2
a3 2
a3 2
.
B.
.
C.
.
A.
4
12
6

Câu 6. Xác
định

phần
ảo
của
số
phức
z
=
(
2 + 3i)2


A. −6 2.
B. −7.
C. 6 2.


a3 2
D.
.
2

D. 7.



x=t





Câu 7. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 8. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.




5 13
A.
.
B. 26.
C. 2.
D. 2 13.
13
Câu 9. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 10. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e4 .
D. 2e2 .
Câu 11. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.
2
x − 3x + 3
Câu 12. Hàm số y =
đạt cực đại tại
x−2
A. x = 1.
B. x = 2.


C. 10.

D. 6.

C. x = 3.

D. x = 0.
Trang 1/10 Mã đề 1


Câu 13.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
B. 2.
C. 1.
D. 2.
A. 10.
Câu 14. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
.
A. √ .
B.
n
n

C.

1
.

n

D.

sin n
.
n

Câu 15. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
a
5a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Câu 16. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).

D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 17. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. a

αβ

α β

α α

= (a ) .

α

B. a b = (ab) .

α+β

C. a

α

β

= a .a .

α

D. β = a β .
a


Câu 18.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 27.
D. 8.
Câu 19. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 8 m.
D. 12 m.
Câu 20. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.

C. 10.

D. 8.

Câu 21. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Câu 22. Giá trị của lim(2x2 − 3x + 1) là
x→1

B. +∞.

!
1
1
1
+
+ ··· +
Câu 23. Tính lim
1.2 2.3
n(n + 1)
A. 0.

C. 1.

D. 2.

3
.
2
Câu 24. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




14 3
20 3
A. 6 3.
B.
.

C. 8 3.
D.
.
3
3
Câu 25.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A. 2.

A.
Z
C.

B. 0.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

C. 1.

B.
Z
D.

D.


( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

Trang 2/10 Mã đề 1


Câu 26. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 6.

B. 4.
cos n + sin n
Câu 27. Tính lim
n2 + 1
A. 0.
B. −∞.

Z

6

3

3x + 1


C. 2.

D. −1.

C. +∞.

D. 1.

1

. Tính

f (x)dx.
0

Câu 28. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .
1 + 2 + ··· + n
Câu 29. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = .
B. lim un = 1.
2
C. lim un = 0.

D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 30. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
2

Câu 31. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 2 − log2 3.
Câu 32. [1] Tính lim
A.

2
.
3

1 − 2n
bằng?
3n + 1
1
B. .
3

2
C. − .
3


D. 1 − log3 2.

D. 1.

Câu 33. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
x2
Câu 34. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
C. M = e, m = 0.
D. M = e, m = .
A. M = e, m = 1.
B. M = , m = 0.
e
e

Câu 35. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.

C. 4.

D. 144.

1
.
3

1
D. − .
2

2

Câu 36. [1] Tính lim
A. 0.

1−n
bằng?
2n2 + 1
1
B. .
2

C.


Câu 37. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. (1; 2).
D. [3; 4).
2
2


ab.

Câu 38. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Trang 3/10 Mã đề 1


Câu 39. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.

C. 102.423.000.
D. 102.424.000.
Câu 40. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim un = c (un = c là hằng số).

B. lim qn = 0 (|q| > 1).
1
D. lim k = 0.
n
Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là


3

2a3 3
a3 3
a
3
A.
.
B.
.
C. a3 3.
D.
.

3
3
6
4x + 1
Câu 42. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. 4.
C. −4.
D. −1.
Câu 43. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối lập phương.
D. Khối tứ diện.
Câu 44. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 45. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.
B. y0 = 2 x . ln 2.
ln 2

C. y0 = 2 x . ln x.


D. y0 =

1
2 x . ln

x

.

Câu 46. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 47. Tính lim
A. 1.

n−1
n2 + 2

B. 3.

C. 2.

D. 0.

Câu 48. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−1; 0).
Câu 49. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu

A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

C. lim f (x) = f (a).

D. lim+ f (x) = lim− f (x) = a.

x→a

Câu 50. Tính lim
x→2

A. 3.

x→a

x+2
bằng?
x
B. 2.

x→a

C. 0.

D. 1.


C. +∞.

D. 0.

C. 1.

D. −1.

3

Câu 51. Tính lim
x→1

A. −∞.

x −1
x−1

Câu 52. Hàm số y = x +
A. 2.

B. 3.
1
có giá trị cực đại là
x
B. −2.

Trang 4/10 Mã đề 1



Câu 53. Tính lim
A. 2.

2n2 − 1
3n6 + n4
B. 1.

C. 0.

D.

2
.
3

Câu 54. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {2}.
D. {3}.
Câu 55. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Có vơ số.
D. Khơng có.
Câu 56. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
A. 34.
.
D. 5.
B. 68.
C.
17
Câu 57. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
Câu 58. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 4.
D. ln 12.
Câu 59. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 6.

C. 4.

D. 8.

Câu 60. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban

đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 13 năm.
Câu 61. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 62. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).

C. (−∞; 2).

D. (−∞; 0) và (2; +∞).

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
2 11 − 3
18 11 − 29
9 11 + 19
A. Pmin =

. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
x+3
Câu 64. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.

Câu 63. [12210d] Xét các số thực dương x, y thỏa mãn log3

3
2
Câu 65. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2

A. 3 + 4 2.
B. 3 − 4 2.
C. −3 + 4 2.


Câu 66. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. .
B. 2.
C. 1.
2


D. −3 − 4 2.

D.

ln 2
.
2

Câu 67. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 1200 cm2 .
Trang 5/10 Mã đề 1


Câu 68. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 2.
C. 3.


D. 0.

Câu 69. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 70. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.

C. 8.

D. 30.

Câu 71. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 20, 128 triệu đồng.

Câu 72. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 1 nghiệm.
C. 3 nghiệm.
D. 2 nghiệm.

Câu 73.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
B.
−1.
A. (− 2) .

C. 0−1 .

D. (−1)−1 .

2

Câu 74. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B.
.
C. 2 .
3
e
2e
e
Câu 75. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = ln x − 1.
Câu 76. Tính lim

x→3

A. 6.

x2 − 9
x−3

B. −3.

x+1
bằng
Câu 77. Tính lim
x→−∞ 6x − 2
1
A. .
B. 1.
6

D.

1
√ .
2 e

C. y0 = 1 − ln x.

D. y0 = x + ln x.

C. +∞.


D. 3.

1
1
C. .
D. .
3
2

Câu 78. Thể tích của khối lập phương
√ có cạnh bằng a 2
3


2a 2
A. 2a3 2.
B.
.
C. V = 2a3 .
D. V = a3 2.
3
Câu 79. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .

D. k = .
A. k = .
6
18
9
15
Câu 80. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3
a3 5
A.
.
B.
.
C.
.
D.
.
5
25
3
25
Câu 81. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A. 2, 20 triệu đồng.
B. 2, 25 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 82. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 2.

D. 6.
Trang 6/10 Mã đề 1


Câu 83. [1-c] Giá trị của biểu thức
A. −2.

log7 16
log7 15 − log7

B. 4.

Câu 84. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

15
30

bằng
C. 2.


D. −4.

C. {3; 3}.

D. {4; 3}.

Câu 85. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B.
.
C. .
D. a.
2
2
3
Câu 86. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.
C. 12.
D. 6.
Câu 87. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1

1
; +∞ .
B. −∞; .
C. − ; +∞ .
A.
2
2
2

!
1
D. −∞; − .
2

Câu 88. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 10 cạnh.

D. 9 cạnh.

C. 11 cạnh.

Câu 89. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.

.
B.
.
C.
.
D.
.
6
12
4
12
Câu 90. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
6
3

3
3
Câu 91. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
Câu 92. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
4a3 3
8a3 3
a3 3
8a3 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
Câu 93. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

A. n3 lần.
B. n2 lần.
C. n lần.
D. 3n3 lần.
!
x+1
Câu 94. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
A.
.
B. 2017.
C.
.
D.
.
2018
2018
2017
Câu 95. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
x
Câu 96.

√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A.
.
B. 1.
C. .
D. .
2
2
2
Câu 97. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.

Trang 7/10 Mã đề 1


2
Câu 98. Tính
√4 mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
B. |z| = 5.
C. |z| = 2 5.
A. |z| = 5.

D. |z| =



5.

Câu 99. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) + g(x)] = a + b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 100.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
dx = log |u(x)| + C.
A.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 101. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.

B. 9.

C. 7.

D. 0.

 π π
Câu 102. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 7.
D. 3.
Câu 103.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh bằng 1 là:
3
3
3
A.
.
B.
.
C. .
2
12
4


3

D.
.
4

d = 30◦ , biết S BC là tam giác đều
Câu 104. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
13
16
26
1
Câu 105. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.

B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 106. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.

C. 2.

D. 3.

Câu 107. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {5; 3}.

D. {3; 4}.

Câu 108.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 5.
B. 2.
C. 1.
D. 3.
tan x + m
Câu 109. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π

0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (1; +∞).
q
2
Câu 110. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
q
Câu 111. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Trang 8/10 Mã đề 1


Câu 112. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3

10a 3
.
C. 40a3 .
D. 10a3 .
A. 20a3 .
B.
3
Câu 113. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 48cm3 .
C. 84cm3 .
D. 91cm3 .
Câu 114. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = (0; +∞).
C. D = R \ {1}.
log 2x
Câu 115. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.

2x ln 10
x ln 10
2x3 ln 10
Câu 116. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y =
.
B. y = x3 − 3x.
C. y = x + .
2x + 1
x

D. D = R.

D. y0 =

1 − 2 log 2x
.
x3

D. y = x4 − 2x + 1.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a

2a
a
a 2
A. .
B.
.
C. .
D.
.
4
3
3
3
Z 3
x
a
a
Câu 118. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 16.
C. P = 28.
D. P = 4.
!
!

!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 119. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T = 2017.
C. T = 2016.
D. T =
.
2017
2x + 1
Câu 120. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. 2.
C. 1.
D. −1.
2

Câu 121. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 117. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 122. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Tứ diện đều.
D. Bát diện đều.

Câu 123. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
18

6
Câu 124. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −7.
C.
.
D. −2.
27
Câu 125. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
9
5
A. −
.
B.
.
C.
.
D. − .
100
100
25
16
Trang 9/10 Mã đề 1


Câu 126. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là

1
1
1
B. − .
C. −e.
D. − .
A. − 2 .
e
e
2e
log √a 5
Câu 127. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
bằng

1
D. 5.
A. 5.
B. 25.
C. .
5
Câu 128. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. 4.
C. .
D. .
2
8

4
0 0 0 0
Câu 129.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
3
7
2
Câu 130. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (0; −2).
C. (−1; −7).
D. (1; −3).
- - - - - - - - - - HẾT- - - - - - - - - -


Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

3.

B

4.

C

5.

B

6.

C

7.


C

8. A

9. A

10. A
D

11.
13.
15.

12. A
14.

C

B

16. A

B

17.

D

18. A
20.


19. A
21.

C

22. A

23.

C

24. A

25.

C

26.

D

B

27. A

28.

C


29. A

30.

C

31.

C

32.

C

33.

C

34.

C

D

35.
37.

B

38.


39.
41.

D
B

43.
45.

D

51.

D
B
C

55. A

42.

B
D
B
D

50.

B


52.

B

54.

B

56.

57.
59.

B

48.

C

53.

40.

46.

47.

C


44.

B

49.

D

36.

58. A

C
B

60.

61.

C

D

B

62.

63.

C


64.

65.

C

66.
68.

67. A
1

D
C
B
D


69. A
71.

D
C

73.

70.

D


72.

D

75. A

76. A

77. A

78. A

80.

81.

B

82.
84.

D
B
C

86.
88.

D


85.

D

89.

B
B

C

91.

92.

C

93. A

94.

C

96.

97.

C


98. A
D
D

102.

B

104.

B

105.

B

106. A

107.

B

108.
D

109.
111.

B


100. A

B

103.

C

87.

B

99.

C

83.

90.

101.

C

74.

B

110.


C

112. A

C

114.

113. A
115.

B

116. A

117.

B

118.

119. A
121.

D

123.

C


125. A

D

120.

B

122.

B

124.

D

126.

D
D

127.

B

128.

129.

B


130.

2

D

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×