Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (25)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.64 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình tam giác.
B. Hình lăng trụ.
C. Hình lập phương.
Câu 2. [2] Tổng các nghiệm của phương trình 2
A. 6.
B. −5.

x2 +2x

= 82−x là
C. −6.

D. Hình chóp.
D. 5.

Câu 3. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC


a 3
a3 2
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
6
4
12
12
Câu 4. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
!
1
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng ; 1 .
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3

9x
Câu 5. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
C. 2.
D. −1.
A. 1.
B. .
2
q
2
Câu 6. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 7. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = −18.
Câu 8. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?

Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
(1, 01)3
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
(1, 01)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 9. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.
Z 3
x
a
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 10. Cho I =


d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = −2.
C. P = 16.
D. P = 28.
Câu 11. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
Trang 1/11 Mã đề 1



a 2
A.
.
2





B. a 2.

C. 2a 2.

Câu 12. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng


1
A. 25.
B. .
C. 5.
5


a 2
D.
.
4



D. 5.

Câu 13. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
Câu 14.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z

B.

[ f (x) + g(x)]dx =

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

f (x)dx +

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 15. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

C. 8.


D. 4.

Câu 16. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 25 m.
D. 1587 m.
Câu 17. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln 2.
A. y0 =
ln 2

C. y0 = 2 x . ln x.

D. y0 =

1
2 x . ln

x

.

Câu 18. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với


đáy (ABC)
√ một góc bằng 60 . Thể
√tích khối chóp S .ABC là3 √
3
3
a 3
a 3
a 3
a3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
Câu 19. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S 3.ABCD là
3
a 3
a 3
a

A.
.
B.
.
C.
.
D. a3 .
3
9
3
1 − xy
Câu 20. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 + 19
9 11 − 19
18 11 − 29
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9

9
21
x+2
Câu 21. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 3.
D. 1.
Câu 22. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 8.
B. 3 3.
C. 9.
D. 27.
Câu 23. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a
Trang 2/11 Mã đề 1


Câu 24. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


14 3
20 3
A.
.
B. 6 3.
C.
.
D. 8 3.
3
3
Câu 25. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 20, 128 triệu đồng.
Câu 26. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 16 tháng.
D. 15 tháng.

Câu 27. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 28. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.

D. Khơng có câu nào
sai.
Câu 29. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

C. Câu (II) sai.

x→a

D. lim+ f (x) = lim− f (x) = a.
x→a


x→a

Câu 30. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 12.

D. 3.

Câu 31. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 32. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 40 .(3)10
C 20 .(3)30
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4

4
Câu 33. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
13
5
A.
.
B. −
.
C.
.
D. − .
25
100
100
16
Trang 3/11 Mã đề 1


tan x + m
Câu 34. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).

D. (−∞; −1) ∪ (1; +∞).
 π π
3
Câu 35. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. 1.
C. 7.
D. −1.
x+3
Câu 36. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. Vô số.
D. 1.
Câu 37. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.

Câu 38. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).
cos n + sin n
Câu 39. Tính lim
n2 + 1
A. +∞.
B. −∞.
Câu 40. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 3.

C. Chỉ có (II) đúng.

D. Cả hai câu trên sai.

C. (0; +∞).

D. (0; 2).

C. 1.

D. 0.

C. 5.

D. 4.

Câu 41. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.

B. Hai hình chóp tam giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 42. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 20.
D. 24.
Câu 43. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
x+1
bằng
Câu 44. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
6
2
3
Câu 45. Khối đa diện loại {3; 3} có tên gọi là gì?

A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
2−n
Câu 46. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 0.
D. 1.
Trang 4/11 Mã đề 1


Câu 47. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m > 0.
C. m , 0.

D. m = 0.

Câu 48. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Tứ diện đều.

D. Thập nhị diện đều.

Câu 49. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞


A. lim [ f (x)g(x)] = ab.

x→+∞

x→+∞

B. lim [ f (x) − g(x)] = a − b.
x→+∞

f (x) a
= .
x→+∞
x→+∞ g(x)
b
!x
1
Câu 50. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. 1 − log2 3.
B. log2 3.
C. − log2 3.
C. lim [ f (x) + g(x)] = a + b.

D. lim

D. − log3 2.

Câu 51. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).

B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 52. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 72cm3 .
D. 46cm3 .
Câu 53. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 0.

D. 2.

Câu 54. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
Câu 55. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
A. − .
B.
.

3
3
Câu 56.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

!n
4
C.
.
e
Z

!n
1
D.
.
3
!0

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k

f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.

Câu 57. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 48cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 58. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

f (x)dx =
g0 (x)dx.
Câu 59. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(−4; −8)(.
D. A(4; 8).
Trang 5/11 Mã đề 1


Câu 60. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 61. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 20.
D. 8.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 62. [3-12217d] Cho hàm số y = ln
x
+
1

A. xy0 = ey + 1.
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 63. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
n−1
Câu 64. Tính lim 2
n +2
A. 3.
B. 1.
2n + 1
Câu 65. Tìm giới hạn lim
n+1
A. 0.
B. 1.
Câu 66. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.
1
Câu 67. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.

C. {5; 3}.

D. {4; 3}.


C. 2.

D. 0.

C. 2.

D. 3.

C. 12.

D. 30.

C. −1.

D. 2.

Câu 68. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 4.
C. ln 12.
D. ln 14.
ln2 x
m
Câu 69. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.

C. S = 24.
D. S = 22.

Câu 70. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
"
!
5
5
A. (1; 2).
B. [3; 4).
C. 2; .
D.
;3 .
2
2
5
Câu 71. Tính lim
n+3
A. 0.

B. 2.

C. 3.

Câu 72. Tìm m để hàm số y = x − 2(m + 1)x − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.

C. m > 1.
4

D. 1.

2

D. m > 0.

Câu 73. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 3.
D. 4.
Câu 74. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 75. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {4; 3}.

D. {3; 4}.
Trang 6/11 Mã đề 1



Câu 76. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 77. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
Câu 78. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −6.
D. −3.
Câu 79. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.

D. −1 + 2 sin 2x.

Câu 80. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P hoặc d ⊥ P.
C. d song song với (P).
D. d nằm trên P.
Câu 81. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 7 mặt.


D. 6 mặt.

Câu 82. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

2x + 1
x→+∞ x + 1
1

B. .
2

Câu 83. Tính giới hạn lim
A. 1.

C. −1.


Câu 84.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x

A. 2 3.
B. 3.
C. 3 2.


D. 2.
D. 2 +


3.

2

Câu 85. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B.
.
C.
.
e
2e3
e2

D.

1
√ .
2 e

Câu 86.
f (x), g(x) liên
đề nào sai? Z

Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 87. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (0; −2).

D. (2; 2).
2

2

Câu 88. [3-c]

và giá trị lớn nhất của hàm số f (x) = 2sin x + 2cos x lần
√ Giá trị nhỏ nhất √
√ lượt là
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.
2
x
Câu 89. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = .
C. M = e, m = 1.
D. M = e, m = 0.
e
e
a
1
, với a, b ∈ Z. Giá trị của a + b là
Câu 90. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 1.
C. 7.
D. 2.
Câu 91. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.

B. 6 mặt.
C. 9 mặt.
D. 3 mặt.
Trang 7/11 Mã đề 1


Câu 92. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
Câu 93. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 5}.
C. {3; 4}.

D. {5; 3}.

Câu 94. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 1.
B. 10.
C. 2.
D. 2.
Câu 95. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (0; 1).
B. (−∞; −1) và (0; +∞). C. (−∞; 0) và (1; +∞). D. (−1; 0).
!
!
!

1
2
2016
4x
. Tính tổng T = f
+f
+ ··· + f
Câu 96. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T =
.
C. T = 2016.
D. T = 1008.
2017
Câu 97. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
1
9
2
B.
.
C. .
D.
.

A. .
5
10
5
10
Câu 98. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 216 triệu.
D. 210 triệu.
Câu 99. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.
C. 30.
D. 12.


4n2 + 1 − n + 2
bằng
Câu 100. Tính lim
2n − 3
3
A. .
B. 1.
C. 2.
D. +∞.

2
Câu 101. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.
Z 2
ln(x + 1)
Câu 102. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. −3.
C. 0.
D. 3.
2
3
7n − 2n + 1
Câu 103. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 1.
C. 0.
D. - .
3
3
0 0 0 0

Câu 104. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 105. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.
Trang 8/11 Mã đề 1


Câu 106. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.

C. 3 mặt.
D. 4 mặt.
mx − 4
Câu 107. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 34.
D. 26.
Câu 108. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 5%.
D. 0, 6%.
Câu 109. Phát biểu nào sau đây là sai?
1
= 0.
n
1
D. lim k = 0.
n

A. lim qn = 0 (|q| > 1).

B. lim

C. lim un = c (un = c là hằng số).

1 − 2n
bằng?
Câu 110. [1] Tính lim
3n + 1
2
1
A. − .
B. .
3
3
Câu 111. [1-c] Giá trị của biểu thức
A. 4.

B. 2.
2n − 1
Câu 112. Tính lim 6
3n + n4
2
B. 2.
A. .
3

C. 1.
log7 16
log7 15 − log7

15
30

D.


2
.
3

bằng

C. −4.

D. −2.

C. 1.

D. 0.

2


Câu 113. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 63.
D. 62.
Câu 114. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z

D.
f (x)dx = f (x).

f (x)dx = F(x) + C.

1
Câu 115. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2) ∪ (−1; +∞). C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 116. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 3
a3 6
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
24
8

24
48
Câu 117. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 3.
B. 1.
C. 2.
D. 7.
Câu 118. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
log2 a
loga 2
Trang 9/11 Mã đề 1


Câu 119. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 30.

C. 8.

D. 12.

Câu 120. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là

A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 121. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là

3
3
a 6
2a 6
a 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
9
2
4
!

1
1
1
Câu 122. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. .
D. 2.
2
2
!
1
1
1
+
+ ··· +
Câu 123. Tính lim
1.2 2.3
n(n + 1)
3
A. .
B. 0.
C. 1.
D. 2.
2

Câu 124. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:

3
3
3
3
A. .
B.
.
C.
.
D.
.
4
4
12
2
3

Câu 125. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e2 .
C. e3 .
D. e5 .
! x3 −3mx2 +m
1
Câu 126. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π

khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m , 0.
D. m ∈ (0; +∞).
Câu 127. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.

C. 5.

D. 8.

Câu 128. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. V = 4π.
D. 32π.
Câu 129. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 13 năm.
D. 10 năm.
1
2mx + 1
Câu 130. Giá trị lớn nhất của hàm số y =

trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −2.
C. −5.
D. 0.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.

D

5. A
D

7.

4.


C

6.

C

8.

C

9.

B

B

10. A

11. A

12. A

13.
15.

B

16. A

17.


B

18.
C

19.

D

14.

C

B

20. A

21. A

22.

B

23. A

24.

B


25.

D

27.

26.

C

28.

D
D

29.

B

30.

31.

B

32.

33.

B


34. A

35.

B

36. A

37. A
D

40.

B

44. A
B

47.

46. A

53.

48.

C

49.

51.

D

42. A

43. A
45.

B

38. A

39.
41.

C

D

50.

B

D
C

52. A
C


54. A

55.

D

56.

57.

D

58. A

59.

D

60.

D

61. A

62.

D

63. A


64.

D

66.

D

68.

D

65.

C

67. A
1

D


69. A

70.

71. A

72.
C


73.
75.

B

77.

C

79.

D

B

74.

D

76.

D

78.

D

80.


B
D

82.

81. A
83.

D

C

84.

85.

C

86. A

87.

C

88.

89.

D


90.

91.

D

92. A

93.

D

D
C

94. A

B

95.

D

96.

D

97.

D


98. A

99.

D

100.

B

101.

D

102.

B

103.

D

104.

C

106.

105. A

107.

C

D

108. A

109. A

110. A

111.

112.

C

113.

D

114.

115.

D

116.


D
B
C

118.

D

119. A

120.

D

121. A

122.

D

117.

C

123.
125.
127.
130.

124.


C
D

B

126. A

B

129.
D

2

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×