Tải bản đầy đủ (.pdf) (232 trang)

Bsi bs en 62209 1 2016

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (10.05 MB, 232 trang )

BS EN 62209-1:2016

BSI Standards Publication

Measurement procedure for
the assessment of specific
absorption rate of human
exposure to radio frequency
fields from hand-held and
body-mounted wireless
communication devices
Part 1: Devices used next to the ear
(Frequency range of 300 MHz to 6 GHz)


BRITISH STANDARD

BS EN 62209-1:2016
National foreword

This British Standard is the UK implementation of EN 62209-1:2016. It is
identical to IEC 62209-1:2016. It supersedes BS EN 62209-1:2006 which is
withdrawn.
The UK participation in its preparation was entrusted to Technical
Committee GEL/106, Human exposure to low frequency and high
frequency electromagnetic radiation.
A list of organizations represented on this committee can be obtained on
request to its secretary.
This publication does not purport to include all the necessary provisions of
a contract. Users are responsible for its correct application.
© The British Standards Institution 2016.


Published by BSI Standards Limited 2016
ISBN 978 0 580 76513 1
ICS 17.220.20; 33.050.10; 33.060.20

Compliance with a British Standard cannot confer immunity from
legal obligations.
This British Standard was published under the authority of the
Standards Policy and Strategy Committee on 31 December 2016.

Amendments/corrigenda issued since publication
Date

Text affected


BS EN 62209-1:2016

EUROPEAN STANDARD

EN 62209-1

NORME EUROPÉENNE
EUROPÄISCHE NORM

November 2016

ICS 33.060.20

Supersedes EN 62209-1:2006


English Version

Measurement procedure for the assessment of specific
absorption rate of human exposure to radio frequency fields from
hand-held and body-mounted wireless communication devices Part 1: Devices used next to the ear (Frequency range of 300
MHz to 6 GHz)
(IEC 62209-1:2016)
Procédure de mesure pour l'évaluation du débit
d'absorption spécifique de l'exposition humaine aux champs
radiofréquences produits par les dispositifs de
communications sans fil tenus à la main ou portés près du
corps - Partie 1: Dispositifs utilisés à proximité de l'oreille
(Plage de fréquences de 300 MHz à 6 GHz)
(IEC 62209-1:2016)

Sicherheit von Personen in hochfrequenten Feldern von
handgehaltenen und am Körper getragenen schnurlosen
Kommunikationsgeräten - Körpermodelle, Messgeräte und verfahren - Teil 1: Verfahren zur Bestimmung der
spezifischen Absorptionsrate (SAR) von Geräten, die in
enger Nachbarschaft zum Ohr benutzt werden
(Frequenzbereich von 300 MHz bis 6 GHz)
(IEC 62209-1:2016)

This European Standard was approved by CENELEC on 2016-08-10. CENELEC members are bound to comply with the CEN/CENELEC
Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration.
Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC
Management Centre or to any CENELEC member.
This European Standard exists in three official versions (English, French, German). A version in any other language made by translation
under the responsibility of a CENELEC member into its own language and notified to the CEN-CENELEC Management Centre has the
same status as the official versions.

CENELEC members are the national electrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Cyprus, the Czech Republic,
Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia,
Lithuania, Luxembourg, Malta, the Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and the United Kingdom.

European Committee for Electrotechnical Standardization
Comité Européen de Normalisation Electrotechnique
Europäisches Komitee für Elektrotechnische Normung

CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2016 CENELEC All rights of exploitation in any form and by any means reserved worldwide for CENELEC Members.
Ref. No. EN 62209-1:2016 E


BS EN 62209-1:2016

EN 62209-1:2016

European foreword
The text of document 106/361/FDIS, future edition 2 of IEC 62209-1 prepared by IEC/TC 106X
"Methods for the assessment of electric, magnetic and electromagnetic fields associated with human
exposure" was submitted to the IEC-CENELEC parallel vote and approved by CENELEC as
EN 62209-1:2016.
The following dates are fixed:


latest date by which the document has to be
implemented at national level by
publication of an identical national

standard or by endorsement

(dop)

2017-05-10



latest date by which the national
standards conflicting with the
document have to be withdrawn

(dow)

2019-08-10

This document supersedes EN 62209-1:2006.
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. CENELEC [and/or CEN] shall not be held responsible for identifying any or all such
patent rights.

Endorsement notice
The text of the International Standard IEC 62209-1:2016 was approved by CENELEC as a European
Standard without any modification.

2


BS EN 62209-1:2016


EN 62209-1:2016

Annex ZA
(normative)
Normative references to international publications
with their corresponding European publications
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
NOTE 1 When an International Publication has been modified by common modifications, indicated by (mod), the relevant
EN/HD applies.
NOTE 2 Up-to-date information on the latest versions of the European Standards listed in this annex is available here:
www.cenelec.eu

Publication

Year

Title

EN/HD

Year

ISO/IEC 17025

2005

General requirements for the competence EN ISO/IEC 17025 2005
of testing and calibration laboratories


ISO/IEC 17043

2010

Conformity assessment - General
requirements for proficiency testing

EN ISO/IEC 17043 2010

3


–2–

BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

CONTENTS
FOREWORD....................................................................................................................... 11
INTRODUCTION ................................................................................................................. 13
1

Scope .......................................................................................................................... 14

2

Normative references .................................................................................................. 14

3


Terms and definitions .................................................................................................. 14

4

Symbols and abbreviations .......................................................................................... 19

4.1
Physical quantities .............................................................................................. 19
4.2
Constants ........................................................................................................... 20
4.3
Abbreviations ...................................................................................................... 20
5
Measurement system specifications ............................................................................. 20
5.1
General requirements .......................................................................................... 20
5.2
Phantom specifications (shell and liquid) ............................................................. 22
5.3
Hand and device holder considerations ................................................................ 23
5.4
Scanning system requirements ............................................................................ 23
5.5
Device holder specifications ................................................................................ 23
5.6
Characteristics of the readout electronics ............................................................ 24
6
Protocol for SAR assessment ....................................................................................... 24
6.1

6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.4
6.4.1
6.4.2
6.4.3
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
6.7.1
6.7.2
6.7.3
6.7.4

General ............................................................................................................... 24
Measurement preparation .................................................................................... 24
Preparation of tissue-equivalent liquid and system check .............................. 24

Preparation of the wireless device under test (DUT) ...................................... 25
Operating modes ......................................................................................... 26
Positioning of the DUT in relation to the phantom ......................................... 27
Test frequencies for DUT ............................................................................. 34
Tests to be performed ......................................................................................... 34
Measurement procedure ...................................................................................... 36
General ....................................................................................................... 36
General procedure ....................................................................................... 37
SAR measurements of handsets with multiple antennas or multiple
transmitters .................................................................................................. 39
Post-processing of SAR measurement data ......................................................... 45
Interpolation ................................................................................................. 45
Extrapolation ............................................................................................... 46
Definition of the averaging volume ................................................................ 46
Searching for the maxima ............................................................................. 46
Fast SAR testing ................................................................................................. 46
General ....................................................................................................... 46
Fast SAR measurement procedure A ............................................................ 47
Fast SAR testing of required frequency bands .............................................. 49
Fast SAR measurement procedure B ............................................................ 50
SAR test reduction .............................................................................................. 52
General requirements ................................................................................... 52
Test reduction for different operating modes in the same frequency
band using the same wireless technology ..................................................... 53
Test reduction based on characteristics of DUT design ................................. 54
Test reduction based on SAR level analysis .................................................. 55


BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016


–3–

6.7.5
7

Test reduction based on simultaneous multi-band transmission
considerations ............................................................................................. 57
Uncertainty estimation ................................................................................................. 58

7.1
General considerations........................................................................................ 58
7.1.1
Concept of uncertainty estimation ................................................................. 58
7.1.2
Type A and Type B evaluation ...................................................................... 59
7.1.3
Degrees of freedom and coverage factor ...................................................... 59
7.2
Components contributing to uncertainty ............................................................... 60
7.2.1
General ....................................................................................................... 60
7.2.2
Calibration of the SAR probes ...................................................................... 60
7.2.3
Contribution of mechanical constraints ......................................................... 65
7.2.4
Phantom shell .............................................................................................. 66
7.2.5
Device positioning and holder uncertainties .................................................. 67

7.2.6
Tissue-equivalent liquid parameter uncertainty ............................................. 69
7.2.7
Uncertainty in SAR correction for deviations in permittivity and
conductivity .................................................................................................. 72
7.2.8
Measured SAR drift ...................................................................................... 74
7.2.9
RF ambient conditions .................................................................................. 75
7.2.10
Contribution of post-processing .................................................................... 76
7.2.11
SAR scaling uncertainty ............................................................................... 81
7.2.12
Deviation of experimental sources ................................................................ 82
7.2.13
Other uncertainty contributions when using system validation sources .......... 82
7.3
Calculation of the uncertainty budget ................................................................... 83
7.3.1
Combined and expanded uncertainties ......................................................... 83
7.3.2
Maximum expanded uncertainty ................................................................... 83
7.4
Uncertainty of fast SAR methods based on specific measurement
procedures and post-processing techniques ........................................................ 92
7.4.1
General ....................................................................................................... 92
7.4.2
Measurement uncertainty evaluation............................................................. 92

8
Measurement report .................................................................................................. 101
8.1
General ............................................................................................................. 101
8.2
Items to be recorded in the measurement report ................................................ 101
Annex A (normative) Phantom specifications .................................................................... 104
A.1
Rationale for the SAM phantom shape ............................................................... 104
A.2
SAM phantom specifications .............................................................................. 104
A.2.1
General ..................................................................................................... 104
A.2.2
Phantom shell ............................................................................................ 108
A.3
Flat phantom specifications ............................................................................... 110
A.4
Tissue-equivalent liquids ................................................................................... 111
Annex B (normative) Calibration and characterization of dosimetric probes ....................... 113
B.1
Introductory remarks ......................................................................................... 113
B.2
Linearity ............................................................................................................ 114
B.3
Assessment of the sensitivity of the dipole sensors ............................................ 114
B.3.1
General ..................................................................................................... 114
B.3.2
Two-step calibration procedures ................................................................. 114

B.3.3
One step calibration procedures ................................................................. 120
B.3.4
Coaxial calorimeter method ........................................................................ 124
B.4
Isotropy ............................................................................................................ 126
B.4.1
Axial isotropy ............................................................................................. 126


–4–

BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

B.4.2
Hemispherical isotropy ............................................................................... 126
B.5
Lower detection limit ......................................................................................... 131
B.6
Boundary effects ............................................................................................... 131
B.7
Response time .................................................................................................. 131
Annex C (normative) Post-processing techniques ............................................................. 132
C.1
Extrapolation and interpolation schemes ............................................................ 132
C.1.1
Introductory remarks .................................................................................. 132
C.1.2
Interpolation schemes ................................................................................ 132

C.1.3
Extrapolation schemes ............................................................................... 132
C.2
Averaging scheme and maximum finding ........................................................... 132
C.2.1
Volume average schemes .......................................................................... 132
C.2.2
Extrude method of averaging ...................................................................... 132
C.2.3
Maximum peak SAR finding and uncertainty estimation ............................... 133
C.3
Example implementation of parameters for scanning and data evaluation ........... 133
C.3.1
General ..................................................................................................... 133
C.3.2
Area scan measurement requirements .......................................................... 133
C.3.3
Zoom scan ................................................................................................. 133
C.3.4
Extrapolation ............................................................................................. 134
C.3.5
Interpolation ............................................................................................... 134
C.3.6
Integration ................................................................................................. 134
Annex D (normative) SAR measurement system verification ............................................. 135
D.1
Overview .......................................................................................................... 135
D.2
System check .................................................................................................... 135
D.2.1

Purpose ..................................................................................................... 135
D.2.2
Phantom set-up.......................................................................................... 136
D.2.3
System check source ................................................................................. 136
D.2.4
System check source input power measurement ......................................... 137
D.2.5
System check procedure ............................................................................ 138
D.3
System validation .............................................................................................. 139
D.3.1
Purpose ..................................................................................................... 139
D.3.2
Phantom set-up.......................................................................................... 139
D.3.3
System validation sources .......................................................................... 139
D.3.4
Reference dipole input power measurement ............................................... 140
D.3.5
System validation procedure ...................................................................... 140
D.3.6
Numerical target SAR values ...................................................................... 141
D.4
Fast SAR method system validation and system check ...................................... 144
D.4.1
General ..................................................................................................... 144
D.4.2
Fast SAR method system validation............................................................ 144
D.4.3

Fast SAR method system check ................................................................. 145
Annex E (normative) Interlaboratory comparisons ............................................................. 146
E.1
Purpose ............................................................................................................ 146
E.2
Phantom set-up ................................................................................................. 146
E.3
Reference wireless handsets ............................................................................. 146
E.4
Power set-up ..................................................................................................... 146
E.5
Interlaboratory comparison – Procedure ............................................................ 147
Annex F (informative) Definition of a phantom coordinate system and a device under
test coordinate system ...................................................................................................... 148
Annex G (informative) SAR system validation sources ...................................................... 150


BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

–5–

G.1
Standard dipole source ..................................................................................... 150
G.2
Standard waveguide source .............................................................................. 151
Annex H (informative) Flat phantom ................................................................................. 153
Annex I (informative) Example recipes for phantom head tissue-equivalent liquids ............ 156
I.1
Overview .......................................................................................................... 156

I.2
Ingredients ........................................................................................................ 156
I.3
Tissue-equivalent liquid formulas (permittivity/conductivity) ................................ 157
Annex J (informative) Measurement of the dielectric properties of liquids and
uncertainty estimation ....................................................................................................... 160
J.1
Introductory remarks ......................................................................................... 160
J.2
Measurement techniques ................................................................................... 160
J.2.1
General ..................................................................................................... 160
J.2.2
Instrumentation .......................................................................................... 160
J.2.3
General principles ...................................................................................... 160
J.3
Slotted coaxial transmission line ........................................................................ 161
J.3.1
General ..................................................................................................... 161
J.3.2
Equipment set-up ....................................................................................... 161
J.3.3
Measurement procedure ............................................................................. 161
J.4
Contact coaxial probe ........................................................................................ 162
J.4.1
General ..................................................................................................... 162
J.4.2
Equipment set-up ....................................................................................... 162

J.4.3
Measurement procedure ............................................................................. 164
J.5
TEM transmission line ....................................................................................... 164
J.5.1
General ..................................................................................................... 164
J.5.2
Equipment set-up ....................................................................................... 164
J.5.3
Measurement procedure ............................................................................. 165
J.6
Dielectric properties of reference liquids ............................................................ 166
Annex K (informative) Measurement uncertainty of specific fast SAR methods and
fast SAR examples ........................................................................................................... 169
K.1
General ............................................................................................................. 169
K.2
Measurement uncertainty evaluation .................................................................. 169
K.2.1
General ..................................................................................................... 169
K.2.2
Probe calibration and system calibration drift .............................................. 170
K.2.3
Isotropy ..................................................................................................... 170
K.2.4
Sensor positioning uncertainty .................................................................... 171
K.2.5
Sensor location sensitivity .......................................................................... 171
K.2.6
Mutual sensor coupling .............................................................................. 172

K.2.7
Sensor coupling with the DUT .................................................................... 172
K.2.8
Measurement system immunity / secondary reception ................................. 172
K.2.9
Deviations in phantom shape ...................................................................... 172
K.2.10
Spatial variation in dielectric parameters .................................................... 173
K.3
Fast SAR examples ........................................................................................... 178
K.3.1
General ..................................................................................................... 178
K.3.2
Example 1: Tests for one frequency band and mode ................................... 179
K.3.3
Example 2: Tests over multiple frequency bands and modes ....................... 183
K.3.4
Example 3: Tests for one frequency band and mode (Procedure B) ............. 186
K.3.5
Example 4: Tests over multiple frequency bands and modes (Procedure
B) .............................................................................................................. 190
Annex L (informative) SAR test reduction supporting information ...................................... 194


–6–

BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

L.1

General ............................................................................................................. 194
L.2
Test reduction based on characteristics of DUT design ...................................... 194
L.2.1
General ..................................................................................................... 194
L.2.2
Statistical analysis overview ....................................................................... 194
L.2.3
Analysis results .......................................................................................... 195
L.2.4
Conclusions ............................................................................................... 198
L.2.5
Expansion to multi transmission antennas .................................................. 198
L.2.6
Test reduction based on analysis of SAR results on other signal
modulations ............................................................................................... 198
L.3
Test reduction based on SAR level analysis ....................................................... 200
L.3.1
General ..................................................................................................... 200
L.3.2
Statistical analysis ..................................................................................... 201
L.3.3
Test reduction applicability example ........................................................... 204
L.4
Other statistical approaches to search for the high SAR test conditions .............. 205
L.4.1
General ..................................................................................................... 205
L.4.2
Test reductions based on a design of experiments (DOE) ........................... 205

L.4.3
Analysis of unstructured data ..................................................................... 206
Annex M (informative) Applying the head SAR test procedures ......................................... 207
Annex N (informative) Studies for potential hand effects on head SAR .............................. 210
N.1
Overview .......................................................................................................... 210
N.2
Background ....................................................................................................... 210
N.2.1
General ..................................................................................................... 210
N.2.2
Hand phantoms .......................................................................................... 211
N.3
Summary of experimental studies ...................................................................... 211
N.3.1
General ..................................................................................................... 211
N.3.2
Experimental studies using fully compliant SAR measurement systems ....... 211
N.3.3
Experimental studies using other SAR measurement systems ..................... 211
N.4
Summary of computational studies .................................................................... 212
N.5
Conclusions ...................................................................................................... 212
Annex O (informative) Quick start guide ........................................................................... 213
O.1
General ............................................................................................................. 213
O.2
Quick start guide high level flow-chart ............................................................... 213
Bibliography ..................................................................................................................... 217

Figure 1 – Vertical and horizontal reference lines and reference Points A, B on two
example device types: a full touch screen smart phone (top) and a keyboard handset
(bottom) ............................................................................................................................. 29
Figure 2 – Cheek position of the wireless device on the left side of SAM where the
device shall be maintained for the phantom test set-up. ....................................................... 32
Figure 3 – Tilt position of the wireless device on the left side of SAM ................................... 32
Figure 4 – An alternative form factor DUT and standard coordinate and reference
points applied ..................................................................................................................... 33
Figure 5 – Block diagram of the tests to be performed ......................................................... 36
Figure 6 – Orientation of the probe with respect to the line normal to the phantom
surface, shown at two different locations ............................................................................. 39
Figure 7 – Measurement procedure for different types of correlated signals ......................... 45
Figure 8 – The Fast SAR measurement procedure B. .......................................................... 52
Figure 9 – Modified chart of 6.4.2 ........................................................................................ 57


BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

–7–

Figure 10 – Orientation and surface of the averaging volume relative to the phantom
surface ............................................................................................................................... 81
Figure A.1 – Illustration of dimensions in Table A.1 and Table A.2 ..................................... 105
Figure A.2 – Close-up side view of phantom showing the ear region .................................. 107
Figure A.3 – Side view of the phantom showing relevant markings ..................................... 107
Figure A.4 – Sagittally bisected phantom with extended perimeter (shown placed on
its side as used for device SAR tests) ............................................................................... 109
Figure A.5 – Picture of the phantom showing the central strip ............................................ 109
Figure A.6 – Cross-sectional view of SAM at the reference plane ....................................... 110

Figure A.7 – Dimensions of the elliptical phantom .............................................................. 111
Figure B.1 – Experimental set-up for assessment of the sensitivity (conversion factor)
using a vertically-oriented rectangular waveguide .............................................................. 118
Figure B.2 – Illustration of the antenna gain evaluation set-up ........................................... 121
Figure B.3 – Schematic of the coaxial calorimeter system .................................................. 125
Figure B.4 – Set-up to assess spherical isotropy deviation in tissue-equivalent liquid ........ 127
Figure B.5 – Alternative set-up to assess spherical isotropy deviation in tissueequivalent liquid................................................................................................................ 128
Figure B.6 – Experimental set-up for the hemispherical isotropy assessment ..................... 129
Figure B.7 – Conventions for dipole position ( ξ ) and polarization ( θ ) ................................. 129
Figure B.8 – Measurement of hemispherical isotropy with reference antenna ..................... 130
Figure C.1 – Extrude method of averaging ......................................................................... 133
Figure C.2 – Extrapolation of SAR data to the inner surface of the phantom based on
a fourth-order least-square polynomial fit of the measured data (squares) .......................... 134
Figure D.1 – Test set-up for the system check ................................................................... 137
Figure F.1 – Example reference coordinate system for the left ERP of the SAM
phantom ........................................................................................................................... 148
Figure F.2 – Example coordinate system on the device under test ..................................... 149
Figure G.1 – Mechanical details of the standard dipole ...................................................... 151
Figure G.2 – Standard waveguide source (dimensions are according to Table G.2) ............ 152
Figure H.1 – Dimensions of the flat phantom set-up used for deriving the minimal
phantom dimensions for W and L for a given phantom depth D ........................................... 154
Figure H.2 – FDTD predicted uncertainty in the 10 g peak spatial-average SAR as a
function of the dimensions of the flat phantom compared with an infinite flat phantom,
at 800 MHz ....................................................................................................................... 154
Figure J.1 – Slotted line set-up .......................................................................................... 161
Figure J.2 – An open-ended coaxial probe with inner and outer radii a and b,
respectively ...................................................................................................................... 163
Figure J.3 – TEM line dielectric test set-up [143] ............................................................... 165
Figure K.1 – SAR values for twelve hypothetical test configurations measured in the
same frequency band and modulation (e.g. GSM 900 MHz) using a hypothetical full

SAR (full SAR) and two fast SAR (fast SAR 1 and fast SAR 2) evaluations ......................... 178
Figure L.1 – Distribution of "Tilt/Cheek" ............................................................................. 195
Figure L.2 – SAR relative to SAR in position with maximum SAR in GSM mode .................. 200
Figure L.3 – Two points identifying the minimum distance between the position of the
interpolated maximum SAR and the points at 0,6 × SAR max ............................................... 201
Figure L.4 – Histogram for D min in the case of GSM 900 and iso-level at 0,6 × SAR max ..... 202
Figure L.5 – Histogram for random variable Factor1g1800 .................................................. 203


–8–

BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

Figure O.1 – Quick guide flow-chart .................................................................................. 214
Table 1 – Area scan parameters.......................................................................................... 38
Table 2 – Zoom scan parameters ........................................................................................ 38
Table 3 – Example method to determine the combined SAR value using Alternative 1 .......... 43
Table 4 – Threshold values TH(f) used in this proposed test reduction protocol .................... 56
Table 5 – Example uncertainty template and example numerical values for dielectric
constant ( ε r′ ) and conductivity ( σ ) measurement .................................................................. 71
Table 6 –Uncertainty of Formula (41) as a function of the maximum change in
permittivity or conductivity ................................................................................................... 73
Table 7 – Parameters for the reference function f 1 in Formula (48) ...................................... 77

Table 8 – Uncertainties relating to the deviations of the parameters of the standard
waveguide source from theory ............................................................................................. 82
Table 9 – Other uncertainty contributions relating to the dipole sources described in
Annex G. ............................................................................................................................ 83
Table 10 – Other uncertainty contributions relating to the standard waveguide sources

described in Annex G .......................................................................................................... 83
Table 11 – Example of measurement uncertainty evaluation template for handset SAR test .. 85
Table 12 – Example of measurement uncertainty evaluation template for system
validation ............................................................................................................................ 88
Table 13 – Example of measurement repeatability evaluation template for system
check (applicable for one system). ...................................................................................... 90
Table 14 – Measurement uncertainty budget for relative fast SAR tests ............................... 97
Table 15 – Measurement uncertainty budget for system check using fast SAR methods ....... 99
Table A.1 – Dimensions used in deriving SAM phantom from the ARMY 90th percentile
male head data (Gordon et al. [56]) ................................................................................... 106
Table A.2 – Additional SAM dimensions compared with selected dimensions from the
ARMY 90th-percentile male head data (Gordon et al. [56]) – specialist head
measurement section ........................................................................................................ 106
Table A.3 – Dielectric properties of the head tissue-equivalent liquid ................................. 112
Table B.1 – Uncertainty analysis for transfer calibration using temperature probes ............. 116
Table B.2 – Guidelines for designing calibration waveguides ............................................. 119
Table B.3 – Uncertainty analysis of the probe calibration in waveguide .............................. 120
Table B.4 – Uncertainty template for evaluation of reference antenna gain ......................... 122
Table B.5 – Uncertainty template for calibration using reference antenna ........................... 123
Table B.6 – Uncertainty components for probe calibration using thermal methods .............. 126
Table D.1 – Numerical target SAR values (W/kg) for standard dipole and flat phantom ...... 142
Table D.2 – Numerical target SAR values for waveguides specified in Clause G.2
placed in contact with flat phantom [94] ............................................................................. 143
Table G.1 – Mechanical dimensions of the reference dipoles ............................................. 150
Table G.2 – Mechanical dimensions of the standard waveguide ......................................... 152
Table H.1 – Parameters used for calculation of reference SAR values in Table D.1 ........... 155
Table I.1 – Suggested recipes for achieving target dielectric parameters: 300 MHz to
900 MHz ........................................................................................................................... 157
Table I.2 – Suggested recipes for achieving target dielectric parameters: 1 450 MHz to
2 000 MHz ........................................................................................................................ 158



BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

–9–

Table I.3 – Suggested recipes for achieving target dielectric parameters: 2 100 MHz to
5 800 MHz ........................................................................................................................ 159
Table J.1 – Parameters for calculating the dielectric properties of various reference
liquids .............................................................................................................................. 167
Table J.2 – Dielectric properties of reference liquids at 20 °C ............................................ 167
Table K.1 – Measurement uncertainty budget for relative fast SAR tests complying with
Annex K requirements, for tests performed within one frequency band and modulation ....... 174
Table K.2 – Measurement uncertainty budget for system check using fast SAR
methods complying with Annex K requirements ................................................................. 176
Table K.3 – Measurements conducted according to Step a) ............................................... 179
Table K.4 – Measurements conducted according to Step b) ............................................... 180
Table K.5 – Measurements conducted according to Step c) ............................................... 180
Table K.6 – Measurements conducted according to 6.4.2, Step 2)...................................... 181
Table K.7 – Measurements conducted according to 6.4.2, Step 3)...................................... 182
Table K.8 – Measurements conducted according to 6.4.2, Step 4)...................................... 182
Table K.9 – Fast SAR measurements conducted according to Step a) ................................ 183
Table K.10 – Fast SAR measurements showing highest SAR value according to Step b) ... 184
Table K.11 – Full SAR measurements conducted according to Step b) ............................... 184
Table K.12 – Fast SAR measurements showing values according-to requirements in
Step c) ............................................................................................................................. 185
Table K.13 – Full SAR measurements conducted according to Step c) ............................... 185
Table K.14 – Fast SAR measurements showing values according to requirements in
Step e) ............................................................................................................................. 186

Table K.15 – Full SAR measurements conducted according to Step e) ............................... 186
Table K.16 – Measurements conducted according to Step a) ............................................. 187
Table K.17 – Measurements conducted according to Step b) ............................................. 188
Table K.18 – Measurements conducted according to Step c) ............................................. 188
Table K.19 – Measurements conducted according to Step e) ............................................. 189
Table K.20 – Measurements conducted according to Step f) .............................................. 190
Table K.21 – Fast SAR measurements conducted according to Step a) .............................. 191
Table K.22 – Full SAR measurements conducted according to Step b) ............................... 191
Table K.23 – Full SAR measurements conducted according to Step e) ............................... 192
Table K.24 – Full SAR measurements conducted according to Step e) ............................... 193
Table L.1 – The number of handsets used for the statistical study ...................................... 195
Table L.2 – Statistical analysis results of P(Tilt/Cheek > x) for various x values .................. 196
Table L.3 – Statistical analysis results of P(Tilt/Cheek > x) for 1 g and 10 g peak
spatial-average SAR ......................................................................................................... 196
Table L.4 – Statistical analysis results of P(Tilt/Cheek > x) for various antenna
locations ........................................................................................................................... 197
Table L.5 – Statistical analysis results of P(Tilt/Cheek > x) for various frequency bands ..... 197
Table L.6 – Statistical analysis results of P(Tilt/Cheek > x) for various device types ............ 198
Table L.7 – Distance D min * for various iso-level values ..................................................... 202
Table L.8 – Experimental thresholds to have a 95 % probability that the maximum
measured SAR value from the area scan will also have a peak spatial-average SAR .......... 203
Table L.9 – SAR values from the area scan (GSM 900 band) ............................................. 204
Table L.10 – SAR values from the area scan (GSM 900 band) ........................................... 205


– 10 –

BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016


Table M.1 – SAR results tables for example test results – GSM 850 ................................... 207
Table M.2 – SAR results table for example test results – GSM 900 .................................... 208
Table M.3 – SAR results table for example test results – GSM 1800 .................................. 208
Table M.4 – SAR results table for example test results – GSM 1900 .................................. 209
Table O.1 – Quick start guide: SAR evaluation steps ......................................................... 215


BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

– 11 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION
____________

MEASUREMENT PROCEDURE FOR THE ASSESSMENT OF SPECIFIC
ABSORPTION RATE OF HUMAN EXPOSURE TO RADIO FREQUENCY
FIELDS FROM HAND-HELD AND BODY-MOUNTED WIRELESS
COMMUNICATION DEVICES –
Part 1: Devices used next to the ear
(Frequency range of 300 MHz to 6 GHz)
FOREWORD
1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and nongovernmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by

agreement between the two organizations.
2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.
3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.
4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.
5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.
6) All users should ensure that they have the latest edition of this publication.
7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.
8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.
9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 62209-1 has been prepared by IEC technical committee 106:
Methods for the assessment of electric, magnetic and electromagnetic fields associated with
human exposure.
This second edition cancels and replaces the first edition published in 2005. This edition

constitutes a technical revision.
This edition includes the following significant technical changes with respect to the previous
edition:
a) Extension of the frequency range to 300 MHz to 6 GHz.
b) Fast SAR methods.


BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

– 12 –
c) Test reduction techniques.

d) SAR measurements of terminals with multiple antennas and multiple transmitters.
e) Deviation of dielectric characteristics of the tissue-equivalent liquids is relaxed up to 10 %.
f)

Uncertainty evaluation guidelines for temperature and dielectric parameter deviations of
tissue-equivalent liquids.

g) Addition of the following annexes:


Annex K (informative) Measurement uncertainty of specific fast SAR methods and fast
SAR examples



Annex L (informative) SAR test reduction supporting information




Annex M (informative) Applying the head SAR test procedures



Annex N (informative) Studies for potential hand effects on head SAR



Annex O (informative) Quick start guide.

The text of this standard is based on the following documents:
FDIS

Report on voting

106 / 361 / FDIS

106 / 365 / RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.
This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.
In this standard, the following print types are used:


specific test protocols: in italic type.

A list of all parts in the IEC 62209 series, published under the general title Measurement

procedure for the assessment of specific absorption rate of human exposure to radio
frequency fields from hand-held and body-mounted wireless communication devices, can be
found on the IEC website.
Future standards in this series will carry the new general title as cited above. Titles of existing
standards in this series will be updated at the time of the next edition.
The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC website under "" in the data
related to the specific publication. At this date, the publication will be


reconfirmed,



withdrawn,



replaced by a revised edition, or



amended.
IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.


BS EN 62209-1:2016

IEC 62209-1:2016 © IEC 2016

– 13 –

INTRODUCTION
IEC TC 106 has the scope to prepare International Standards on measurement and
calculation methods used to assess human exposure to electric, magnetic and
electromagnetic fields. IEC TC 106 has developed this part of IEC 62209 to provide
procedures to evaluate the specific absorption rate (SAR) of human exposures due to
electromagnetic field (EMF) transmitting devices when held close to the ear. The types of
devices include but are not limited to mobile telephones, cordless telephones, headphones,
etc., which are used close to the ear. The IEC TC 106 standards do not deal with the
exposure limits. Conformity assessment depends on the policy of national regulatory bodies.
While basic restrictions on SAR in the ICNIRP Guidelines [64] 1 go up to 10 GHz, the
frequency range for this part of IEC 62209 is limited to an upper end frequency of 6 GHz since
current wireless handsets operate below this frequency.
IEC TC 106 and IEEE/ICES TC34 2 worked together formally through common membership to
achieve the goal of harmonization, between IEC TC 106 Maintenance Team 1 for this part of
IEC 62209 and IEEE/ICES TC34 for IEEE Std 1528 [66]. During the process a primary effort
involved was to harmonize these two standards.
To aid the user of this part of IEC 62209, a quick start guide has been prepared and included
as an informative annex (see Annex O). The quick start guide is not a substitute for following
the detailed procedure of the standard.

_____________
1

Numbers in square brackets refer to the Bibliography.

2


The International Committee on Electromagnetic Safety of the IEEE.


– 14 –

BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

MEASUREMENT PROCEDURE FOR THE ASSESSMENT OF SPECIFIC
ABSORPTION RATE OF HUMAN EXPOSURE TO RADIO FREQUENCY
FIELDS FROM HAND-HELD AND BODY-MOUNTED WIRELESS
COMMUNICATION DEVICES –
Part 1: Devices used next to the ear
(Frequency range of 300 MHz to 6 GHz)

1

Scope

This part of IEC 62209 specifies protocols and test procedures for measurement of the peak
spatial-average SAR induced inside a simplified model of the head with defined reproducibility.
It applies to certain electromagnetic field (EMF) transmitting devices that are positioned next
to the ear, where the radiating structures of the device are in close proximity to the human
head, such as mobile phones, cordless phones, certain headsets, etc. These protocols and
test procedures provide a conservative estimate with limited uncertainty for the peak-spatial
SAR that would occur in the head for a significant majority of people during normal use of these
devices. The applicable frequency range is from 300 MHz to 6 GHz.

2


Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.
ISO/IEC 17043:2010, Conformity assessment – General requirements for proficiency testing
ISO/IEC 17025:2005, General requirements for the competence of testing and calibration
laboratories

3

Terms and definitions

For the purposes of this document, the following terms and definitions apply.
3.1
axial isotropy
maximum deviation of the SAR measured when rotating around the major axis of the probe
while it is exposed to a wave impinging from a direction along its major axis
3.2
conducted power
power delivered by the power amplifier to a matched load
3.3
frequency band
transmitting frequency range associated with a specific wireless operating mode
Note 1 to entry: The frequency band is usually referred to using rounded figures; however the actual frequency
allocation may be slightly different, e.g. GSM 850 MHz band actually uses 824 MHz to 849 MHz and 869 MHz to
894 MHz, GSM 900 MHz band actually uses 880 MHz to 915 MHz and 925 MHz to 960 MHz.



BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

– 15 –

3.4
basic restriction
human exposure limits for compliance with time-varying electric, magnetic, and
electromagnetic fields measured inside the body that are based on established adverse health
effects
Note 1 to entry: Within the frequency range of this Standard, the physical quantity used as a basic restriction is
the specific absorption rate (SAR).

3.5
boundary proximity effect
change in the sensitivity of an electric-field probe when the probe tip is located less
than one probe-tip diameter from media boundaries
Note 1 to entry: This effect is caused by distortion of the scattered field at the probe tip due to nearby dielectric
phantom surface. This effect can be compensated for known probe orientation with respect to the phantom surface.

3.6
channel
RF channel
specific sub-division of the available frequency range according to the operating parameters
of a wireless technology
Note 1 to entry: The number of RF channels and channel bandwidth may vary with individual wireless
technologies. For the purpose of this Standard, SAR measurements are performed on specific channels; for
example, the high, middle and low channels of the transmission band.


3.7
correlated signals
<in time> electromagnetic fields, associated with distinct signal waveforms, yielding non-zero
time-domain correlation integral at some time instant.
Note 1 to entry:

For two power-limited field distributions F1(r, t ) and F2 (r, t ) , said integral is defined as:

(F1 ⊗ F2 )(r, τ ) =

lim

T →∞

1
2T

T

∫ F1(r,τ )

+

⋅ F2 (r, τ + τ )dτ

(1)

−T

where r is the location vector, the superscript + represents the complex conjugate operation and the

symbol ∙ represents the inner product operation.
Observe that two fields are uncorrelated at locations where they are geometrically orthogonal. This property does
not generally hold at nearby points unless the respective waveforms are uncorrelated [62].
In case of scalar signals, correlated signal waveforms yield a non-zero time-domain correlation integral at some

()

()

time instant. For two power-limited signals s1 t , s2 t , said integral is defined as:

(s1 ⊗ s2 )(τ ) =

lim

T →∞

1
2T

T

∫ s1(τ )

+

⋅ s2 (τ + τ )dτ

(2)


−T

where the superscript + represents the complex conjugate operation.
Note 2 to entry:
equal to zero.

Two uncorrelated signals would feature a vanishing correlation integral, i.e. the above integral is

Note 3 to entry:

Formulas (1) and (2) are originally specified in IEC TR 62630 [62].

3.8
device holder
fixture constructed of low-loss dielectric material that is used to hold the device under test in
the required test position during SAR measurement


– 16 –

BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

3.9
device under test DUT
device that is tested according to the procedures specified in this Standard to determine the
specific absorption rate
Note 1 to entry:

This note applies to the French language only.


3.10
dielectric constant
real part of the complex relative permittivity of the lossy material
3.11
duty factor
ratio of the pulse duration to the pulse period of a periodic pulse train
3.12
fast SAR testing
<measurements> use of special techniques, methods or algorithms to decrease the
measurement time
Note 1 to entry: Fast SAR methods do not fully comply with all of the normative requirements in this Standard.
Fast SAR procedures are described in 6.6.

3.13
full SAR testing
<measurements> use of methods, procedures and specific hardware which fully comply with
all of the normative requirements in this Standard, except those specified in 6.6 and 6.7.4
3.14
handset
<wireless communication device> hand-held device intended to be operated next to the ear,
consisting of an acoustic output or earphone and an acoustic input or microphone, and
containing a radio transmitter and receiver
Note 1 to entry: The terms "mobile" and "portable" have specific but generic meanings in IEC 60050 [61] –
mobile: capable of operating while being moved (IEV 151-16-46); portable: capable to be carried by one person
(IEV 151-16-47). The term "portable" often implies the ability to operate when carried on the user. These
definitions are used interchangeably in various wireless regulations and industry specifications, in some cases
referring to types of wireless devices and in other cases to intended use.

3.15

head mounted device
headset
device operated next to the side of the head consisting of an acoustic output or earphone and
a microphone and containing a radio transmitter and receiver held in position on or around the
ear by mechanical support, e.g. around the head. A head mounted device (headset) is
designed to be used at the ear but does not protrude into the pinna or the auditory canal. For
all practical purposes of this Standard, it is considered as a handset as it contains the same
basic components and performs the same basic functions
Note 1 to entry: Where the device under test is a head mounted device (headset), the user shall read the term
handset to mean head mounted device throughout this Standard.
Note 2 to entry: A head mounted device that is intended to be used in a way not considered for testing by SAM
phantom explained in this Standard is outside the scope of this Standard. (e.g. ear bud).

3.16
hemispherical isotropy
maximum deviation of the measured SAR when rotating the probe around its major axis with
the probe exposed to a reference wave, having varying incidence angles relative to the axis of
the probe, incident from the half space in front of the probe


BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

– 17 –

3.17
linearity error
maximum deviation of a measured quantity from the expected values defined by a reference
line over the measurement range
3.18

multi-band
<wireless device> capable of operating in more than one frequency band
3.19
operating mode
wireless protocol or standard used by a device to communicate with another terminal or
network
Note 1 to entry: Modern terminals may have multiple operating modes incorporated and these may operate
individually or multiple modes may be simultaneously active. Examples of operating modes include GSM, EDGE,
EVDO, GPRS, CDMA, WCDMA, Bluetooth®, WiFi® and others. 3 Each of these modes may have one or more
transmission bands associated with it.

3.20
peak spatial-average SAR
maximum average SAR within a local region based on a specific averaging volume or mass,
e.g. any 1 g or 10 g of tissue in the shape of a cube
Note 1 to entry:

SAR is expressed in W/kg or equivalently mW/g.

Note 2 to entry: In this Standard, the terms peak spatial-average SAR (over 1 g or 10 g) and the terms 1 g SAR
and 10 g SAR are used interchangeably.

3.21
penetration depth
<for a given frequency> depth at which the electric field (E-field) strength of an incident plane
wave, penetrating into a lossy medium, is reduced to 1/e of its value just beneath the surface
of the lossy medium
Note 1 to entry:
Formula (3):


For a plane-wave incident normally on a planar half-space, the penetration depth


1  µ 0ε r′ε 0
δ =

ω  2




 σ
 1 + 

 ωε r′ε 0







2



− 1






δ

is given in

1
2

(3)

3.22
phantom
physical model similar in appearance to the human anatomy and comprised of material with
electrical properties similar to the corresponding tissues
Note 1 to entry: A phantom representing the human head could be a simple spherical model or a more complex
multi-tissue anthropomorphic model.

3.23
pinna auricle
cartilaginous projecting portion of the outer ear, consisting of the helix, lobule and anti-helix
_____________
3

Bluetooth is the trademark of a product supplied by the Bluetooth SIG. WiFi is the trademark of a product
supplied by Wi-Fi Alliance. This information is given for the convenience of users of this document and does not
constitute an endorsement by IEC of the products named. Equivalent products may be used if they can be
shown to lead to the same results.



– 18 –

BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

3.24
push-to-talk device
hand-held radio transceiver in which a user operates a switch to toggle between radio
transmission and reception (simplex operating mode)
EXAMPLE

A two-way radio.

3.25
probe isotropy
degree to which the response of an electric field or magnetic field probe is independent of the
polarization and direction of propagation of the incident wave
3.26
readout electronics
measurement system component that connects to the E-field probe and provides an
analogue-to-digital conversion of the measured values to the post-processor of the
measurement system
3.27
response time
time required by the measuring equipment to reach 90 % of its final value after a step
variation of the input signal
3.28
scanning system
automatic positioning system capable of placing the measurement probe at specified positions
3.29

sensitivity
<of a measurement system> ratio of the magnitude of the system response (e.g. voltage) to
the magnitude of the quantity being measured (e.g. electric field strength squared)
3.30
specific absorption rate
SAR
The SAR in the tissue-equivalent liquid can be determined by the rate of temperature increase
or by E-field measurements, according to Formulas (4) or (5):

SAR =

SAR = ch

σE 2
ρ

(4)

dT
dt t = 0

(5)

where
SAR

is the specific absorption rate in W/kg;

E


is the rms value of the electric field strength in the tissue medium in V/m;

σ

is the electrical conductivity of the tissue medium in S/m;

ρ

is the mass density of the tissue medium in kg/m 3 ;

ch

is the specific heat capacity of the tissue medium in J/(kg K);

dT
is the initial time derivative of temperature in the tissue medium in K/s.
dt t = 0


BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

3.31

– 19 –

Uncertainty

3.31.1
standard uncertainty

estimated standard deviation of a measurement result, equal to the positive square root of the
estimated variance
3.31.2
combined uncertainty
estimated standard deviation of the measurement result obtained by combining the individual
standard uncertainties of both Type A and Type B evaluations using the usual "root-sumsquares" method of combining standard deviations which were obtained by taking the positive
square root of the estimated variances
3.31.3
expanded uncertainty
quantity defining an interval about the result of a measurement that is expected to encompass
a distribution of values within a defined confidence interval that could reasonably be attributed
to the measurand
3.32
uncertainty evaluation
<Type A> evaluation of uncertainty by the statistical analysis of a series of observations
(measurements)
3.33
uncertainty evaluation
<Type B> evaluation of uncertainty by means other than the statistical analysis of a series of
observations (measurements)

4

Symbols and abbreviations

4.1

Physical quantities

The internationally accepted SI units are used throughout the Standard.

Symbol

Quantity

Unit

Dimensions

α

Attenuation coefficient

reciprocal metre

1/m

ch

Specific heat capacity

joule per kilogram per kelvin

J/(kg K)

E

Electric field strength

volt per metre


V/m

f

Frequency

hertz

Hz

J

Current density

ampere per square metre

A/m 2

P

Average (temporal) absorbed power

watt

W

T

Temperature


kelvin

K

ε

Permittivity

farad per metre

F/m

l

Wavelength

metre

m

δ

Penetration depth

metre

m

σ


Electric conductivity

siemens per metre

S/m

NOTE

In this Standard, temperature is quantified in degrees Celsius, as defined by: T ( °C) = T (K) − 273,15.


BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

– 20 –
4.2

Constants

Symbol

Physical constant

Magnitude

η0

Intrinsic impedance of free space

120 π Ω or 377 Ω


ε0

Permittivity of free space

8,854 × 10 − 12 F/m

4.3

Abbreviations

APS

absolute peak spatial-average SAR

CAD

computer aided design

ERP

ear reference point

DUT

device under test

RF

radio frequency


RMS

root mean square

RSS

root sum square

SAM

specific anthropomorphic mannequin

WLAN

wireless local area network

GSM

global system for mobile communications

GPRS

general packet radio service

EDGE

enhanced data rates for GSM evolution

CW


continuous wave

TDMA

time division multiple access

CDMA

code division multiple access

WCDMA

wideband code division multiple access

OFDM

orthogonal frequency-division multiplexing

DCS

digital cellular service

PCS

personal communications service

UMTS

universal mobile telecommunications system


WiMax

worldwide interoperability for microwave access

PDF

probability density function

SAR

specific absorption rate

psSAR

peak spatial-average SAR

STBC

space-time block code

MIMO

multiple input multiple output

TEM

transverse electric and magnetic

FDTD


finite-difference time-domain

5
5.1

Measurement system specifications
General requirements

A SAR measurement system consists of the SAM phantom (a human head model) filled with
tissue-equivalent liquid, electronic measurement instrumentation, a scanning system and a
DUT holder.
SAR shall be measured using a miniature probe that is automatically positioned to measure
the internal E-field distribution in the SAM phantom representing the human head exposed to
electromagnetic fields produced by the DUT. The phantom head is filled with the required
tissue-equivalent liquid, representing the electrical properties of tissues in the human head.


BS EN 62209-1:2016
IEC 62209-1:2016 © IEC 2016

– 21 –

This liquid shall be of low viscosity to allow free movement of the probe within it. From the
measured E-field values, the SAR distribution and the peak spatial-average SAR value shall
be calculated.
The tests shall be performed in a laboratory conforming to the following environmental
conditions.
a) Both the ambient and tissue-equivalent liquid temperatures shall be in the range of 18 °C
to 25 °C, inclusive; see 7.2.6.6 to determine the liquid temperature uncertainty.

b) Prior to tissue-equivalent liquid dielectric properties measurement and SAR
measurements, the DUT, test equipment, liquid and phantom shall have been kept in the
laboratory long enough for their temperatures to have stabilized (i.e. they shall not have
been recently moved from another area with a different ambient temperature, such as a
refrigerator or storage area).
c) The temperature of the liquid during the SAR measurements shall be within 2 °C (or a
temperature difference corresponding to a 5 % change in either ε ′ or σ if this is smaller) of
that at which the dielectric properties were measured. If the temperature change exceeds
this value, the dielectric properties shall be re-measured. See 7.2.6.6 to determine the
liquid temperature sensitivity uncertainty.
d) The effect of reflections from cables, test equipment, or other reflectors shall be
determined by the SAR system check procedure described in Clause D.2, with and without
the reflectors present or where necessary with the judicious placement of absorbing
materials and/or the use of ferrite beads on cables.
e) SAR measurements of test devices shall only be performed when the effects of reflections,
secondary RF transmitters, etc., result in a peak spatial-average SAR (for 1 g or 10 g
mass, whichever is applicable to the test) less than 0,012 W/kg by measuring the peak
spatial-average SAR at (approximately) 0,4 W/kg (used to establish the 3 % low detection
limit, see 7.2.9). When the effect of cables and reflectors is more than 0,012 W/kg, ferrite
beads, RF absorbers and other mitigation techniques shall be applied to reduce the SAR
error. If the preceding limit cannot be achieved, a value higher than 3 % (0,012 W/kg)
shall be considered in the uncertainty budget in the "RF ambient conditions – reflections"
row of applicable tables, provided it can be demonstrated that the SAR contribution due to
reflections determined by the system check procedure is less than 10 % of the SAR
measured for the test device. The requirement on reflections shall be verified at least
every year or whenever the system check shows unexpected results.
During testing the DUT shall not be connected to any wireless network except a base station
simulator in the lab.
System validation according to the protocol defined in Clause D.3 shall be done at least once
per year, additionally when a new system is put into operation and whenever modifications

have been made to the system, such as a new software version, different type or version of
readout electronics or different probes. The standard sources used for system validation shall
be designed and validated to meet the requirements specified in Annex D. Additional sources
for dipoles and wave guides at specific frequencies not currently included in Tables D.1, D.2,
G.1 and G.2 may be used as standard sources provided they meet the requirements specified
in D.3.6 and Annex G.
The measurement system shall be validated as a complete system. Calibration of the probe
separately from the system is allowed, provided that the electrical interface characteristics
between the probe and readout electronics are specified and implemented during
measurements. The probe(s) shall be calibrated together with an identical amplifier,
measurement device and data acquisition system. The probe shall be calibrated in a tissueequivalent liquid at the appropriate operating frequency and temperature range, according to
the methodology described in Annex B.
The lower detection limit shall be less than or equal to 0,01 W/kg, and the maximum detection
limit shall be higher than 100 W/kg. The probe sensitivity and isotropy shall be determined in
the tissue-equivalent liquid. The probe response time shall be specified. The outermost


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×