Tải bản đầy đủ (.pdf) (67 trang)

14 network robustness and preferential attachment

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (44.87 MB, 67 trang )

CS224W: Analysis of Networks
Jure Leskovec, Stanford University




¡

(1) Power-laws in Networks

¡

(2) Network Robustness

¡

(3) Preferential Attachment

11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

2


Which interesting graph
properties do we observe
that need explaining?
¡ Small-world model:
§ Diameter
§ Clustering coefficient



¡

Node degree distribution
§ What fraction of nodes has degree ! (as a function of !)?
§ Prediction from simple random graph models:
p(!) = exponential function of !
§ Observation: Often a power-law: & ! ∝ !()

11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

3


Expected based on Gnp

Found in data

! " ∝ "$%
11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

4


[Leskovec et al. KDD ‘08]


Take a network, plot a histogram of !(#) vs. #
Probability: &(%) = -(. = %)

¡

11/8/18

Plot: fraction of nodes
with degree %:
| )|*+ = % |
&(%) =
,

Flickr social
network
n= 584,207,
m=3,555,115

Jure Leskovec, Stanford CS224W: Analysis of Networks,

5


[Leskovec et al. KDD ‘08]

¡

Plot the same data on log-log scale:

Probability: :(#) = !(; = #)


! # ∝ # *<.=>

Slope = −5 = 1.75
Flickr social
network
n= 584,207,
m=3,555,115

11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

How to distinguish:
!(#) ∝ exp(−#) vs.
!(#) ∝ # *+ ?
Take logarithms:
if , = .(/) = 0 *1 then
log , = −/
If , = / *+ then
log , = −5 log(/)
So on log-log axis
power-law looks like
a straight line of
slope −5 !

6


¡


First observed in Internet Autonomous Systems
[Faloutsos, Faloutsos and Faloutsos, 1999]

Internet domain topology

11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

7


¡

11/8/18

The World Wide Web [Broder et al., 2000]

Jure Leskovec, Stanford CS224W: Analysis of Networks,

8


¡

Other Networks [Barabasi-Albert, 1999]

Actor collaborations


11/8/18

Web graph

Jure Leskovec, Stanford CS224W: Analysis of Networks,

Power-grid

9


p(x)

1

0.6

p ( x) = cx -0.5
p ( x) = cx -1

0.2

p( x) = c - x

¡

11/8/18

20


40

x

60

80

100

Above a certain ! value, the power law is
always higher than the exponential!
Jure Leskovec, Stanford CS224W: Analysis of Networks,

10


[Clauset-Shalizi-Newman 2007]

Power-law vs. Exponential
on log-log and semi-log (log-lin) scales

¡

0

0

10


1

10

2

3

10

10

1

2

3

4

5

6

10

p ( x) = cx -0.5

p ( x) = cx -0.5


p ( x) = cx -1

p ( x) = cx -1

-1

10

-2

10

-3

10

-4

10

log-log

p( x) = c

-x

x … logarithmic axis
y … logarithmic axis
11/8/18


semi-log

p( x) = c - x
x … linear axis
y … logarithmic axis

Jure Leskovec, Stanford CS224W: Analysis of Networks,

11


11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

12


¡

Power-law degree exponent is
typically 2 < a < 3
§ Web graph:
§ ain = 2.1, aout = 2.4 [Broder et al. 00]

§ Autonomous systems:
§ a = 2.4 [Faloutsos3, 99]

§ Actor-collaborations:
§ a = 2.3 [Barabasi-Albert 00]


§ Citations to papers:
§ a » 3 [Redner 98]

§ Online social networks:
§ a » 2 [Leskovec et al. 07]
11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

13


¡

Definition:
Networks with a power-law tail in
their degree distribution are called
“scale-free networks”

¡

Where does the name scale-free come from?
§ Scale invariance: There is no characteristic scale
§ Scale invariance means laws do not change if scales of length,
energy, or other variables, are multiplied by a common factor

§ Scale-free function: ! "# = "% !(#)
§ Power-law function: ! "# = "% #% = "% !(#)
Log() or Exp() are not scale free!

( )* = log )* = log ) + log * = log ) + ( *
( )* = exp )* = exp * 2 = ( * 2
11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

14


[Clauset-Shalizi-Newman 2007]

Many other quantities follow heavy-tailed distributions
11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

15


CMU grad-students at
the G20 meeting in
Pittsburgh in Sept 2009
11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

16




Degrees are heavily skewed:
Distribution !(# > %) is heavy tailed if:
- .>*
'()
=∞
01*
*→,
/
¡ Note:
¡

§ Normal PDF: 4 % =

5

9
678

:;< =
0
=>=

§ Exponential PDF: 4 % = ?9 0@A
§ then ! # > % = 1 − !(# ≤ %) = 9 0@A

are not heavy tailed!
11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,


18


[Clauset-Shalizi-Newman 2007]

¡

xm

What is the normalizing constant?
p(x) = Z x-a
Z=?
§ !(#) is a distribution: ∫ ! # &# = (
Continuous approximation

§1=
§
§

,
∫* +
4

. /. =

, 12
0 ∫* . /.
+

=−

. 1265 ,
*+ =
215
215
⇒ 0 = : − 1 .8



4
215

∞512 − .8 512

;−( #
! # =
#< #<
11/8/18

p(x) diverges as x®0
so xm is the minimum
value of the power-law
distribution x Ỵ [xm, ∞]

Need: a > 1 !

1;

Jure Leskovec, Stanford CS224W: Analysis of Networks,

Integral:

= >#

?

># ?6(
=
>(? + ()
19


[Clauset-Shalizi-Newman 2007]

¡

¡
¡

What’s the expected value of a power-law
random variable X?
!" =
=

0

'
∫% (
&

( 1,- '
%&

1,-

) ( *( =
=

' ,-./
+ ∫% (
*(
&

234
-,/ %&
[∞1,,(-,1)

1,− (:
]

?−@
⇒= > =
BC
?−A
11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

Need: a > 2 !

Power-law density:
D − 1 ( ,) ( =
(: (:

D−1
+ = /,(:
20


¡

Power-laws have infinite moments!

!−1
$& =
01
!−2

§ If ! ≤ 2 : $[&] = ∞
§ If ! ≤ 3 : +,-[&] = ∞

In real networks
2 < a < 3 so:
E[X] = const
Var[X] = ∞

§ Average is meaningless, as the variance is too high!

¡

11/8/18

Consequence: Sample average of n samples
from a power-law with exponent α


Jure Leskovec, Stanford CS224W: Analysis of Networks,

21



Estimating a from data:
¡ (1) Fit a line on log-log axis using least squares:
§ Solve !"# $%& ()* + − ' ()* - + /

0

'

BAD!

11/8/18

Jure Leskovec, Stanford CS224W: Analysis of Networks,

23


OK!
Estimating a from data:
¡ Plot Complementary CDF (CCDF) ! " ≥ $ .
Then the estimated & = ( + &′
where &′ is the slope of !(" ≥ $).
¡


Fact: If - $ = ! " = $ ∝ $/&
then ! " ≥ $ ∝ $/(&/()
§0 1≥2 =
§=

11/8/18

A

∑7
456 8(9)

− B/> =B/> 7
6

A



7
∫6 <

= B/> 2 /

= /> ?= =

>/B

Jure Leskovec, Stanford CS224W: Analysis of Networks,


24


Estimating a from data:
¡ Use maximum likelihood approach:

OK!

§ The log-likelihood of observed data di:
§ ! " = ln ∏(' ) *'

= ∑(' ln )(*' )

§ = ∑(' ln(" − 1) − ln 01 − " ln

23
45

§ Want to find 6 that max !(6): Set
§

78 9
79

=0 ⇒

> =?+A
§ ⇒6
11/8/18


(
9<=



23
(
∑' ln
45
DB

∑AB CA
EF

78 9
79

=0

=0


Jure Leskovec, Stanford CS224W: Analysis of Networks,

Power-law density:
" − 1 0 <9
) 0 =
01 01

25


×