TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 1.
C. 3.
D. 0.
Câu 2. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 3. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (0; −2).
C. (−1; −7).
D. (1; −3).
Câu 4. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2
2
Câu 5. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 3.
C. 2.
D. 4.
Câu 6. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
Câu 7. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.
Câu 8. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).
√
√ S .ABCD là
3
3
√
a 2
a 3
a 3
A. a3 3.
B.
.
C.
.
D.
.
2
2
4
Trang 1/11 Mã đề 1
x=t
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 11. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.
D. f (x) liên tục trên K.
Câu 12. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. .
B.
.
n
n
2−n
Câu 13. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. −1.
D.
C. 1.
D. 2.
Câu 14. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.
Câu 15. [2] Tổng các nghiệm của phương trình 3
A. 5.
B. 8.
n+1
.
n
1
C. √ .
n
x2 −3x+8
=9
C. 7.
2x−1
D. {4; 3}.
là
D. 6.
[ = 60◦ , S O
Câu 16. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√
2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
3
Câu 17. Tìm giá trị của tham số m để hàm số y = −x + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. [−1; 3].
D. (−∞; −3].
Câu 18. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim qn = 1 với |q| > 1.
Z
Câu 19. Cho
A. 0.
1
2
B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
B. 3.
C. −3.
Câu 20. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.
2n + 1
Câu 21. Tính giới hạn lim
3n + 2
3
A. 0.
B. .
2
Câu 22. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. +∞.
C.
2
.
3
D. 1.
D. 2.
D.
1
.
2
C. 10.
D. 6.
a
1
Câu 23. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 2.
C. 1.
D. 4.
Trang 2/11 Mã đề 1
Câu 24.
[3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
0 có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
Câu 25. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.
B. 5.
x3 − 1
Câu 26. Tính lim
x→1 x − 1
A. −∞.
B. 0.
√
a
5
√
C.
q
x+ log23 x + 1+4m−1 =
D. m ∈ [0; 2].
bằng
D.
5.
1
.
5
D. +∞.
C. 3.
Câu 27. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.
B. y0 = .
C. y0 =
.
D.
.
x
x
x ln 10
10 ln x
Câu 28. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
D. lim f (x) = f (a).
x→a
√
Câu 29. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. 63.
D. Vô số.
x−1 y z+1
Câu 30. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
C. f (x) có giới hạn hữu hạn khi x → a.
Câu 31. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
3
3
3
2a 3
4a 3
4a3
2a
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 32. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Ba mặt.
C. Một mặt.
D. Hai mặt.
Câu 33. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
a3 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 34. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối 20 mặt đều.
Câu 35. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 1202 m.
C. 2400 m.
D. 6510 m.
Câu 36. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3
1
D. V = S h.
2
x2
Câu 37. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
Trang 3/11 Mã đề 1
n−1
Câu 38. Tính lim 2
n +2
A. 2.
B. 0.
C. 3.
Câu 39. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
B. f 0 (0) = 1.
C. f 0 (0) =
D. 1.
1
.
ln 10
Câu 40. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 1.
D. f 0 (0) = 10.
1
3|x−1|
C. 4.
= 3m − 2 có nghiệm duy
D. 2.
x
Câu 41. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
.
C. .
D. .
A. 1.
B.
2
2
2
Câu 42. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy
và
S
C
=
a
3. √
Thể tích khối chóp S .ABC√là
√
√
3
3
a 3
a3 6
2a3 6
a 3
.
B.
.
C.
.
D.
.
A.
4
2
12
9
Câu 43. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B. −2.
C. −7.
D.
.
27
Câu 44.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) + g(x)]dx =
A.
Z
B.
[ f (x) − g(x)]dx =
f (x)dx +
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.
Câu 45. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.
C. Cả hai đều sai.
D. Chỉ có (I) đúng.
Câu 46. [1227d] Tìm bộ ba số ngun dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 47. Giá trị của lim (3x2 − 2x + 1)
x→1
B. 1.
C. +∞.
D. 3.
x − 12x + 35
Câu 48. Tính lim
x→5
25 − 5x
2
2
A. − .
B. .
C. +∞.
D. −∞.
5
5
Câu 49. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
A. 2.
2
Trang 4/11 Mã đề 1
B. Năm tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
Câu 50. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 3.
D. V = 4.
Câu 51. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.
√
Câu 52. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 4.
C. y0 = x + ln x.
D. y0 = ln x − 1.
C. 6.
D. 36.
Câu 53. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
3
.
C.
.
D.
.
A. a .
B.
24
6
12
√
Câu 54. Thể tích của khối lập phương có cạnh bằng a 2
√
√
√
2a3 2
3
3
3
A. V = 2a .
B. 2a 2.
C. V = a 2.
D.
.
3
Câu 55. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B.
.
C. 2a 2.
A.
D. a 2.
4
2
Câu 56. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {3; 4}.
4x + 1
bằng?
x→−∞ x + 1
B. 4.
D. {5; 3}.
Câu 57. [1] Tính lim
A. −1.
C. −4.
D. 2.
Câu 58. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 18.
C.
.
D. 27.
2
d = 60◦ . Đường chéo
Câu 59. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
a3 6
4a3 6
2a3 6
3
A. a 6.
B.
.
C.
.
D.
.
3
3
3
Câu 60. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
13
9
A. −
.
B. − .
C.
.
D.
.
100
16
100
25
Câu 61. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
Trang 5/11 Mã đề 1
Câu 62. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
6
18
Câu 63. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
C. Câu (I) sai.
D. Câu (III) sai.
sai.
Câu 64. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
C. 10.
D. 1.
A. 2.
B. 2.
t
9
Câu 65. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 1.
D. 2.
!x
1
là
Câu 66. [2] Tổng các nghiệm của phương trình 31−x = 2 +
9
A. 1 − log2 3.
B. log2 3.
C. − log3 2.
D. − log2 3.
[ = 60◦ , S O
Câu 67. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng
√
√
2a 57
a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
19
19
17
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 68. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
log2 240 log2 15
Câu 69. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. −8.
C. 4.
D. 3.
Câu 70. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có một hoặc hai.
D. Có hai.
Câu 71. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
Câu 72. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 73. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 41 x.
B. y = log π4 x.
C. y = log √2 x.
D. y = loga x trong đó a =
√
3 − 2.
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
a3 3
2a3 3
3
A.
.
B.
.
C. a 3.
D.
.
3
6
3
Trang 6/11 Mã đề 1
Câu 75. Tính lim
A. +∞.
x→3
x2 − 9
x−3
B. 3.
C. −3.
D. 6.
Câu 76. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng −∞; .
3
! 3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
mx − 4
Câu 77. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 34.
D. 26.
Câu 78. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.
C. 8.
D. 10.
Câu 79. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 80. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 27.
B. 9.
C. 8.
D. 3 3.
Câu 81. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d nằm trên P.
x−2
Câu 82. Tính lim
x→+∞ x + 3
2
A. −3.
B. 1.
C. − .
D. 2.
3
√
Câu 83. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
a3 6
a 6
a3 6
a3 2
A.
.
B.
.
C.
.
D.
.
36
18
6
6
π
x
Câu 84. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
1 π3
2 π4
3 π6
A. e .
B.
e .
C. 1.
D.
e .
2
2
2
Câu 85. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
√
Câu 86. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
Câu 87. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 5 mặt.
D. 4 mặt.
Câu 88. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > −1.
C. m ≥ 0.
D. m > 0.
Trang 7/11 Mã đề 1
x+1
bằng
6x − 2
1
1
1
A. 1.
B. .
C. .
D. .
6
2
3
2
Câu 90. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 16 m.
C. 12 m.
D. 8 m.
Câu 89. Tính lim
x→−∞
Câu 91. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 92. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).
C. (0; +∞).
D. (−∞; 0) và (2; +∞).
Câu 93. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
x
x
x
Câu 94. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 0.
D. 2.
Câu 95. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.
C. 4.
D. 12.
Câu 96. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
12
8
Câu 97. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.
Câu 98. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.
1
bằng
Câu 99. [1] Giá trị của biểu thức log √3
10
1
A. −3.
B. .
3
Câu 100.
Các khẳng định nàoZsau đây là sai?
Z
A.
Z
C.
C. 20.
D. 30.
C. 3.
1
D. − .
3
Z
!0
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Câu 101. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; 6, 5].
D. (4; +∞).
Câu 102. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 7 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 103. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. 0.
D. Không tồn tại.
Câu 104. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√
√
√
√ thẳng BD bằng
abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 8/11 Mã đề 1
Câu 105. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (0; 1).
Câu 106. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 107. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 108. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m ≥ .
D. m < .
4
4
4
4
0 0 0
Câu 109. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
A. 6 3.
B.
.
C. 8 3.
D.
.
3
3
Câu 110. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
3
√
a 5
a 6
a
15
A.
.
B.
.
C. a3 6.
D.
.
3
3
3
Câu 111. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. −2.
D. 4.
Câu 112. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
1728
23
.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
Câu 113. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 3.
D. 5.
Câu 114. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 25 m.
D. 1587 m.
Câu 115. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 116. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
8
7
5
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
1
Câu 117. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Trang 9/11 Mã đề 1
Câu 118. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
3
Câu 119. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e.
D. e3 .
Câu 120. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
A. 5.
B. 68.
C. 34.
D.
17
1 − xy
Câu 121. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
2 11 − 3
9 11 + 19
18 11 − 29
9 11 − 19
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
3
9
21
9
π
Câu 122. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
A. T = 3 3 + 1.
B. T = 2.
C. T = 2 3.
D. T = 4.
Câu 123. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 124. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 6.
C. 8.
D. 3.
Câu 125. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 120 cm2 .
12 + 22 + · · · + n2
Câu 126. [3-1133d] Tính lim
n3
1
2
A. .
B. +∞.
C. .
D. 0.
3
3
Câu 127. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 − 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 128. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.
C. −1.
D. 1.
Câu 129. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Trang 10/11 Mã đề 1
Câu 130. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.
B
D
5.
4.
C
C
11.
10. A
D
12.
B
14.
C
15.
B
18.
B
C
20. A
21.
C
22.
23. A
24.
25. A
26.
27.
D
16. A
19.
29.
D
8.
9.
17.
C
6. A
7. A
13.
2.
C
D
B
C
28.
C
B
D
30.
31.
D
C
32. A
D
34.
33. A
35.
D
36. A
37. A
38.
B
39. A
40.
B
41. A
42.
43.
44.
B
45. A
46. A
47. A
48.
49. A
50.
51.
C
B
53.
D
B
D
52.
B
54.
B
55.
B
56. A
57.
B
58.
59. A
D
B
60. A
61.
D
63. A
64.
D
65.
66.
D
67.
B
69.
B
68.
C
1
D
70.
C
D
72.
71.
C
73.
C
D
74. A
75.
76. A
77.
C
78. A
79.
C
81.
C
80.
D
82.
B
83.
84.
B
85. A
86.
B
87.
88.
B
89.
90.
B
91.
D
92.
D
B
D
93.
C
94.
B
C
95.
D
96.
D
97.
D
98.
D
99.
D
100. A
102.
D
104.
106.
101.
C
103.
C
105.
C
B
107.
B
108. A
D
109. A
110.
B
111.
112.
B
113. A
114.
B
115.
116.
B
117.
118.
B
119. A
120.
D
121. A
122.
D
123.
124.
D
125.
C
D
C
C
B
126. A
127.
C
128. A
129.
C
130.
B
2