Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (398)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.33 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
3
2
Câu 2. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Hai cạnh.
C. Năm cạnh.

D. V = 3S h.
D. Bốn cạnh.

Câu 3. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 4. Phát biểu nào sau đây là sai?


A. lim un = c (Với un = c là hằng số).
C. lim qn = 1 với |q| > 1.
Câu 5.
Z Các khẳng định
Z nào sau đây là sai?
k f (x)dx = k

A.
Z
C.

1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n
Z

f (x)dx, k là hằng số.
B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = f (x).

Z


f (t)dt = F(t) + C.

Câu 6.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
+ C, C là hằng số.
A.
0dx = C, C là hằng số.
B.
xα dx =
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
dx = x + C, C là hằng số.
x
Câu 7. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3
a3 15
A.
.
B.

.
C.
.
D.
.
5
25
3
25
4x + 1
Câu 8. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. 4.
C. −1.
D. −4.
Câu 9. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
!
1
1
1
+ ··· +
Câu 10. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n

3
5
A. +∞.
B. .
C. .
D. 2.
2
2
Câu 11. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 11.
C. 10.
D. 12.
Trang 1/10 Mã đề 1


3
2
Câu 12. Giá

√ trị cực đại của hàm số y√= x − 3x − 3x + 2
B. 3 + 4 2.
C. −3 + 4 2.
A. 3 − 4 2.


D. −3 − 4 2.

Câu 13. Khối đa diện đều loại {3; 4} có số cạnh

A. 8.
B. 6.

C. 10.
D. 12.
1
Câu 14. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.

Câu 15. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!
" đây?
5
5
D.
;3 .
A. [3; 4).
B. (1; 2).
C. 2; .
2
2



ab.

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9t + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vô số.
D. 2.

Câu 16. [4] Xét hàm số f (t) =

Câu 17. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
!
!
!
4x
1
2
2016
Câu 18. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f

4 +2
2017
2017
2017
2016
.
C. T = 2017.
D. T = 1008.
A. T = 2016.
B. T =
2017
Câu 19. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 10.
C. 8.
D. 6.
Z 1
6
2
3
Câu 20. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.

B. 6.

C. −1.


D. 4.

Câu 21.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Câu 22. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(−4; 8).


3
4
Câu 23. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
2
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 24. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
2a
a
8a
A.
.
B.
.
C. .
D.
.
9
9
9
9
Câu 25. Cho khối chóp S .ABC

√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy

S
C
=
a
3. √
Thể tích khối chóp S .ABC √là


3
3
a 3
a 3
2a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
2
4
9

12
Trang 2/10 Mã đề 1


Câu 26. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. .
D. 4.
A. .
8
2
4
2

Câu 27. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 7.
C. 6.
12 + 22 + · · · + n2
Câu 28. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. .
3

3
Câu 29. Phát biểu nào sau đây là sai?
1
1
A. lim = 0.
B. lim k = 0.
n
n
C. lim un = c (un = c là hằng số).
D. lim qn = 0 (|q| > 1).
!
1
1
1
Câu 30. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 1.
2
Câu 31. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (1; 2).
C. [−1; 2).

D. (−∞; +∞).


Câu 32. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 27.
C. 10.

D. 12.

D. 8.

D. 0.

D. 2.

Câu 33. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 4.
D. V = 3.
Câu 34. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.

C. 12.

D. 20.

Câu 35. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.

B. 20.

C. 12.

D. 8.

Câu 36. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2.
B.
.
C. 2 13.
D. 26.
13
d = 30◦ , biết S BC là tam giác đều
Câu 37. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.

.
B.
.
C.
.
D.
.
16
13
26
9
Câu 38. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
A. a .
B.
.
C.
.
D.
.
6
2
3
Câu 39. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình

lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Năm tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Trang 3/10 Mã đề 1


Câu 40. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).

Câu 41. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. 2a3 2.
B. V = 2a3 .
C.
.
D. V = a3 2.
3
0 0 0
d = 300 .
Câu 42. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.




3a3 3
a3 3
3
3
A. V =
D. V =
.
B. V = 6a .
C. V = 3a 3.
.
2
2

Câu 43. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 6.
C. 4.
D. 108.
2
Câu 44. Tính
√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.


D. |z| = 2 5.


Câu 45. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 46. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

C. 1.

D. 3.

Câu 47. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 9.

D. 13.

Câu 48. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 5.

D. 3.


Câu 49. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 6.
C. 4.
D. 8.


4n2 + 1 − n + 2
bằng
Câu 50. Tính lim
2n − 3
3
A. +∞.
B. 1.
C. 2.
D. .
2
0 0 0 0
Câu 51. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.

C. 2
.
D.
.

a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 52. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
9
1
A. .
B. .
C.
.
D.
.
5
5
10
10
1
ln x p 2
Câu 53. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x

3
8
1
8
1
A. .
B. .
C. .
D. .
9
3
3
9
Trang 4/10 Mã đề 1


 π
Câu 54. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π
e .
e .
A.
B. e 3 .
C.
2

2
2

D. 1.

Câu 55. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. 2e4 .
D. −e2 .
Câu 56. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. 2.

C. +∞.

D. 3.

1
Câu 57. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
[ = 60◦ , S A ⊥ (ABCD).
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD

Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là


a3 2
a3 3
a3 2
3
A.
.
B. a 3.
C.
.
D.
.
4
6
12
Câu 59. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.

C. 8.

D. 6.

Câu 60. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.

Câu 61. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
A. log2 a =
loga 2
log2 a
Câu 62. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình chóp.


Câu 63. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
.

B. V =
.
C. V =
.
D. V =
.
A. V =
2
6
3
6
Câu 64. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 0.
D. 1.
Câu 65. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 8π.
D. 32π.
Câu 66. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3

a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
4
8
Câu 67. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Trang 5/10 Mã đề 1


Câu 68. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 64cm3 .
C. 72cm3 .
D. 46cm3 .
Câu 69. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.

!
un
= 0.
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
v! n
un
= +∞.
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 70. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
Câu 71. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 1.

C. 0.

D. 2.

x−1 y z+1

= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 72. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 73. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối lập phương.
d = 120◦ .
Câu 74. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 4a.
C.
.
D. 2a.
2

Câu 75. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
6
2
Câu 76. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 3.
D. 7.
Câu 77.√Biểu thức nào sau đây không có nghĩa

−3
A. (− 2)0 .
B. 0−1 .
C. (−1)−1 .
D.

−1.
1 − 2n
Câu 78. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. .
D. 1.
3
3
3
Câu 79. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
9
13
5
A. −
.
B.
.
C.
.
D. − .
100
25

100
16
Câu 80. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. 2.
D. Vô số.
Trang 6/10 Mã đề 1


Câu 81. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 10.
D. ln 14.
!4x
!2−x
2
3
Câu 82. Tập các số x thỏa mãn


#
" 3 ! 2
#
"
!
2
2

2
2
A. −∞; .
B.
; +∞ .
C. −∞; .
D. − ; +∞ .
3
5
5
3
Câu 83. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 10 năm.
D. 11 năm.
Câu 84. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
Câu 85. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. 4.
C. −4.
D. −2.

log 2x

Câu 86. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
x
x ln 10
2x ln 10
2x ln 10
Câu 87. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 88. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).

B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
2n + 1
Câu 89. Tính giới hạn lim
3n + 2
3
2
B. .
C. 0.
A. .
2
3
2
Câu 90. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = R.
x−3
Câu 91. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 0.
C. 1.
Câu 92. Tìm m để hàm số y = x − 3mx + 3m có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.
3


2

Câu 93. Hàm số nào sau đây không có cực trị
1
A. y = x + .
B. y = x3 − 3x.
x

D.

1
.
2

D. D = [2; 1].
D. +∞.

2

C. y = x4 − 2x + 1.
!x
1
1−x
Câu 94. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. 1 − log2 3.
B. − log3 2.
C. log2 3.


D. m > 0.
D. y =

x−2
.
2x + 1

D. − log2 3.
Trang 7/10 Mã đề 1



Câu 95. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vơ số.
C. 63.
D. 62.
Câu 96. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
Câu 97. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
.
B. m =
.

C. m =
.
A. m =
4 − 2e
4e + 2
4 − 2e
Câu 98.
Z [1233d-2] Mệnh đề nào sau đây sai?

D. 3.
D. m =

1 − 2e
.
4e + 2

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z

Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 99. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
Câu 100. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
A. 5.
B. 34.
C. 68.
D.
17

Câu 101. Xác định phần ảo của √
số phức z = ( 2 + 3i)2

A. −7.

B. 6 2.
C. 7.
D. −6 2.
1
Câu 102. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
log2 240 log2 15

+ log2 1 bằng
Câu 103. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. −8.
C. 4.
D. 1.
Câu 104. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 105. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Câu 106. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.


C. 8.

Câu 107. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 3.
C. 1.

D. 6.
D. 2.

Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3

a 3
a 2
a 3
A. a3 3.
B.
.
C.
.
D.
.

2
2
4
Câu 109. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).
C. (−∞; 2).
D. (0; 2).
Trang 8/10 Mã đề 1


Câu 110. Tính lim
x→2

A. 3.

x+2
bằng?
x
B. 0.

Câu 111. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. 2.

D. 1.

C. {5; 3}.


D. {3; 4}.

Câu 112. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
6
4
12
12
2

2

sin x

Câu 113. [3-c]
+ 2cos x√lần lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm√số f (x) = 2
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.

Câu 114. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 24 m.
C. 8 m.
D. 12 m.
Câu 115. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −5.

D. x = −8.
q
Câu 116. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 117. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

A. 3n3 lần.
B. n lần.
C. n2 lần.
D. n3 lần.
Câu 118. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 119. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
Câu 120. Cho I =

B. 1.
Z

3

x


C. 2.
dx =

0 4+2 x+1
trị P = a + b + c + d bằng?

A. P = 4.
B. P = 28.

D. 3.

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 16.

D. P = −2.

3
2
x
Câu 121. [2]
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8
√ Tìm m để giá trị lớn nhất
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.

Câu 122. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình chiếu của A lên BC là !
5
7

8
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Trang 9/10 Mã đề 1


x+1
Câu 123. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 1.
D. 3.
3
4
Câu 124. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 27 lần.

C. Tăng gấp 9 lần.
D. Tăng gấp 18 lần.
x−1
Câu 125. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
B. 2 2.
C. 2 3.
D. 2.
A. 6.
Câu 126. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
15
9
18
Câu 127. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn

nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
(1, 01)3
A. m =
triệu.
B. m =
triệu.
3
(1, 01)3 − 1
120.(1, 12)3
100.(1, 01)3
triệu.
D. m =
triệu.
C. m =
3
(1, 12)3 − 1
!
5 − 12x
Câu 128. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
Câu 129. Thập nhị diện đều (12 mặt đều) thuộc loại

A. {3; 3}.
B. {4; 3}.
C. {5; 3}.

D. {3; 4}.
d = 60◦ . Đường chéo
Câu 130. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A

3.

C

4.

5.

C

6.

B

8.

B

7.


D

C

10.

9. A

D

11.

D

12.

C

13.

D

14.

C

15.

D


16.

D

18.

D

20.

D

17.

C

19.

D
C

21.

22. A

23.

D

24.


25.

D

26.

C

28.

C
C

27.

B

29.

D

30.

31.

D

32. A


33.

34.

C

35. A
37.

36.
B

40.

41. A

42. A
46.
50.
B
D

56.

B
C
B

58. A


C

59.

60.

D

61. A
66.

B

54. A

55.

63.

B

52.

53. A
57.

C

48. A


B

49. A
51.

B

44. A

C

45. A
47.

D

38.

39. A
43.

D

C
D

D

62.


C

64.

C

67.

68. A

69.
1

D
C


70.

D

71.

72.

D

73. A

C


74.
76. A
78.

C

82.

D

84. A
86.

75.

B

77.

B

79. A

B

80.

C


81.

D

83.

D

85.

D

87. A

B

88.

C

89.

B

90.

C

91.


B

92.

B
D

94.

93.

D

95.

D
D

96.

C

97.

98.

C

99.


100.

D

C

101.

B

102.

B

103.

B

104.

B

105.

B

D

106.
108.


107. A

B

110.

109. A
111.

C
D

112.

D

113.

114. A

C

115.

D

116.

D


117.

D

118.

D

119.

D

120. A
122.

D

121.

B

123.

B

124.

B


125.

127.

B

128.

D

130.

D

129.

C

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×