7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
127
NGHIÊN CӬ8 6Ӵ7ѬѪ1*7È&&Ӫ$1+Ï0&Ӑ&9¬
1ӄ1ĈҨ7'ѬӞ,7È&'Ө1*&Ӫ$7Ҧ,75Ӑ1*1*$1G
%Ҵ1*0Ð+Î1+6Ӕ
STUDYING THE INTERACTION BETWEEN GROUP PILLS AND
FOUNDATION UNDER TRANSVERSAL LOAD BY NUMERICAL MODEL
SVTH: 3+Ҥ07Ă1*;8Æ1+2¬
/ͣS;&7U˱ͥQJĈ̩L+͕F%iFK Khoa
&%+'7K6ĈӚ0,1+ĈӬ&
.KRD;k\GQJ''&1, 7U˱ͥQJĈ̩L+͕F%iFK.KRD
7Ï07Ҳ7
7tQK WѭѫQJ WiF JLӳD QKyP FӑF Yj QӅQ ÿҩW Oj SKӭF WҥS 9LӋF WLӃS FұQ EjL WRiQ Qj\ EҵQJ
SKѭѫQJ SKiS JLҧL WtFKUҩW NKy NKăQ %iR FiR Qj\ WUuQKEj\ FiFK P{ KuQK KyD Yj Vӱ Gөng
SKѭѫQJSKiSVӕÿӇQJKLrQFӭXVӵOjPYLӋFÿӗQJWKӡLFӫDQKyPFӑFYjQӅQÿҩWFNJQJQKѭVӵ
WѭѫQJWiFJLӳDFK~QJYӟLQKDXGѭӟLWiFGөQJFӫDWҧLWUӑQJQJDQJFy[pWÿӃQNLӇXOLrQNӃWPӝW
FKLӅXJLӳDFӑFYjQӅQÿҩW
ABTRACT:
The interaction between group pills and foundation are complicated. To approach this problem
by analytic method is very difficult. This article presents the way to model and use the
numerical method in order to study the working together of group pills and foundation as well
as the interaction among them under transversal load with consideration of the incompressible
connection between pills and soil.
1. Mӣ ÿҫX
DѭӟL tác dөQJ cӫD tҧL trӑQJ, các cӑc có sӵ tác dөQJ tѭѫng hӛ giӳD chúng vӟL nhau cNJQJ
nhѭ giӳD chúng vӟL nӅQ ÿҩW. ViӋF ÿiQK giá mӝW cách chính xác sӵ làm viӋF cӫD chúng là mӝW
bài toán có khӕL lѭӧQJ tính rҩW lӟQ và rҩW phӭF tҥS. Vì vұ\, trong thӵF tӃ thiӃW kӃ các móng cӑF
ÿjL thҩS thѭӡQJ quan niӋP tҧL trӑQJ ngang tác dөQJ lên móng là do nӅQ ÿҩW tiӃS nhұQ và xem
cӑF làm viӋF ÿӝF lұS vӟL nӅQ ÿҩW. Quan ÿiӇP nhѭ vұ\ là chѭa phҧQ ҧQK ÿѭӧF sӵ làm viӋF thӵF
tӃ cӫD cӑF và nӅQ ÿҩW.
Vӟi sӵ phát triӇQ cӫD công cө tính toán, ÿһF biӋW là máy tính ÿiӋQ tӱ cùng phѭѫng pháp
tính, ÿһF biӋW là phѭѫng pháp sӕ ÿm có thӇ cho phép ÿѭӧF giҧL quyӃW bài toán theo quan ÿiӇP
cӑF và nӅQ ÿҩW làm viӋF ÿӗQJ thӡL nhѭ mӝW môi trѭӡQJ liên tөF.
VӟL lý do nhѭ vұ\, ÿӅ tài ÿѭӧF chӑQ ³Qghiên cӭX sӵ tѭѫng tác cӫD nhóm cӑF dѭӟL tác
dөQJ cӫD tҧL trӑQJ ngang bҵQJ phѭѫng pháp sӕ´WURQJÿy chӫ yӃX là ÿi mô hình hoá bài toán,
nghiên cӭX tính liên kӃW mӝW chiӅX gӳD cӑc và nӅQ ÿҩW, khҧR sát mӝW sӕ bài toán cө thӇ.
KӃW quҧ nghiên cӭX có thӇ cho phép áp dөQJ vào thӵF tӃ thiӃW kӃ nӅQ móng công trình
xây dӵQJ.
2. TәQJ quan
9ҩQÿӅYӅVӵWѭѫQJWiFFӫDFӑFYjQӅQÿҩWGѭӟLWiFGөQJ cӫD tҧL trӑQJ ngang ÿm có
nhiӅX cách tiӃS cұQ:
- Theo [3] & [6], tiӃQ hành thí nghiӋP ÿӇ rút ra kӃW quҧ, tӯ ÿy xây dӵQJ các ÿӗ thӏ và
các bҧQJ sӕ liӋX ÿӇ áp dөQg vào các bài toán thiӃW kӃ. Ĉky là cách tin cұ\ nhҩW nhѭng tӕQ kém
vӅ kinh tӃ và không thӇ mô tҧ cho tҩW cҧ các tình huӕQJ thiӃW kӃ mà trong thӵF tӃ rҩW ÿa dҥQJ.
- Trong [2] & [3], thay thӃ nӅQ bҵQJ các liên kӃW ÿjQ hӗi ÿѭӧF ÿһF trѭng bҵQJ hӋ sӕ nӅQ
theo phѭѫng ngang sau ÿy giҧL bài toán bҵQJ các phѭѫng pháp cӫD lý thuyӃW ÿjQ hӗL. Quan
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
128
ÿiӇP này là rӓ ràng vӅ lý thuyӃW nhѭng viӋF giҧL bài toán bҵQJ phѭѫng pháp giҧL tích là phӭF
tҥS, hѫn nӳa cNJQJ chѭa phҧQ ҧQK ÿѭӧF sӵ tѭѫng tác giӳD các cӑF và tính trung thӵF cӫD nӅQ
ÿҩW.
- Theo [4], các tác giҧ ÿѭa cӑF vӅ mӝW thanh công xѫn tѭѫng ÿѭѫng dӵD vào ÿiӅX kiӋQ
ngàm cӫD cӑF. Quan ÿiӇP này chӍ phù hӧS vӟL bài toán cӑF ÿѫn.
ĈӇ góp phҫQ khҳF phөF nhӳQJ hҥQ chӃ trên, trong ÿӅ tài này, các tác giҧ sӱ dөQJ thành
tӵX cӫD công nghӋ thông tin và phѭѫng pháp sӕ ÿӇ ÿi giҧL bài toán vӟL quan ÿiӇP xem các cӑF
và nӅQ ÿҩW làm viӋF nhѭ mӝW vұW thӇ ÿjQ hӗL liên tөF vӟL các ÿһF trѭng cѫ hӑF ÿѭӧF xác ÿӏQK tӯ
kӃW quҧ thí nghiӋP. Ngoài ra còn xét ÿӃQ tính liên kӃW mӝW chiӅX cӫD cӑF và nӅQ ÿҩW ÿӇ phҧQ
ҧQK chính xác hѫn nӳa tính chҩW cѫ hӑF cӫD ÿҩW.
3. Cѫ sӣ lý thuyӃW
3.1. Liên k͇W m͡W chi͉X
Khi cӑF chӏX tҧL trӑQJ, sӁ có mӝW cùng ép chһW vào
nӅQ ÿҩW trong khi vùng còn lҥL thì tách ra khӓL. Nhѭ vұ\
liên kӃW giӳD cӑF ÿҩW chӍ có thӇ làm viӋF theo mӝW chiӅX
nhҩW ÿӏnh (chiӅX gây nén) mà không thӇ theo chiӅX ngѭӧF
lҥL. KiӇX liên kӃW ÿy gӑL là liên kӃW mӝW chiӅX (kiӇX Gap
vӟL khoҧQJ hӣ bҵQJ không). Mô hình hoá liên kӃW mӝW
chiӅX chӍ chӏX nén nhѭ trên hình vӁ (H.3.1)
3.2. Mô hình hoá bài toán b̹QJ ph˱˯ng pháp s͙
Theo [5], [9], [10], nӝL dung cӫD phѭѫng pháp sӕ theo mô hình chuyӇQ vӏ ÿӇ áp dөQJ
vào bài toán này nhѭ sau: KӃW cҩX ÿѭӧF chia thành các phҫQ tӱ nӕL vӟL nhau tҥL các nút trong
ÿy cӑF là phҫQ tӱ thanh (Frame), nӅQ ÿҩW là phҫQ tӱ khӕL (Solid). Liên kӃW giӳD cӑF và ÿҩW là
liên kӃW mӝW chiӅX (Gap) có ÿӝ cӭQJ bҵQJ vô cùng. Phѭѫng trình cân bҵQJ tәQJ quát ӭQJ vӟL
trѭӡQJ hӧS hӋ chӏX tҧL trӑQJ tác dөQJ tƭQK:
[K(u)].[u] = [F] (3-1)
+ [K(u)] là ma trұQ ÿӝ cӭQJ
tәQJ thӇ. [K(u)] là hàm sӕ theo u do
tính phi tuyӃQ cӫD liên kӃW mӝW chiӅX.
+ [u] là véc tѫ chuyӇQ vӏ nút.
+ [F] là véc tѫ lӵF nút.
Ĉky là phѭѫ
ng trình phi tuyӃQ
nên sӱ dөQJ cách lһS ÿӇ giҧL.
Sau khi xác ÿӏQK ÿѭӧF véctѫ
chuyӇQ vӏ nút, vұQ dөQJ lý thuyӃW ÿjQ
hӗL ÿӇ xác ÿӏQK nӝL lӵF trong hӋ.
Trong ÿӅ tài, ÿӇ xâ\GӵQng mô
hình và giҧL bài toán, các tác giҧ sӱ
dөQJ phҫQ mӅP Sap 2000. PhҫQ PӅP
này có hiӋX suҩW giҧL cao vӟL sӕ ҭQ rҩW
lӟQ, әQ ÿӏQK, tin cұ\, có lӏFK sӱ phát triӇQ hѫn 30 năm và ÿѭӧF sӱ dөQJ rӝQJ rãi trong tính toán
kӃW cҩX.
3.3. Xác ÿ͓QK vùng biên cͯD mô hình bài toán
Khi hӋ chӏX tҧL trӑQJ, chӍ có mӝW vùng nӅQ ÿҩW gҫQ phҥP vi cӫD cӑF cùng tham gia chӏX
lӵF. ĈӇ giҧP khӕL lѭӧQJ tính toán, cҫQ xác ÿӏQK vùng biên này và thay thӃ vùng nӅQ ÿҩW bӏ bӓ
'
k
+
0{KuQKOLrQN͇WFKL͉X
PhҫQ tӱ CӑF
PhҫQ tӱ Gap
PhҫQ tӱ ĈҩW
+
0̿WF̷WQJDQJP{KuQK&͕F- 1͉Qÿ̭W
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
129
ÿi bҵQJ các liên kӃW tѭѫng ӭQJ. Trong ÿӅ tài, các tác giҧ sӱ dөQJ cách giҧL lһS ÿӇ xác ÿӏQK
vùng biên này theo ÿiӅX kiӋQ chuyӇQ vӏ trên vùng biên xҩS xӍ bҵQJ không.
4. Nghiên cӭX bҵQJ sӕ
&KRKӋFӑF- QӅQÿҩW có cҩX tҥR:
- CӑF vuông có kích thѭӟF 200x200(mm) ÿѭӧF chӃ tҥR bҵQJ bêtông cӕW thép,
cҩS bӅQ B25, môÿun ÿjQ hӗL E = 3.10
7
(kN/m
2
), hӋ sӕ Poisson Q = 0,2.
- NӅQ ÿҩW gӗP: lӟS sét mӅP có G = 4(m); P = 0,4; E
s
= 20(MPa); lӟS cát chһW có
G = f; P = 0,35; E
s
= 65(MPa); (trong ÿy G; P; E
s
lҫQ lѭӧW là bӅ dày; hӋ sӕ nӣ hông;
môÿXQELӃQ dҥQJ lӟS ÿҩW.
- MӛL cӑF chӍ chӏX tҧL trӑQJ ngang Q = 6(kN).
Bài toán ÿѭӧF phân tích theo 3 mô hình: cӑF ÿѫn, nhóm 4 cӑF vӟL khoҧQJ cách
cӑF là 3D, nhóm 4 cӑF vӟL khoҧQJ cách cӑF là 6D. Trong ÿy, D = 0,2(m) là cҥQK tiӃW
diӋQ cӑF.
9LӋFP{KuQKKRiFӑF- QӅQWKӵFKLӋQEҵQJSKҫQPӅP6DSYjFKӑQFiFK
JLҧLEjLWRiQSKLWX\ӃQ
+uQK0̿WF̷WG͕FP{KuQK +uQK0̿WF̷WQJDQJP{KuQK
&͕F- 1͉Q ÿ̭W &͕F- 1͉Qÿ̭W
+uQK%L͋Xÿ͛P{PHQYjFKX\͋QY͓ͱQJYͣLFiFWU˱ͥQJKͫSSKkQWtFK
D&͕Fÿ˯QE1KyPF͕F'F1KyPF͕F'
9LӋFVR ViQKQӝLOӵFYjFKX\ӇQYӏOӟQQKҩW thӇ hiӋQ WURQJ%ҧQJ
a
b
c
Mô men
&KX\ӇQYӏ
Mô men
&KX\ӇQYӏ
Mô men
&KX\ӇQYӏ
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
130
%̫QJ%̫QJVRViQKN͇W TX̫SKkQWtFK
5. ĈiQKJLiNӃWTXҧ:
NӝL lӵF và chuyӇn vӏ FӫDFӑFWURQJQKyPFӑFÿӅX khác vӟL cӑF ÿѫn. Khi khoҧQJ cách
giӳD các cӑF là 6D, kӃW quҧ nӝL lӵF gҫQ bҵQJ cӑF ÿѫn. ĈiӅX này khҷQJ ÿӏQK tính chính xác vӟL
kӃW quҧ trong tài liӋX [3] & [6].
Ĉӝ lӋFh vӅ chuyӇQ vӏ trong BҧQJ 4.1 cho thҩ\ sӵ tѭѫng tác có xu hѭӟQJ làm
chuyӇQ vӏ tăng nhiӅX hѫn so vӟL nӝL lӵF.
KӃW quҧ cNJQJ cho thҩ\ các cӑF ӣ cuӕL cӫD nhóm chӏX tҧL trӑQJ cho kӃW quҧ nӝL
lӵF và chuyӇQ vӏ lӟQ hѫn ÿҫX nhóm khoҧQJ 1,02 lҫQ ӭQJ vӟL trѭӡQJ Kӧp khoҧQJ cách
'YjQKѭQKDXYӟLNKRҧQJFiFK'
6. .ӃWOXұQYjNLӃQQJKӏ:
ĈӅ tài ÿm xây dӵQJ ÿѭӧF cách tәQJ quát ÿӇ phân tích, ÿiQK giá sӵ tѭѫng tác cӫD
nhóm cӑF và nӅQ ÿҩW bҵQJ mô hình sӕ. Mô hình này cho phép giҧL bài toán tәQJ quát
vӟL ÿһF trѭng cѫ hӑF cѫ bҧQ nhҩW là m{ÿun ÿjQ hӗL và hӋ sӕ nӣ hông cӫD vұW liӋX. Mô
hình này cNJQJ có thӇ áp dөQJ cho trѭӡQJ hӧS tҧL trӑQJ tác dөQJ bҩW kǤ.
MӝW cách tiӃS cұQ mӟL là mô hình có cho phép
ÿӃQ tính liên kӃW mӝW chiӅX giӳa
cӑF và nӅQ ÿҩW. ĈiӅX này phҧQ ҧQK trung thӵF hѫn nӳD các ӭQJ xӱ thӵF tӃ cӫD cӑF - ÿҩW.
KӃW quҧ nghiên cӭX thӇ hiӋQ sӵ ÿ~QJ ÿҳQ cӫD mô hình và cho phép khҷQJ ÿӏQK
lҥL các kӃW luұQ lҥL các nghiên cӭX trѭӟF ÿky bҵQJ các mô hình khác.
Mô hình này cho kӃW quҧ tin cұy hѫn các mô hình bҵQJ lý thuyӃW trѭӟF ÿk
y. TҩW
nhiên, sӵ tѭѫng tác còn phө thuӝF vào nhiӅX yӃX tӕ nhѭ cѭӡQJ ÿӝ tҧL trӑQJ; tiӃW diӋQ
cӑF; môÿun ÿjQ hӗL, hӋ sӕ nӣ hôQJYjWtQKFKҩWNKiFFӫDQӅQÿҩW.
Nên áp dөQJ mô hình này vào viӋF phân tích nӝL lӵF và chuyӇQ vӏ ÿӇ có ÿѭӧF
kӃW quҧ chính xác hѫn trong công tác thiӃW kӃ móng cӑF.
TÀI LIӊ8 THAM K+Ҧ2
7LӃQJ9LӋW
[1] Lê Quí An, NguyӉQ Công MүQ, Hoàng Văn Tân (1998), Tính toán n͉Q móng theo tr̩QJ
thái giͣL h̩Q, Nhà xuҩW bҧQ Xây dӵQJ.
[2] Lê Anh Hoàng (2004), N͉Q Móng, Nhà xXҩW EҧQXây dӵQJ.
ĈҥL lѭӧQJ so
sánh
CӑF
ÿѫn
CӑF trong
nhóm 3D
LӋFK so vӟL
cӑF ÿѫn
CӑF trong
nhóm cӑF 6D
LӋFK so vӟL
cӑF ÿѫn
Mô men lӟQ
nhҩW (kN.m)
2,361 2,762 1,17 2,561 1,085
ChuyӇQ vӏ
ÿӍQK(mm)
3 10,50 3,50 3,60 1,200
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
131
[3] VNJ Công Ngӳ & NguyӉQ Thái (2006), Móng c͕F Phân tích và thi͇W k͇, Nhà xuҩW EҧQNKRD
KӑFNӻWKXұW+j1ӝi.
[4] NguyӉQ LӋ Thuӹ & NguyӉQ HӳX BҧQJ (2008), Tính c͕F ÿ˯n ch͓X t̫L tr͕QJ ngang trong
công trình khai thác d̯X khí ngoài bi͋Q, TҥS chí Xây Dӵng sӕ 1 năm 2008.
[5] 1JX\ӉQ0ҥQK<rQ3K˱˯QJSKiSV͙WURQJ&˯K͕FN͇WF̭X1Kj[XҩWEҧQNKRDKӑF
YjNӻWKXұW+j1ӝL
[6] Shamsher Prakash & Hari Dsharma (2000), Móng c͕F trong thF t͇ xây dQJ, Nhà xuҩW
bҧQ xây dӵQJ.
7LӃQJ$QK
[7] M. J Tolinson (1994), Pile design and construction practice, Fourth edidtion.
[8] Sap 2000, Basic Analysis Reference.
[9] Edward L. Wilson, Tree Dimensional Static and Dynamic Analysis of Structures,
Computers and Structures, Inc, Berkeley, California, USA, 1998.
[10] Oczienkiewicz, The finite element method in engineering science, Mc Graw ± Hill, Lon
Don, 1990.
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
132
TÍ1+.+81*3+Ҷ1*&Ï;e7Ĉӂ1ĈӜĈ¬1 HӖ, &Ӫ$
1Ò7%Ҵ1*3+ѬѪ1*3+È3 &+8<ӆ19ӎ
ANALYSING PLANAR FRAMES WITH CONSIDERATION OF THE LINEAR
ELASTIC ROTATIONAL SPRINGS USING DISPLACEMENT METHOD
697+%Ô,$1+1*Ӑ&
/ͣS;/77U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
GVHD: Ths. ĈӚ 0,1+ĈӬ&
Khoa XDDD&CN 7U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
TÓM TҲ7
%iRFiRQj\WUuQKEj\NӃWTXҧ[k\GӵQJSKѭѫQJSKiSWtQKNKXQJSKҷQJFy[pWÿӃQWtQKTXk\
ÿjQKӗLWX\ӃQWtQKFӫDQ~WNKXQJEҵQJSKѭѫQJSKiSFKX\ӇQYӏĈӇiSGөQJWiFJLҧÿmOұS
trìnhSKkQWtFKEҵQJVӕFKRPӝWVӕEjLWRiQFөWKӇWӯÿyÿiQKJLiYjVRViQKNӃWTXҧYӟL
FiFKWtQKWUX\ӅQWKӕQJ.ӃWTXҧWKXÿѭӧFWӯTXiWUuQKQJKLrQFӭXFyWKӇiSGөQJYjRKӑFWұS
QJKLrQFӭXYjWKLӃWNӃNӃWFҩX
ABSTRACT
This paper presents the results of building method for analysing planar frames including refer
the linear elastic rotational springs using displacement method. For calculation, author program
and analyse numerically some examples in order to assess and compare to conventional
caculation. The results which are gotten from those studying can be applied for learning,
research as well as design.
1. 0ӣÿҫX
.ӃWFҩXNKXQJOjORҥLNӃWFҩXFKӏXOӵFÿѭӧFVӱGөQJUӝQJUmLWURQJWKӵFWӃ1Jj\QD\,
YӟL\rXFҫX[k\GӵQJ FDRQKLӅXF{QJWUuQKÿzLKӓLNK{QJJLDQYà QKӏS FiFNӃWFҩX lӟQ, phӭF
tҥS thì YLӋFWtQKWRiQNӃWFҩXNKXQJ ÿzLKӓLSKҧLFjQJFKtQK[iFKѫn nӳD PӟLÿiSӭQJÿѭӧF
Trong cѫ hӑF vұW rҳQ biӃQ dҥQJ, có QKLӅX SKѭѫQJ SKiS WtQK WRiQ KӋ NӃW FҩX Qj\
SKѭѫQJSKiSOӵFSKѭѫQJSKiSFKX\ӇQYӏSKѭѫQJSKiSSKҫQWӱKӳX KҥQ«ĈӇÿѫQJLҧQWURQJ
thӵF hành, FiFSKѭѫQJSKiSQj\ÿӅXÿѭӧFWKLӃWOұSWUrQJLҧWKLӃWQ~WOLrQNӃWJLӳDFiFSKҫQWӱ
WURQJKӋOjWX\ӋWÿӕLFӭQJ.ӃWTXҧWtQKWRiQNK{QJJk\VDLVӕÿiQJ kӇ NKLQ~WNKXQJÿѭӧF
WKLӃWNӃYjFҩXWҥRFyÿӝFӭQJÿӫOӟQQKѭ NKXQJErW{QJFӕWWKpSÿәWRjQNKӕL7X\QKLrQ
WURQJQKLӅXWUѭӡQJKӧS WKӵFWӃYtGөQKѭkhung ErW{QJFӕWWKpSOҳSJKpSKRһFEiQOҳSJKpS
khung thép ÿѭӧFVӱGөQJQJj\FjQJSKәELӃQWURQJFiFF{QJWUuQKFDRWҫng, công trình nhà
F{QJQJKLӋS&ác kӃW cҩX này có nút liên kӃW vӟL ÿӝÿjQKӗLQKҩWÿӏQKVӁҧQKKѭӣQJÿiQJNӇ
ÿӃQ kӃW quҧ tính toán nӝL lӵc và biӃQ dҥQJ theo quan ÿiӇP trên.
ĈӇNӃW quҧ QӝLOӵFYjELӃQGҥQJViWYӟLWKӵFWӃOjPYLӋFFӫDKӋNӃW FҩXNKXQJ, quá
trình WtQKWRiQFҫQSKҧL[ét ÿӃQÿӝ ÿjQ hӗL FӫD Q~W NKLÿyYLӋFWtQKWRiQVӁSKӭF WҥSKѫQ
nhiӅXĈӇgóp phҫQ làm sáng tӓ QKӳQJYҩQÿӅÿyÿӅ tài ÿѭӧF chӑQ: ³7tQKNKXQJSKҷQJFy[pW
ÿӃQÿӝÿjQKӗLFӫDQ~WEҵQJSKѭѫQJSKiSFKX\ӇQYӏ´
2. 7әQJTXDQ
4XDQÿLӇPWtQKNKXQJFy[pWÿӃQWtQKÿjQKӗLFӫDQ~WÿmÿѭӧFQJKLrQFӭXWURQJQKLӅX
WjLOLӋXYà có nhӳQJ cách tLӃSFұQYjSKkQWtFKNKiFQKDX
+ Trong [1@WiFJLҧWұSWUXQJQJKLrQFӭXÿӇ giҧL bài toán bҵQJ SKѭѫQJSKiSlӵF và áp
dөQJ kӃW quҧ ÿӇ phân tích ÿiQK giá mӝW sӕ kӃW cҩX cө thӇ.
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
133
+ Trong [3] & [5] các WiFJLҧ[k\GӵQJFiFKJLҧLEjLWRiQEҵQJSKѭѫQJSKiSSKҫQWӱ
KӳXKҥQYj iSGөQJFiFWLrX FKXҭQYjRWKӵFWӃWKLӃWNӃ[k\GӵQJ
+ 7URQJ>@FiFWiFJLҧÿLVkXYjRYLӋFP{KuQKKyDWtQKÿjQKӗL cӫD nút WӯFiFVӕOLӋX
WKtQJKLӋPWKӵFWӃFNJQJQKѭ[k\GӵQJFiFVѫÿӗFѫKӑFFKRFiFOLrQNӃW
&iFQJKLrQFӭXQj\FKR SKpSJLҧLTX\ӃWÿѭӧFQKLӅXYҩQÿӅYӅWtQKÿjQKӗLFӫDQ~W
NKXQJQKѭQJ vүQ FKѭa thҩ\ [k\GӵQJFiFKWLӃS cұQ EjLWRiQEҵQJSKѭѫQJSKiSFKX\ӇQYӏPӝW
SKѭѫQJSKiSUҩWFѫ EҧQNKLJLҧLFác EjLWRiQNӃWFҩX
Trong phҥP vi ÿӅ WjL các tác giҧ [k\ GӵQJ FiFK JLҧL EjL WRiQ EҵQJ SKѭѫQJ SKiS
FKX\ӇQ Yӏ PjQӝLGXQJFKӫ\ӃXOjQJKLên cӭX, lұS FiFSKҫQWӱPүXÿiQK giá ҧQKKѭӣQJ bӣL
WtQKÿjQKӗLFӫDQ~WNKXQJÿӃQQӝLOӵFYjELӃQGҥQJFӫD hӋ khung phҷQJ.
3. NhӳQJ nJKLrQFӭXOêWKX\ӃW
3.1. Ĉ͡ÿjQK͛LFͯDQ~WNKXQJ
ĈӇ ÿiQK JLi Wính ÿjQ KӗL FӫD Q~W NKXQJ,
ngѭӡL ta dùng ÿҥL lѭӧQJ R gӑL là ÿӝ cӭQJ ÿjQ hӗL
cӫD nút, là tӹ sӕ giӳD mômen tác dөQJ tҥL nút M vӟL
góc xoay biӃQ dҥQJ cӫD nút
M
.
M
M
R
(3.1)
R có thӭ nguyên (LӵF x chiӅX dài/rad)
Theo [1] và [4], ÿӇ xác ÿӏQKJLá trӏ ÿӝ cӭQJ
ÿjQ hӗL cӫD nút khung theo cҫQ có các kӃW quҧ tính
toán góc xoay bҵQJ lý thuyӃW và xác góc xoay thӵF tӃ bҵQJ thӵF nghiӋP. Tӯ ÿy xác ÿӏQK ÿѭӧF
góc xoay biӃQ dҥQJ cӫD nút khung
M
ӭQJ vӟL mômen M và xác ÿӏQK ÿӝ cӭQJ ÿjQ hӗL theo
công thӭF (3.1).
CNJQJ theo [1], R là khác nhau tùy theo vұW liӋX cNJQJ nhѭ cách cҩX tҥR nút và nҵP trong
khoҧQJ (6,5.10
7
± 200.10
7
)kN.m/rad.
Do cách cҩX tҥR khung lҳS ghép và khung thép là các cӝW thѭӡQJ liӅQ khӕL và các liên
kӃW thѭӡQJ ÿѭӧF chӃ tҥR tҥL vӏ trí nách dҫP (H.3.1). Chính các liên kӃW này tҥR ra ÿӝ ÿjQ hӗL
cӫD nút khung. Do vұ\, trong ÿӅ tài này chӍ xét tính ÿjQ hӗL tҥL vӏ trí liên kӃW cӫD dҫP vào cӝW.
7KHRPӝWVӕQJKLrQFӭXWUѭӟFÿk\>], nӃXÿӝFӭQJÿjQKӗLFӫDQ~WTXiOӟQWKuVӁJk\
WӕQ kém FKR F{QJ WiF FKӃ WҥR NKXQJ QӃX ÿӝ FӭQJ ÿjQ KӗL FӫD Q~W TXi Ep WKu QӝL OӵF Yj
FKX\ӇQYӏWURQJKӋNKXQJJLDWăQJYѭӧWTXiJLӟLKҥQFKRSKpSNKXQJEӏSKiKRҥL.
3.2. 3K˱˯QJSKiSFKX\͋QY͓
Cách tính khung có xét ÿӃQ ÿӝ ÿjQ hӗL cӫD nút bҵQJ phѭѫng pháp chuyӇQ vӏ vүQ ÿѭӧF
thӵF hiӋQ theo nguyêQWҳc chung, chӍ khác là ӣ bҧQJ tra các phҫQ tӱ mҫX. Theo [2], trình tӵ các
bѭӟF có thӇ tiӃQ hành nhѭ sau:
%ѭӟF;iFÿӏQKVӕ lѭӧQJ ҭQVӕFӫDKӋ
%ѭӟFTҥR KӋFѫEҧQ
%ѭӟF7KLӃWOұSSKѭѫQJWUuQKFKtQKWҳF
°
°
¯
°
°
®
0 R R R .Zr .Zr .Zr .Zr
0 R R R .Zr .Zr .Zr .Zr
0 R R R .Zr
.Zr .Zr .Zr
nzntnpnnn3n32n21n1
2z2t2pn2n323222121
1z1t1pn1n313212111
(3.2)
M
M
R
H
ình 3.1 Hình ̫QK Q~WÿjQK͛L
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
134
%ѭӟF;iFÿӏQKFiFKӋVӕYjVӕKҥQJWӵGRFӫDSKѭѫQJWUuQKFKtQKWҳF
%ѭӟF*LҧLKӋ SKѭѫQJWUình, [iFÿӏQKQӝLOӵFYjFKX\ӇQYӏFӫDKӋEDQÿҫX
ĈӇJLҧLKӋSKѭѫQJWUuQKFKtQKWҳF[iFÿӏQKnӝL lӵF và chuyӇQ vӏ, tURQJÿӅWjL, các tác
JLҧOұSWUuQKWtQKWRiQWUrQ Pi\WtQKEҵQJFKѭѫQJWUuQK0DWlab.
3.3. 0͡WV͙SK̯QW͵P̳X
ĈLӅXTXDQWUӑQJNKLOұSKӋFѫEҧQOjWURQJKӋFѫEҧQFKӍWӗQWҥLQKӳQJSKҫQWӱPүXÿm
ÿѭӧFQJKLrQFӭXWUѭӟFWӭFOjELӇXÿӗQӝLOӵFÿѭӧFFKRVҹQWURQJEҧQJ7URQJÿӅWjLQj\, các
WiFJLҧÿmWKLӃWOұSPӝWVӕSKҫQWӱPүXÿLӇQKuQK kӃW quҧ FKRWURQJ%ҧQJ
%̫QJ%̫QJWUDQ͡LOFFKRP͡WV͙SK̯QW͵
M
tr
=
M
l
EI4
.
4
3
21
1
rr
r
M
ph
=
M
l
EI4
.
4
3
.
2
21
12
rr
rr
M
tr
=
'
.
l
EI6
.
4
)2(
2
21
21
rr
rr
M
ph
=
'
.
l
EI6
.
4
)2(
2
21
12
rr
rr
M
tr
=
21
21
2
4
)2(3
.
12 rr
rrql
M
ph
=
21
12
2
4
)2(3
.
12 rr
rr
ql
7URQJEҧQJÿһW
EIl.R
l.R
r
3
1
1
1
(3.3),
EIl.R
l.R
r
3
2
2
2
(3.4)
KhҧR sát biӇX thӭF (3.3) và (3.4) cho thҩ\ r
1,
r
2
nҵP trong khoҧQJ [0;1]
r
1,
r
2
ӭQJYӟLOLrQNӃWӣQ~WNKXQJOjOLrQNӃWNKӟS
r
1,
r
2
ӭQJYӟLOLrQNӃWӣQ~W khung là tuyӋW ÿӕL cӭQJ.
r
1,
r
2
có thӇ xem nhѭ là các hӋ sӕ không thӭ nguyên.
Theo tài liӋX [3], các ÿҥL lѭӧQJ r
1,
r
2
nҵP trong khoҧQJ
94,077,0 y
3.4. %jLWRiQWtQKNKXQJSK̻QJÿL͋QKuQK
3.4.1. Các gi̫ thi͇W
- &KӍ xét ҧQK hѭӣQJ cӫD biӃQ dҥQJ uӕQ.
- ChӍ xét ÿӃQ tính ÿjQ hӗL tҥL vӏ trí liên kӃW cӫD
dҫP vào cӝW.
- Ĉӝ cӭQJ ÿjQ hӗL (R) cӫD nút là hҵQJ sӕ
3.4.2. 6͙OL͏XEDQÿ̯X
&KRNKXQJSKҷQJFyWҫQJQKӏS:
+ ChiӅX cao tҫQJ: a = 3,6(m).
+ ChiӅX dài nhӏS: l = 5(m).
+ TҧL trӑng ngang: P = 60(kN).
+ TҧL trӑng phân bӕ: q = 20(kN/m).
+ r
1
= r
2
= r.
R
2
R
1
M
EI
l
q
l
R
1
R
2
l
M
tr
M
p
h
'
l
R
2
R
1
M
tr
M
p
h
l
8
.
2
lq
M
p
h
M
tr
q
q
P
P
P
q
2EI
2EI
2EI
0,8EI
EI
EI
l
a
a
a
r
1
r
2
r
2
r
1
r
2
r
1
H
.3.4
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
135
+ Ĉӝ cӭQJ chӕQJ uӕQ EI = const.
TiӃQ hành xác ÿӏQK nӝL lӵF và chuyӇQ vӏ tҥL mӝW sӕ tiӃW diӋQ theo r ӭQJ vӟL trѭӡQJ hӧS
không chӏX tҧL trӑQJ ngang (P = 0) và có chӏX tҧL trӑQJ ngang.
3.4.3. .͇WTX̫
Sau khi thӵF hiӋQ theo trình tӵ tính toán trong MөF 3.2 vӟL các phҫQ tӱ mүX tra trong
BҧQJ 3.1, sӱ dөQJ chѭѫng trình Matlab, lұS trình tính giҧL nӝL lӵF và chuyӇQ vӏ tҥL mӝW sӕ tiӃW
diӋQ. KӃW quҧ thӇ hiӋQ trong BҧQJ 3.2
%̫QJ.͇WTX̫P{PHQYjFKX\͋QY͓ t̩L m͡W s͙ ti͇W di͏Q.
r
Mômen ÿҫX trái
dҫP WҫQJ1 (kNm)
Mômen ÿҫX SKҧL
dҫP WҫQJ1 (kNm)
0{PHQJLӳDdҫP
WҫQJ1 (kNm)
Mômen chân cӝW
trái WҫQJ1(kNm)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
0 0,0000 0,0000 0,0000 0,0000
6,2500
6,2500 0,0000 -64,800
0,1 -0,5690 8,6774 -0,5690 -9,8154
5,6810
5,6810 0,1275 -36,406
0,2 -1,0457 12,0870 -1,0457 -14,1790
5,2043
5,2043 0,2308 -29,649
0,3 -1,4518 14,2500 -1,4518 -17,1540
4,7982
4,7982 0,3170 -26,181
0,4 -1,8023 15,7960 -1,8023 -19,4010
4,4477
4,4477 0,3903 -23,957
0,5 -2,1081 16,9690 -2,1081 -21,1860
4,1419
4,1419 0,4536 -22,371
0,6 -2,3773 17,8950 -2,3773 -22,6500
3,8727
3,8727 0,5089 -21,166
0,7 -2,6162 18,6470 -2,6162 -23,8790
3,6338
3,6338 0,5576 -20,213
0,75 -2,7259 18,9720 -2,7259 -24,4240
3,5241
3,5241 0,5799 -19,806
0,8 -2,8297 19,2700 -2,8297 -24,9290
3,4203
3,4203 0,6010 -19,436
0,85 -2,9281 19,5440 -2,9281 -25,4000
3,3219
3,3219 0,6209 -19,098
0,9 -3,0216 19,7960 -3,0216 -25,8390
3,2284
3,2284 0,6398 -18,788
0,95 -3,1104 20,0300 -3,1104 -26,2500
3,1396
3,1396 0,6577 -18,502
1 -3,1950 20,2460 -3,1950 -26,6360
3,0550
3,0550 0,6748 -18,238
r
Mômen ÿҫX trái
dҫP WҫQJ (kNm)
Mômen ÿҫX SKҧL
dҫP WҫQJ (kNm)
0{PHQJLӳDGҫP
WҫQJ (kNm)
(1/ E-&KX\ӇQYӏ
JLӳDGҫP tҫQJ(m)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
0 0,0000 0,0000 0,0000 0,0000
6,2500
6,2500 16,276 16,276
0,1 -0,5328 8,0676 -0,5328 -9,1332
5,7172
5,7172 14,498 14,498
0,2 -0,9317 7,9017 -0,9317 -9,7651
5,3183
5,3183 13,008 13,008
0,3 -1,2441 7,1769 -1,2441 -9,6650
5,0059
5,0059 11,739 11,739
0,4 -1,4966 6,4681 -1,4966 -9,4613
4,7534
4,7534 10,644 10,644
0,5 -1,7058 5,8547 -1,7058 -9,2662
4,5442
4,5442 9,6883 9,6883
0,6 -1,8822 5,3361 -1,8822 -9,1005
4,3678
4,3678 8,8469 8,8469
0,7 -2,0334 4,8978 -2,0334 -8,9646
4,2166
4,2166 8,1004 8,1004
0,75 -2,1012 4,7041 -2,1012 -8,9064
4,1488
4,1488 7,7577 7,7577
0,8 -2,1645 4,5250 -2,1645 -8,8540
4,0855
4,0855 7,4333 7,4333
0,85 -2,2237 4,3592 -2,2237 -8,8067
4,0263
4,0263 7,1257 7,1257
0,9 -2,2794 4,2054 -2,2794 -8,7641
3,9706
3,9706 6,8336 6,8336
0,95 -2,3317 4,0623 -2,3317 -8,7256
3,9183
3,9183 6,5560 6,5560
1 -2,3809 3,9289 -2,3809 -8,6907
3,8691
3,8691 6,2916 6,2916
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
136
4. ĈiQKJLiNӃWTXҧ
7ӯNӃWTXҧ trong BҧQJ 3.2 WDWKҩ\
.KLFKӏXWҧLWUӑQJQJDQJÿӝFӭQJÿjQKӗLFӫDFiFQ~WNKXQJFjQJJLҧPWKuP{PHQXӕQ
YjFKX\ӇQYӏ WҥLFiFPһW JLӳDQKӏSFҵQJWăQJOrQOjPJLҧPÿӝEӅQFӫDNKXQJ
.KL NK{QJ FKӏX WҧL WUӑQJ QJDQJ QӃX ÿӝFӭQJ ÿjQ KӗL FӫD Q~W NKXQJ FjQJ WăQJ WKu
P{PHQXӕQWҥLFiFWLӃWGLӋQÿҫX GҫPFNJQJWăQJWKHRNKLU!WKuNKXQJOàm viӋF gҫQ nhѭ
trѭӡQJ hӧS nút cӭQJ (r = 1 hay R = f)
7KHRQJKLrQFӭXÿӅ cұS trong [3]WKuÿӝFӭQJÿjQKӗLFӫDQ~WNKXQJWKѭӡQJFyJLiWUӏ
trung bình là r = 0,85. NKѭYұ\, NKLWtQKWRiQNӇÿӃQÿӝÿjQKӗLFӫDQ~WNKXQJ so vӟL nút cӭQJ
tuyӋW ÿӕL r = 1 thì:
+ M{PHQWҥLFiFWLӃWGLӋQÿҫXGҫPWҫQJ 3 tăQJNKRҧQJ
+ M{PHQWҥLFiFWLӃWGLӋQÿҫXGҫPWҫQJ 1 giҧP 3,5% ÿӃQ 4,5%.
0{PHQWҥLJLӳDQKӏSWăQJÿӃQ 8 %.
+ ChuyӇQ YӏWҥLJLӳDQKӏSWăQJKѫQ
ĈLӅXÿyFKӭQJWӓQӝLOӵFYjFKX\ӇQYӏWURQJNKXQJFyQ~WÿjQKӗLOӟQKѫQQӝLOӵFYj
FKX\ӇQYӏWURQJNKXQJFyQ~WFӭQJ
.ӃWTXҧQj\FjQJFNJQJFӕQKӳQJQKұQ[pWWURQJQJKLrQFӭXFӫDFiFWiFJLҧNKiFWUѭӟF
ÿk\ [1], [4].
5. .ӃWOXұQ
ĈӅWjLÿmWUuQKEj\PӝWFiFKWәQJTXDQYӅOêWKX\ӃWWtQKNӃWFҩXNKXQJSKҷQJFyNӇÿӃQ
ÿӝÿjQKӗLFӫDQ~WNKXQJCách sӱGөQJSKѭѫQJSKiSFKX\ӇQYӏTXHQWKXӝFÿӇJLҧLEjLWRiQ
Các tiFJLҧÿmWKLӃWOұSÿѭӧFFiFSKҫQWӱPҭXÿLӇQKuQKOұSWUuQKJLҧLKӋSKѭѫQJWUuQKchính
WҳFWUrQFKѭѫQJWUuQK0DWODEQKҵPJLҧLEjLWRiQPӝWFiFKQKDQKFKyQJ
%ҵQJYLӋF[iFÿӏQKQӝLOӵFYjFKX\ӇQYӏFKRPӝWEjL WRiQÿLӇQKuQK các WiFJLҧÿm
ÿiQKJLiÿѭӧFҧQKKѭӣQJFӫDÿӝÿjQKӗLFӫDQ~WWӟLVӵOjPYLӋFWKӵFWӃFӫDNKXQJÿӇÿLÿӃQ
NӃWOXұQ³.ӃWTXҧWtQKWRiQNKLNӇÿӃQÿӝÿjQKӗLFӫDQ~WNKXQJ YjNKLFRLQ~WNKXQJOjFӭQJ
WX\ӋWÿӕLOjFyVӵNKiFQKDX1ӝLOӵFYjFKX\ӇQYӏWURQJNKXQJFyQ~WÿjQKӗLOӟQKѫQNKL
NKXQJFyQ~WFӭQJWX\ӋWÿӕL´.
7ӯNӃWOXұQÿyÿӅ[XҩWFҫQWtQKWRiQÿӃQÿӝÿjQKӗLFӫDQ~WNKXQJÿһFELӋWOjÿӕLYӟL
FiFNӃWFҩXNKXQJFyÿӝFӭQJÿjQKӗLFӫDQ~WNKXQJNK{QJOӟQQKѭNӃWFҩXNKXQJOҳSJKpS
EiQOҳSJKpSYjFiFNKXQJWKpSWK{QJWKѭӡQJ
7¬,/,ӊ87+$0.+Ҧ2
TiӃQJ ViӋW
[1] 1J{7KDQK'NJQJTính kKXQJSK̻QJFyN͋ÿ͇Qÿ͡ÿjQK͛LFͯDQ~WNKXQJ/XұQ
YăQWKҥFVӻNӻWKXұW+j1ӝL
[2] /ӅX7Kӑ7UuQK&˯K͕FN͇WF̭X1Kj[XҩWEҧQNKRDKӑFNӻWKXұW+j1ӝL
7LӃQJ$QK
[3] W Chen (2000), Practical Analysis for semi ± rigid Frame design, Pubished World
Scienticfic Pulishing Co Pte.Ttd, Singapore.
[4] C.Faella, V.Piluso and G.Rizzano (2000), Structural steel semirigid connections,
Published by CRC Press LLC.
[5] Ali Ugur Ozturk and Hikmet H.Catal (2005), Dynamic Analysis of semi ± rigid Frames.
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
149
;e76Ӵ3+Æ1%Ӕ1Ӝ,/Ӵ&7521*9È&+&Ӭ1*1HÀ
&$27Ҫ1*&+ӎ87Ҧ,75Ӑ1**,Ï
CONSIDER THE INTERNAL FORCE DISTRIBUTION IN THE SHEAR WALL
OF HIGH - RISE BUILDING CHARGED BY WIND LOAD
697+1*8<ӈ148$1*7Ô1*
6LQKYLrQ.KRD;'''&17U˱ͥQJĈ̩LK͕F%iFKNKRD
CBHD: Th.S BÙI THIÊN LAM
.KRD;'''&17U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
7yPWҳW
0өFÿtFKFӫDÿӅWjLOjWuPKLӇXҧQKKѭӣQJFӫDGDRÿӝQJ[RҳQÿӃQKӋNӃWFҩXQKjFDRWҫQJ
FKӏXWҧLWUӑQJJLyEҵQJOêWKX\ӃWYjVӱGөQJSKҫQPӅP(7$%6ÿӇNKҧRViWQӝLOӵFWURQJ
PӝW VӕYiFKFӭQJ
Abstract
The purpose of this report is learning the influence of torsion vibration to design the high-rise
EXLOGLQJ¶V EHDULQJ VWUXFWXUH 8VLQJ VRIWZDUH (7$%6 WR VXUYH\ WKH LQWHUQDO IRUFH RI WKH
bearing structure and proposing the petition.
1. 0ӣÿҫX
.ӃWFҩXQKjFDRWҫQJFyQKXFҫXQJj\FjQJQKLӅXӣQѭӟFWD QyÿҧPEҧRWLӃWNLӋPTXƭ
ÿҩWQKҩWOjNKLGkQVӕÿ{WKӏQJj\FjQJJLDWăQJYjJLiQKjÿҩWWKuQJj\FjQJÿҳWÿӓ9LӋF[k\
GӵQJQKjFDRWҫQJKjQJORҥWFNJQJSKҧQiQKTXDQÿLӇPFӫDFiFQKjWKLӃWNӃNKLJLҧLTX\ӃWEjL
WRiQTX\KRҥFKYj[k\GӵQJÿ{WKӏ
.KLWKLӃWNӃQKjFDRWҫQJGRÿLӅXNLӋQNKiFKTXDQKD\FKӫTXDQPjPһWEҵQJNӃWFҩX
FyWKӇÿӕL[ӭQJKD\NK{QJÿӕL[ӭQJ7URQJWUѭӡQJKӧSPһWEҵQJÿӕL[ӭQJWkPFӭQJWUQJ
YӟLWkPNKӕLOѭӧQJ thӍҧQKKѭӣQJFӫDKLӋQWѭӧQJ[RҳQÿӃQF{QJWUuQKOjNK{QJOӟQ.KLWkP
FӭQJNK{QJWUQJWkPNKӕLOѭӧQJWKuGDRÿӝQJ[RҳQOjOӟQYjҧQKKѭӣQJÿiQJNӇÿӃQVӵOjP
YLӋFFӫDQJ{LQKj&iFFXӝFNKҧRKLӋQWUѭӡQJÿӝQJÿҩWYjJLyEmRJҫQÿk\FNJQJÿmFKӍUDҧQK
KѭӣQJ[RҳQOjPӝWWURQJQKӳQJQJX\rQQKkQFKtQKJk\KѭKҥLKӋNӃWFҩX
'RWtQKFKҩWWKD\ÿәLEҩWWKѭӡQJFӫDJLyQrQGF{QJWUrQFyNӃWFҩXÿӕL[ӭQJYүQ[m\
UDKLӋQWѭӧQJ[RҳQ&KRÿӃQQD\WURQJWLrXFKXҭQWtQKWRiQWҧLWUӑQJJLyFӫD9LӋW1DP>@YүQ
FKѭDTXDQWkPQKLӅXÿӃQWKjQKSKҫQ[RҳQFӫDWҧLWUӑQJJLy9uYұ\YLӋFQJKLrQFӭXWuPUDҧQK
KѭӣQJFӫDKLӋQWѭӧQJ[RҳQGRJLyÿӃQVӵSKkQEӕQӝLOӵFOrQYiFKFӭQJNӃWFҩXQKjFDRWҫQJ
OjFҫQWKLӃWQKҵPJySSKҫQYjRYLӋFWtQKWRiQWKLӃWNӃQKjFDRWҫQJÿѭӧFDQWRjQKLӋXTXҧ
KѫQ
2. 7әQJTXDQ
6ӵOjPYLӋFFӫDWRjQEӝF{QJWUuQKFDRWҫQJJLӕQJQKѭPӝWFRQVROHFyWӹVӕÿӝPҧQK
YӯDSKҧL7X\QKLrQQyNKiFYӟLFҩXNLӋQFӝWÿLӇQKuQKEҧQFKҩWFӫDQyOjFҩXNLӋQFKӏXXӕQ
VӵXӕQFӫDWRjQEӝF{QJWUuQKNK{QJFKӍEDRJӗPGҥQJXӕQPjFyWKӇÿѭӧFWKD\WKӃEӣLGҥQJ
FҳWKRһFGҥQJWәKӧSFӫDXӕQYjFҳW+ѫQQӳDQKӳQJKuQKGҥQJQj\FyWKӇ[ҧ\UDNK{QJFKӍ
YӟLXӕQWKHRSKѭѫQJQJDQJPjFzQ[RҳQKRһFGҥQJXӕQ- [RҳQ>@
'ѭӟLWiFGөQJFӫDWҧLWUӑQJQJDQJQJ{LQKjFKX\ӇQYӏWKHRSKѭѫQJQJDQJ7ҥLQKӳQJ
ÿLӇPNKiFQKDXWUrQWӯQJPһWFҳWQJDQJFӫDQJ{LQKjVӁFyQKӳQJFKX\ӇQYӏNKiFQKDX&iF
NӃWTXҧSKkQWtFKFӫD%%.KDQVLÿmFKRWKҩ\ҧQKKѭӣQJFӫDKLӋQWѭӧQJ[RҳQÿӃQFKX\ӇQYӏ
QJDQJOjÿiQJNӇ>@
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
150
PKkQWtFKNӃWFҩXQKjFDRWҫQJFKӏXOӵFWKHRVѫÿӗNK{QJJLDQWiFJLҧ/r7KDQK+XҩQ
ÿmÿӅFұSÿӃQKLӋQWѭӧQJ[RҳQFӫDF{QJWUuQKFyYiFKNtQKRһFKӣYjÿmÿѭDUDSKѭѫQJSKiS
FNJQJQKѭFiFSKѭѫQJWUuQK[iFÿӏQKQӝLOӵFWURQJFiFYiFKFӭQJ>@
7URQJWLrX FKXҭQWtQKWRiQWҧLWUӑQJJLyFӫD 1KұWFӫD0ӻÿӅXÿmÿӅ FұSÿӃQ WKjQK
SKҫQ[RҳQFӫDWҧLWUӑQJJLy>@>@
&iFF{QJWUuQKQJKLrQFӭXFӫDFiFWiFJLҧÿmWҥRUDQKӳQJWKXұQOӧLWURQJF{QJWiFWtQK
WRiQYjWKLӃWNӃNӃWFҩXQKjFDRWҫQJ7X\QKLrQFiFWiFJLҧYүQFKѭDÿLVkXYjRJLҧLTX\Ӄt
PӕLTXDQKӋJLӳDGDRÿӝQJ[RҳQYjQӝLOӵFFӫDYiFKFӭQJGѭӟLWiFGөQJFӫDWҧLWUӑQJQJDQJ
'RÿyÿӅWjLQj\VӁÿLVkXWuPKLӇXYҩQÿӅPӝWFiFKFөWKӇKѫQWҥRÿLӅXNLӋQFKRYLӋFWtQK
WRiQYjWKLӃWNӃWNӃÿѭӧFGӉGjQJKѫQ
3. /êWKX\ӃWWtQKWRiQ
3.1. Tính toán W̫LWU͕QJJLyWKHRWLrXFKX̱Q9L͏W1DP-.K{QJN͋ÿ͇QW̫LWU͕QJ
JLy[R̷Q>1]
a. 7KjQKSK̯QWƭQKFͯDW̫LWU͕QJJLy
ÈSOӵFWLrXFKXҭQFӫDWҧLWUӑQJJLyWƭQKWiFÿӝQJYjRÿLӇPj FDRÿӝ
j
z
ÿѭӧF[iFÿӏQK
WKHRF{QJWKӭF
0
.( ).
tc
jjj
WWkzc
(daN/m
2
)
-
0
W
ÈSOӵFJLyWLrXFKXҭQOҩ\WKHRSKkQYQJiSOӵFJLyWURQJ7&91-1995.
-
()
j
kz
KӋVӕ[pWÿӃQVӵWKD\ÿәLiSOӵFJLySKөWKXӝFÿӏDKuQKWtQKWRiQYjÿӝFDR
j
z
FӫDÿLӇPj. -
j
c
KӋVӕNKtÿӝQJOҩ\WURQJ7&91-1995.
b. 7KjQKSK̯Qÿ͡QJW̫LWU͕QJJLy
- 3KkQWtFKGDRÿӝQJWKHRWӯQJSKѭѫQJ[pWWӯQJSKѭѫQJULrQJELӋW
- 7KHRSKѭѫQJ;FyFiFWҫQVӕGDRÿӝQJULrQJ
12
, , ff
YjFiFFKX\ӇQYӏGDRÿӝQJ
11 21 1 12 22 2
, , , , , , , ,
nn
yy yyy y
- 7KHRSKѭѫQJ<WѭѫQJWӵFNJQJFyFiFWҫQVӕGDRÿӝQJULrQJ
12
, , ff
YjFiFFKX\ӇQ
YӏGDRÿӝQJ
11 21 1 12 22 2
, , , , , , , ,
nn
yy yyy y
- So sánh
1
f
YӟLWҫQVӕJLӟLKҥQ
L
f
<
L
f
WUDEҧQJWUDQJ7&;'>6]
- 1ӃX
1 L
ff!
F{QJWUuQKFyÿӝFӭQJOӟQWKjQKSKҫQÿӝQJFӫDWҧLWUӑQJJLyFKӍGR
[XQJYұQWӕFJLyJk\UD
- 1ӃX
1 L
ffd
F{QJWUuQKFyÿӝFӭQJEpWKjQKSKҫQÿӝQJFӫDWҧLWUӑQJJLySKҧLNӇ
ÿӃQWiFÿӝQJFӫDFҧ[XQJYұQWӕFJLyYjOӵFTXiQWtQKFӫDF{QJWUuQKYjFҫQWtQKYӟLs GҥQJ
GDRÿӝQJÿҫXWLrQFyWҫQVӕGDRÿӝQJULrQJ
L
ffd
.
;pWWUѭӡQJKӧS
1 L
ff!
:
- ÈSOӵFWLrXFKXҭQFӫDWҧLWUӑQJJLyÿӝQJYjRÿLӇPj ÿѭӧF[iFÿӏQKWKHRF{QJWKӭF
tc tc
pj j j
WW
]Q
;pWWUѭӡQJKӧS
1 L
ffd
: FҫQ[pWs GҥQJGDRÿӝQJFyWҫQVӕGDRÿӝQJULrQJ
L
ffd
.
*LiWUӏWLrXFKXҭQFӫDWҧLWUӑQJJLyÿӝQJYjRWҫQJj ӣGҥQJGDRÿӝQJi ÿѭӧF[iFÿӏQK
WKHRF{QJWKӭF
()
.
pji j i i ji
WM y
[\
7әKӧSWҧLWUӑQJJLy
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
151
1ӝLOӵFYjFKX\ӇQYӏJk\UDGRWKjQKSKҫQWƭQKYjÿӝQJFӫDWҧLWUӑQJJLyÿѭӧF[iFÿӏQK
QKѭVDX
¦
s
i
dt
XXX
1
2
)(
.
7URQJÿy;± OjPRPHQXӕQ[RҳQOӵFFҳWOӵFGӑFKRһFFKX\ӇQYӏ;
t
± là momen
XӕQ[RҳQOӵFFҳWOӵFGӑFKRһFFKX\ӇQYӏGRWKjQKSKҫQWƭQKFӫDWҧLWUӑQJJLyJk\UD;
d
±
OjPRPHQXӕQ[RҳQOӵFFҳWOӵFGӑFKRһFFKX\ӇQYӏGRWKjQKSKҫQWƭQKFӫDWҧLWUӑQJJLyJk\
UDNKLGDRÿӝQJӣGҥQJWKӭLV± VӕGDRÿӝQJWtQKWRiQ
3.2. 7tQK WRiQ W̫L WU͕QJJLy WKHR WLrX FKX̱Q $,- 1K̵W %̫Q &y N͋ ÿ͇Q WKjQK SK̯Q JLy
[R̷Q>@
7̫LWU͕QJJLyG͕FWUrQNKXQJN͇WF̭X
AGCqW
DDHD
. (N)
7̫LWU͕QJJLyWUrQPiL
RRRHR
AGCqW
. (N)
7̫LWU͕QJJLyQJDQJ
LLLHL
Rg
H
Z
ACqW
2'
13
I
(N)
ÈSGөQJNKLF{QJWUuQKWKӓDPmQFiFÿLӅXNLӋQVDX
-0һWFҳWQJDQJF{QJWUuQKYX{QJÿӅXWӯGѭӟLOrQ
-
6/ dBDH
;
5/2,0 dd DB
;
10)/( dBDfU
LH
.
7̫LWU͕QJJLy[R̷Q
TTTTHT
Rg
H
Z
ABCqW
2'
18,1
I
(N)
ÈSGөQJNKLF{QJWUuQKWKӓDPmQFiFÿLӅXNLӋQVDX
-0һWFҳWQJDQJF{QJWUuQKYX{QJÿӅXWӯGѭӟLOrQ
-
6/ dBDH
;
5/2,0 dd DB
;
10)/( dBDfU
LH
.
7͝KͫSW̫LWU͕QJJLy
%ҧQJWәKӧSWҧLWUӑQJJLy
7URQJÿyȡ
LT
-KӋVӕWѭѫQJTXDQJLӳDGDRÿӝQJJLyQJDQJYjJLy[RҳQÿѭӧF[iFÿӏQK
WURQJPөF$>@
7әKӧSJLyWKHRSKѭѫQJQJDQJYjJLyWUrQPiLÿѭӧF[pWÿӗQJWKӡL
3.3. ;iFÿ͓QKWkPNK͙LO˱ͫQJWkPFͱQJ>@YjQ͡LOFWURQJYiFK>@
7әKӧS *LyGӑF Gió ngang *Ly[R̷Q
1 W
D
0,4W
L
0,4W
T
2
)/6,04,0(
DD
GW
W
L
TLT
W)122(
U
3
)/6,04,0(
DD
GW
LLT
W)122(
U
W
T
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
152
7D[pWWUѭӡQJKӧS SKәELӃQWURQJWKӵFWӃOjWUөFFKtQKFӫDFiFKӋWѭӡQJFӭQJVRQJ
VRQJYӟLFiFWUөFQKj
7kPNKӕLOѭӧQJFӫDF{QJWUuQKOjÿLӇPÿһWOӵFTXiQWtQK.
*ӑL[
CM;
y
CM
) - WӑDÿӝWkPNKӕLOѭӧQJÿѭӧF[iFÿӏQKQKѭVDu:
¦
¦
i
ii
CM
p
pa
x
.
¦
¦
i
ii
CM
p
pb
y
.
7kPFӭQJFzQFyWrQOjWkPXӕQKD\WkP[RD\FӫDF{QJWUuQKOjÿLӇPPjKӧSOӵF
FӫDWҧL
WUӑQJQJDQJÿLTXDÿyFKӍJk\FKRF{QJWUuQKFiFFKX\ӇQYӏWKҷQJFzQFKX\ӇQYӏ[RD\EҵQJ
không(
T
=0).
*ӑL[
CR
; y
CR
)- WӑDÿӝWkPFӭQJ
r
i
-NKRҧQJFiFKWӯYiFKFӭQJWKӭLÿӃQWkPFӭQJ
r
xi
=O
xi
-x
CR
. r
yi
=O
yi
-y
CR
.
7RҥÿӝWkPFӭQJÿѭӧF[iFÿӏQKQKѭVDX
¦
¦
xi
xi
CR
EJ
E
x
xi
J.
O
¦
¦
yi
yi
CR
EJ
E
y
yi
J.
O
ĈӝFӭQJFKӕQJ[RҳQFӫDQJ{LQKj
) (
22
yiyixixi
EJrEJrB
¦
Z
0RPHQWWURQJYiFKFӭQJWKӭLFyWKӇÿѭӧF[iFÿӏQKQKѭVDX
9ӟLWҧLWUӑQJT
y
, ta có: M
xi
= M
x
(K
yyi
. Kx + C
x
.K
Zxi
.K
Z
)
M
yi
= M
x
(K
yxi
. K
y
+ C
x
.K
Zyi
.K
Z
)
9ӟLWҧLWUӑQJT
x
ta có: M
xi
= M
y
(K
xyi
. Kx + C
x
.K
Zxi
.K
Z
)
M
yi
= M
y
(K
xxi
. Ky + C
x
.K
Zyi
.K
Z
)
9ӟL0
x
, M
y
WәQJPRPHQWXӕQGRWҧLWWUӑQJJLyWiFÿӝQJYjRQJ{LQKjWKHRSKѭѫQJ;<
+ӋVӕSKkQSKӕLWҧLWUӑQJ
K
xxi
= J
yi
/ J
y
; K
yyi
= J
xi
/ J
x
K
xyi
= J
xyi
/ J
y
; K
yxi
= J
xyi
/ J
x
j
K
-FiFKӋVӕ
Z
KKK
,,
yx
[iFÿӏQKWKHRFiFF{QJWKӭF
x
tch
x
G
G
85.1
1
1
K
;
y
tch
y
G
G
85.1
1
1
K
Z
Z
K
G
G
tch
85.1
1
1
7ѭѫQJWӵÿӕLYӟLOӵFFҳWWURQJYiFK
4. .KҧRViWVӵSKkQEӕQӝLOӵFWURQJFiFYiFKFӭQJQKjFDRWҫQJWK{QJTXDPӝWVӕP{
KuQKWtQKWRiQFөWKӇ
;pWPӝWF{QJWUuQKFDRWҫQJYӟLNӃWFҩXNKXQJYiFKFKӏXOӵFQҵPWURQJYQJ,,ÿӏD
hình B (theo TCVN 2737-WKHRWLrXFKXҭQ$,-OjÿӏDKuQK,,,FKӏXWҧLWUӑQJJLy
YӟLJLiWUӏiSOӵFJLy:
o
=950 N/m
2
.( q
H
=950 N/m
2
YұQWӕFJLy8
H
PV7ӹVӕFҧQ]=0.02.
Công trình:- 0һWEҵQJF{QJWUuQK[P
2
- &KLӅXFDRWҫQJP- Sàn dày 16 cm
- 7LӃWGLӋQFӝWP[P- 7LӃWGLӋQGҫPP[P- Bêtông B25.
- 7ҧLWUӑQJSKkQEӕÿӅXWUrQVjQ7P
2
EDRJӗPWUӑQJOѭӧQJEҧQWKkQ
Tính toán công trình theRKDLWUѭӡQJKӧSWҧLWUӑQJJLy
- Theo TCVN 2737-1995
-7KHRWLrXFKXҭQ$,-
0һWEҵQJF{QJWUuQKÿѭӧFEӕWUtWKHRWUѭӡQJKӧSVDX
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
153
7UѭӡQJKӧS+ӋNӃWFҩXFyPһWEҵQJÿӕL[ӭQJWKHRFҧKDLSKѭѫQJ
7UѭӡQJKӧS +ӋNӃWFҩXÿӕL[ӭQJTXDWUөF;YjNK{QJÿӕL[ӭQJTXDWUөF<
7UѭӡQJKӧS+ӋNӃWFҩXNK{QJÿӕL[ӭQJWKHRFҧKDLSKѭѫQJ
7UѭӡQJKӧS 7UѭӡQJKӧS 7UѭӡQJKӧS
7UѭӡQJKӧS 7UѭӡQJKӧS
4.1. Quy trình tính toán:
- 7KLӃWOұSP{KuQKWtQKWRiQ
- 3KkQWtFKGDRÿӝQJF{QJWUuQKYӟLVӵKӛWUӧFӫDSKҫQPӅP(7$%6;iFÿӏQK
FiFFKXNǤGDRÿӝQJWKHRFiFSKѭѫQJWtQKWRiQ
- 7tQKWRiQWҧLWUӑQJJLyWKHR7&91-1995: *LyWƭQKJLyÿӝQJ
- 7tQKWRiQWҧLWUӑQJJLyWKHRWLrXFKXҭQ$,-*LyGӑFJLyQJDQJJLy[RҳQ
- ;iFÿӏQKQӝL OӵFWURQJ FiFYiFKYӟLWӯQJWUѭӡQJKӧSPһW EҵQJF{QJWUuQKYӟL WҧL
WUӑQJJLyWѭѫQJӭQJ
- 7әKӧSQӝLOӵFWKHRFiFSKѭѫQJSKiSÿmWUuQKEj\ӣWUrQ
4.2. .͇WTX̫WtQKWRiQ
&iFGҥQJGDRÿӝQJULrQJ
- 7UѭӡQJKӧS0һWEҵQJÿӕL[ӭQJ
7kPFӭQJ(C
R
YjWkPNKӕLOѭӧQJ&
M
) trùng nhau.
&KXNǤGDRÿӝQJ7
D
= 2.5157s T
L=
2.5215 s T
T
=1.9 s
- 7UѭӡQJKӧS0һWEҵQJNK{QJÿӕL[ӭQJ
.KRҧQJFiFKJLӳDWkPFӭQJYjWkPNKӕLOѭӧQJOjP
&KXNǤGDRÿӝQJ7
D
=2.49 s T
L
=2.52 s T
T
=2.0962 s
- 7UѭӡQJ KӧS0һWEҵQJNK{QJÿӕL[ӭQJ
.KRҧQJFiFKJLӳDWkPFӭQJYjWkPNKӕLOѭӧQJOjP
&KXNǤGDRÿӝQJ7
D
=2.3 s T
L
=2.4 s
T
T
=2.1226 s
- 7UѭӡQJKӧS0һWEҵQJNK{QJÿӕL[ӭQJ
.KRҧQJFiFKJLӳDWkPFӭQJYjWkPNKӕLOѭӧQJOjP
&KXNǤ GDRÿӝQJ7
D
=2.25 s T
L
=2.37 s
T
T
=1.28 s
- 7UѭӡQJKӧS0һWEҵQJNK{QJÿӕL[ӭQJ
.KRҧQJFiFKJLӳDWkPFӭQJYjWkPNKӕLOѭӧQJOjP
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
154
&KXNǤGDRÿӝQJ7
D
=2.08 s T
L
=2.26 s
T
T
=1.36 s
%ҧQJ0RPHQW[RҳQFKkQF{QJWUuQKFKX\ӇQYӏJyFÿӍQKF{QJWUuQKYjQӝLOӵF
FKkQYiFKFӫDYiFKJLӳDYjYiFKELrQ7&91
Vách biên 9iFKJLӳD Vách biên 9iFKJLӳD
1 0 0 0 117.4 118.66 -1.06 2126.3 2123 0.16
2 0.7 710.24 0.00031 150.44 122.6 22.71 2471.9 2161 14.39
3 1.45 710.24 0.00083 160.8 114.04 41.00 3637 3268 11.29
4 0.7 710.24 0.00013 123.3 102.99 19.72 1517 1436 5.64
5 1.45 710.24 0.0002 125.71 105.11 19.60 2223 2163 2.77
7UѭӡQJ
KӧS
.KRҧQJ
FiFKJLӳD
C
M
và C
R
/ӵFFҳW7
Moment (T.m)
'
Q/Q
(%)
'
M/M
(%)
Moment
[RҳQFKkQ
ctrình (T.m)
&KX\ӇQYӏ
JyFÿӍQK
ctrình (rad)
%ҧQJ0RPHQW[RҳQFKkQF{QJWUuQKFKX\ӇQYӏJyFÿӍQKF{QJWUuQKYjQӝLOӵF
FKkQYiFKFӫDYiFKJLӳDYjYiFKELrQ$,-
Vách biên 9iFKJLӳD Vách biên 9iFKJLӳD
1 0 718 0.00036 147.67 141.35 4.47 2486.5 2344.7 6.05
2 0.7 1395.00 0.00056 184.11 146.69 25.51 2833.76 2369 19.62
3 1.45 1500.00 0.00103 192.69 136.27 41.40 4004.1 3490.7 14.71
4 0.7 1374.00 0.00023 153.23 123.36 24.21 1740.8 1581 10.11
5 1.45 1475.00 0.00033 158.66 125.65 26.27 2470 2307 7.07
7UѭӡQJ
KӧS
.KRҧQJ
FiFKJLӳD
C
M
và C
R
Moment
[RҳQFKkQ
ctrình (T.m)
&KX\ӇQYӏ
JyFÿӍQK
ctrình (rad)
/ӵFFҳW7
'
Q/Q
(%)
Moment (T.m)
'
M/M
(%)
1KұQ[pW
7KHRWLrXFKXҭQ$,-
NKLWkPFӭQJ FӫDF{QJWUuQKWUQJWkPNKӕLOѭӧQJYүQWӗQWҥLKLӋQ
WѭӧQJ[RҳQ7kPFӭQJFjQJ[DWkPNKӕLOѭӧQJWKuFKXNǤ[RҳQFjQJOӟQ.KLNKRҧQJFiFK
JLӳD&
M
và C
R
là 0Æ0.7ÆPWKuFKXNǤ[RҳQWKD\ÿәLWӯÆ 2.09Æ V7UѭӡQJKӧS
YiFKKӣ
&{QJWUuQKFyNӃWFҩXÿӕL[ӭQJWKuQӝLOӵFWURQJFiFYiFKVӁWѭѫQJÿѭѫQJQKDX1KѭQJ
ÿӕLYӟLFiFF{QJWUuQKFyNӃWFҩXNK{QJÿӕL[ӭQJWkPFӭQJNK{QJWUQJWkPNKӕLOѭӧQJWKu
QӝLOӵFWURQJFiFYiFKVӁFKrQKOӋFKÿiQJNӇ
&KrQKOӋFKQӝLOӵFJLӳDYiFKELrQYjYiFKJLӳDNKLNK{QJNӇ
YjFyNӇÿӃQÿӝOӋFKWkPQJүXQKLrQ
7UѭӡQJ
KӧS
.KRҧQJFiFK
JLӳD&
M
và C
R
TCVN AIJ
'Q/Q (%)'M/M (%)'Q/Q
(%)'M/M
(%)
1 0 -1.06 0.16 4.47 0.16
2 0.7 22.71 14.39 25.51 14.39
3 1.45 41.00 11.29 41.40 11.29
4 0.7 19.72 5.64 24.21 5.64
5 1.45 19.60 2.77 26.27 2.77
7URQJWUѭӡQJKӧSPһWEҵQJYjOӵFFҳWYjPRPHQWFKkQYiFKJLҧPÆ20% và
30ÆVRYӟLWUѭӡQJKӧS PһWEҵQJYj9ұ\FiFYiFKFӭQJQӃXÿѭӧFOLrQNӃWOҥLWKjQK
O}LFӭQJVӁOjPWăQJÿӝFӭQJFKӕQJ[RҳQFKRQJ{LQKjQӝLOӵFJLҧPPҥQK1KӡÿyNӃWFҩXFy
NKҧQăQJFKӏXOӵFWӕWKѫQVӵFKrQKOӋFKQӝLOӵFWURQJYiFKFNJQJJLҧPÿLQKLӅX
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
155
0һFGWKjQKSKҫQJLyGӑFWKHR7&91-OjOӟQKѫQVRYӟL$,-QKѭQJ
GR$,-FyNӇÿӃQWKjQKSKҫQJLyQJDQJYjJLy[RҳQVӁJk\[RҳQNӇ FҧNKLF{QJWUuQKÿӕL
[ӭQJ'RYk\NKLWtQKWRiQF{QJWUuQKFKӏXWҧLWUӑQJJLyWKHR7&91-NK{QJNӇÿӃQ
ÿӝOӋFKWkPQJүXQKLrQWKuQӝLOӵFWURQJYiFKVӁEpKѫQVRYӟLNKLWtQKWKHR$,-
&KrQKOӋFKQӝLOӵFFKkQYiFKNKLWtQKWRiQWKHR7&VN 2737-1995 và AIJ 2004
7UѭӡQJ
KӧS
/ӵFFҳWFKkQYiFK47 Moment chân vách M (T.m)
TCVN
2737-
1995
AIJ 2004
'Q/Q
TCVN
(%)
TCVN
2737-
1995
AIJ 2004
'M/M
TCVN
(%)
1 117.4 147.67 20.4
2126.3
2486.55
14.48
2 150.44 184.11 18.48
2471.9
2833.8
12.7
3 160.8 192.69 16.66
3637
3974.8
9.28
4 123.36 153.23 19.3465
1517
1740
12.8
5 125.65 158.66 20.08
2223
2470
10
5. .ӃWOXұQ
4XDNӃWTXҧSKkQWtFKQKѭWUrQWDWKҩ\UҵQJKLӋQWѭӧQJ[RҳQF{QJWUuQKGROӋFKWkP
QJүXQKLrQKD\OӋFKWkPJk\UDEӣLNӃWFҩXNK{QJÿӕL[ӭQJFNJQJOjPWăQJÿiQJNӇQӝLOӵFӣ
FiFYiFKELrQӣ[DWkPFӭQJWăQJFKX\ӇQYӏ[RD\YjGRÿyҧQKKѭӣQJÿӃQNKҧQăQJFKӏXOӵF
FӫDNӃWFҩXYjFyWKӇJk\NKyFKӏXFKRQJѭӡLVӱGөQJ
.KLFKӏX[RҳQWKuYiFKFjQJӣ[DWkPFӭQJFjQJFyQӝLOӵFOӟQFKӭQJWӓOj càng góp
SKҫQYjRÿӝFӭQJFKӕQJ[RҳQFӫDF{QJWUuQK
6. .LӃQQJKӏ
1ӃXF{QJWUuQKNK{QJÿӕL[ӭQJWKuQrQEӕWUtYiFKFӭQJ[DWkPFӭQJF{QJWUuQKÿӇWăQJ
NKҧQăQJFKӕQJ[RҳQFKRF{QJWUuQK1ӃXEӕWUtQJRjLELrQWKuWăQJÿӝFӭQJFKӕQJ[RҳQQKѭQJ
FKӏXҧQKKѭӣQJFӫDELӃQGҥQJQKLӋWYjFRQJyWNKi nhà dài)9uYұ\SKҧLWӫ\ÿLӅXNLӋQFөWKӇ
ÿӇEӕWUtYiFKFӭQJKӧSOêQKҩW
&iFYiFKFӭQJQrQÿѭӧFWәKӧSWKjQKO}LFӭQJÿӃWăQJÿӝFӭQJQJDQJFNJQJQKѭGӝ
FӭQJFKӕQJ[RҳQFKRF{QJWUuQK
1rQiSGөQJWKjQKSKҫQ[RҳQ FӫDWҧLWUӑQJJLyNKLWtQKWRiQNӃWFҩXF{QJWUuQKQKѭ
Yұ\VӁWKLrQYӅDQWRjQKѫQ
7¬,/,ӊ87+$0.+Ҧ2
[1] TCXD 2737- 1995
[2] Tall Building Structure: Analysis and Design ± Autor: Bryan Stafford Smith and Alex
Coul.
[3] /r7KDQK+XҩQ (2005), .͇WF̭XQKjFDRW̯QJ%7&7- 1Kj[XҩWEҧQ[k\GӵQJ .
[4] 7LrXFKXҭQ$,-
[5] Wind Load Provision of ASE 7-02
[6] TCXD 229- 1999
[7] 3KҥP9ăQ&~F1JX\ӉQ/r1LQK7tQKWRiQYjF̭XW̩RNKiQJFK̭QFiFF{QJWUuQK
QKL͉XW̯QJ- 1Kj[XҩWEҧQ[k\GӵQJ.
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
156
1*+,Ç1&Ӭ83+ѬѪ1*3+È37Ë1+72È19¬7+,ӂT
.ӂ0Ï1*&Ӑ&;,0Ă1*- ĈҨ7.ӂ7+Ӧ39Ӟ,0Ï1*
BÈ CHO CÔNG TRÌNH CA27Ҫ1*/2Ҥ,,
RESEARCH ON CALCULATING METHODS AND DESIGNING FOR SOIL
CEMENT PILE FOUNDATION IN COMBINATION WITH RAFT FOUNDATION
FOR HIGH BUILDING TYPE 1
SVTH: /Æ048Ӕ&7+Ӕ1*
6LQKYLrQNKRD;'''&17U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
CBHD: .61*8<ӈ17+Ҥ&9lj
.KRD;'''&17U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
7yPWҳW
ĈӅWjLQJKLrQFӭXYjÿѭD UDSKѭѫQJSKiSWtQK WRiQPyQJ&ӑF;L0ăQJ ± ĈҩWNӃWKӧSYӟL
Móng bè cho FiFF{QJWUuQKGkQGөQJYӯDYjFDRWҫQJORҥL-WҫQJWUrQFѫVӣNӃWKӧSOê
WKX\ӃWWtQKWRiQFӫDFiFWiFJLҧWURQJQJRjLQѭӟFYjӭQJGөQJSKҫQPӅP(7DEV9.ӃW
TXҧQJKLrQFӭXQӃXÿѭӧFPӣUӝQJYjiSGөQJYjRWKӵFWӃVӁJySSKҫQKҥWKҩSJLiWKjQKxây
GӵQJF{QJWUuQKYjJLҧLWӓDÿѭӧFFѫQVӕWJLiFҧQJX\rQYұWOLӋXKLӋQQD\
Abstract
This major is carried out to do a research on Soil Cement Pile and to propose the calculating
methods for them . Basing on combinating the theory of authors outside and inside the country
as well as applying the ETabs V9.14 software. This research result will make contribution to
reducing the construction price and solve the current materials and raw materials price fever if
it is specifically studied and applied into the practice
1. Mӣ ÿҫX
&QJYӟLVӵSKiWWULӇQQKDQKFKyQJFӫDQӅQNLQKWӃWKӏWUѭӡQJ[k\GѭQJӣ9LӋW1DP
WӯEDRJLӡÿmWUӣQrQQyQJEӓQJYӟLKjQJORҥWFiFF{QJWUuQKFDRWҫQJPӑFOrQQKDQKFKyQJӣ
FiFNKXÿ{WKӏOӟQ7KHRÿyFiFF{QJQJKӋPyQJFӑFQKӗLFӑFFiWFӑFpSÿmÿѭӧFNKDLWKiF
VӱGөQJWULӋWÿӇÿӃQQәLNpRWKHRÿyOjVӵKҥJLҧPJLiWKjQKWKLF{QJ[k\GӵQJWURQJNKLJLi
QJX\rQYұWOLӋXYүQWLӃSWөFWăQJYӟLWӕFÿӝFKyQJPһWOjPFKRFiFQKjWKҫXYjFKӫÿҫXWѭÿӅX
FKӏXQKLӅXWәQWKҩW
.K{QJQKӳQJWKӃ FiFF{QJQJKӋFӑFpSFӑFQKӗLWX\FyVӭFFKӏXWҧLUҩWOӟQQKѭQJErQ
FҥQKÿyQyFNJQJEӝFOӝQKӳQJQKѭӧFÿLӇPFNJQJUҩWOӟQ&yQKLӅXFKLSKtWӕQNpPSKөWKHR
JLiWKjQKFDRPҩWQKLӅXWKӡLJLDQWKLF{QJJk\{QKLӉPP{LWUѭӡQJVLQKWKiL[XQJTXDQK
dӉ[ҧ\UDVӵFӕWURQJTXiWUuQKWKLF{QJ
&KtQKYuWKӃPjPӝWF{QJQJKӋPӟLÿmÿѭӧFQJKLrQFӭXYjÿDQJÿѭӧFiSGөQJUӝQJUmL
ӣQKLӅXQѫLWUrQWKӃJLӟLĈyFKtQKOjF{QJQJKӋ&ӑF;L0ăQJ- ĈҩW
6RYӟLFiFF{QJQJKӋPyQJFӑFNKiFF{QJ QJKӋPyQJFӑFYӳD[LPăQJÿҩWWӓUDFy
KLӋXTXҧNLQKWӃKѫQQKLӅXEӣLQyFyWKӇWұQGөQJQJXӗQQJX\rQOLӋXWҥLFKӛQJD\GѭӟLFKkQ
F{QJWUuQKĈһWELӋWQyFKtQKOjPӝWJLҧLSKiSY{FQJKӧSOêFKRFiFQӅQÿҩW\ӃXPjWURQJÿy
YQJĈӗQJ%ҵQJ1DP%ӝFӫDQѭӟF WDFKtQKOjPӝWÿLӇQKuQK
2. TәQJ quan
Ӣ1KұW%ҧQF{QJQJKӋQj\ÿѭӧFQJKLrQFӭXÿҫXWLrQEӣLJLiRVѭ7HQR[.\XVKXFӫD
ÿҥLKӑF7RN\RYjRQKӳQJQăPFӫDWKӃNӍWUѭӟF7UrQFѫVӣFKҩSQKұQTXDQÿLӇP[HPNKӕL
&ӑF;L0ăQJ- ĈҩWQKѭPӝWFӑFFӭQJ{QJÿmÿѭDUDFiFF{QJWKӭFWtQKWRiQVӭFFKӏXWҧLFӫD
NKӕL&ӑF;L0ăQJ- ĈҩWQKѭÿӕLYӟLFӑFErW{QJFӕWWKpSErQFҥQKPӝWVӕF{QJWKӭFWKӵF
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
157
QJKLӋPWҩWFҧFiFF{QJWKӭFÿyÿӅXGӵDWUrQFѫVӣWKtQJKLӋPYjTXDQViWWKӵFWӃFiFF{QJ
WUuQKPj{QJÿmWKLӃWNӃ .
0ӣUӝQJUDNKLPyQJFӑFYӳDNӃWKӧSYӟLPyQJEqErQWUrQVӁWҥRWKjQKPӝWPyQJ
NKӕLKӛQKӧSFyWiFGөQJSKkQSKӕLOҥLWҧLWUӑQJFӫDF{QJWUuQK[XӕQJFiFÿҫXFӑF6ӵNӃWKӧS
ÿyWҥRWKjQKPӝW0yQJ%q&ӑFPjFyVӭFFKӏXWҧLYjWtQKәQÿӏQKUҩWcao cho công trình .
7KHR&DUVWHQ$KQHUYj'PLWUL6XNKRYWKuVRYӟLPyQJFӑFQyFyѭXÿLӇPKѫQYӅÿӝ
VkXKҥFӑFEӣLQyNK{QJFҫQWKLӃWSKҧL[X\rQTXDKӃWOӟSÿҩWVpW\ӃXÿӇFKӕQJOrQOӟSÿҩWWӕW
PjFyWKӇGӯQJӣFDRWUuQKErQWUrQ9uWKӃVRYӟLPyQJFӑFYӟLFKLӅXGjLFӑFOӟQWKuQyVӁ
O~QQKLӅXKѫQQKѭQJYүQÿҧPEҧRÿѭӧFJLӟLKҥQFKRSKpSYjKLӇQQKLrQOjQyVӁO~QtWKѫQ
QKLӅX VR YӟL PyQJ Eq &KtQK Yu Yұ\ Pj PyQJ Eq FӑF ÿm ÿѭӧF Vӱ GөQJ UҩW WKjQK F{QJ ӣ
)UDQNIXUW&ӝQJKzDOLrQEDQJĈӭFYjQKLӅXQѫLNKiFWUrQWKӃJLӟLӣQKӳQJQѫLPjQӅQÿҩW
FyOӟSWUҫPWtFKVpWWӗQWҥLYӟLFKLӅXVkXTXiOӟQ
1KѭӧFÿLӇPOӟQQKҩWFӫDPyQJEqFӑFFKtQKOjYLӋFWtQKWRiQUҩWSKӭFWҥSGRFK~QJWD
NKyPjÿiQKJLiFKtQK[iFVӵSKkQFKLDQӝLOӵFJLӳDEҧQVjQÿi\%qYjFӑFYjELӃQGҥQJFӫD
NKӕLPyQJQj\ÿӝO~QVӁÿѭӧFWtQKWRiQQKѭWKӃQjROjKӧSOê
7UrQFѫVӣNӃWKӧSOêWKX\ӃWWtQKWRiQFӫDJLiRVѭ7HQR[.\XVKXYӟLOêWKX\ӃWPyQJ
FӑFErW{QJFӕWWKpSÿӇWtQKWRiQNLӇPWUDÿLӅXNLӋQFѭӡQJÿӝFӫD&ӑF;L0ăQJ- ĈҩWÿӗQJ
WKӡLJLҧLTX\ӃWEjLWRiQWtQKWRiQQӝLOӵFEҧQÿi\WUrQFѫVӣNӃWKӧSOêWKX\ӃW0{+uQK1ӅQ
Winkler YjSKҫQPӅP(WDEV9
3. &ѫVӣNKRDKӑFÿӇWKLӃWNӃ0yQJ%qWUrQQӅQ&ӑF;L0ăQJĈҩW
3.1. 4XDQÿL͋PWtQKWRiQ
9LӋc tính toán &ӑF;L0ăQJ- ĈҩWÿѭӧFWLӃQKjQKQJѭӧFOҥLVRYӟLWtQKWRiQFӑFEr
W{QJFӕWWKpSWӭFOjWDVӁOӵDFKRQWUѭӟFVӕOѭӧQJYjFKLӅXGjLFӫDFӑFVDXÿyÿLNLӇPWUD[HP
YӟLOӵDFKӑQÿyWKuFyÿҧPEҧRÿѭӧFNKҧQăQJFKӏXOӵFKD\NK{QJ
&KҩSQKұQJLҧWKLӃWUҵQJFӑFYӳD[LPăQJÿҩWFKӍFKӏXWҧLWUӑQJWKҷQJÿӭQJFzQWRjQEӝ
WҧLWUӑQJQJDQJVӁGRWRjQEӝEqErQWUrQQyWLӃSWKXUӗLWUX\ӅQFKR[XQJTXDQK .
.KLWtQKWRiQYjNLӇPWUDELӃQGҥQJÿӝO~QFӫDQӅQÿҩWErQGѭӟLWDVӁNӃWKӧSVRVánh
JLӳDFiFSKѭѫQJSKiS;XҩWWUӵFWLӃSNӃWTXҧFKX\ӇQYӏFӫDFiFJӕLWӵDÿjQKӗLWӯSKҫQPӅP
(WDEVKD\WtQKWRiQELӃQGҥQJFӫDPyQJWKHRQJX\rQWҳFNKӕLPyQJTX\ѭӟFEҵQJ QKLӅXF{QJ
WKӭF&{QJWKӭFFӫD*LiRVѭ%URPKRһFPӝWYjLF{QJWKӭFNKiFVӁÿѭӧFÿӅFұSWURQJSKҫQ
WtQKWRiQErQGѭӟL
3.2. 7tQKWRiQYjNL͋PWUDF˱ͥQJÿ͡FKR&͕F;L0ăQJ± Ĉ̭W
9LӋFWtQKWRiQYjNLӇPWUDVӁÿѭӧFWLӃQKjQKFKRÿLӅXNLӋQVD
X
TS ȝSTPD[
d
fc
Ra = min( Ra1, Ra2 )
t
¦ N
- TrìQKWӵWtQKWRiQ
&KӑQWUѭӟFFKLӅXGjLFӑFÿѭӡQJNtQKFӑFYjFҧVӕOѭӧQJFӑFEӕWUtQ[Q\
;iFÿӏQKKӋVӕWұSWUXQJӭQJVXҩWȝ
p
=
]).1'(1[
'
p
an
n
F{QJWKӭFWKӵFQJKLӋP
Lb, Bb .tFKWKѭӟFWKHRSKѭѫQJ;<FӫDEҧQÿi\TX\ѭӟFQҵPWUrQÿҫXFӑF
/%.tFKWKѭӟF;<FӫDSKҫQGLӋQWtFKEҧQÿi\WUX\ӅQ[XӕQJNKӕLFӑF
A
f
/%'LӋQWtFKEҧQÿi\WUX\ӅQ[XӕQJNKӕLPyQJFӑF
A
b
= L
b
.B
b
'LӋQWtFKFӫDEҧQÿi\TX\ѭӟFQҵPWUrQ ÿҫXFӑF
Q¶
) (
).(
211
12
pL
Lp
nE
nE
OD
O
+ӋVӕSKkQEәӭQJVXҩWa
p
=
f
col
A
A¦
.
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
158
Į
1
=
).21).(1(
)1(
21
1
QQ
Q
/jKӋVӕNӇÿӃQVӵWăQJOrQFӫD0{ÿXQ%LӃQGҥQJWKHRKѭӟQJ
WKҷQJÿӭQJÿѭӧFVLQKUDEӣLVӵKҥQFKӃFӫD PһWSKҷQJErQWKkQFӑF
Ȝ
L
=
p
B
H
1
9ӟL+
1
OjFKLӅXGj\FӫDOӟSÿҩWWKӭQKҩWEDRTXDQKFӑF
B
p
%ӅUӝQJWKHRKѭӟQJOkQFұQQJҳQKѫQFӫDSKҫQWӱFӑFPӣUӝQJ
E
1
, E
2
, E
p
0{ÿXQELӃQGҥQJWUXQJEuQKFӫDOӟSÿҩWYjOӟS;HPQKѭOӟSÿҩW
FKtQKOjWRjQEӝFiFOӟSÿҩWPjFӑFÿLTXDFzQOӟSÿҩWOjOӟSÿҩWErQGѭӟLPNJLFӑF0{ÿXQ
ELӃQGҥQJFӫDFӑF;L0ăQJ- ĈҩWÿѭӧF[iFÿӏQKWKHRWKtQJKLӋP
n
12
=
2
1
E
E
; n
P2
=
2
E
E
P
&iFKӋVӕWtQKWRiQ
Ȟ1 = v2 +ӋVӕ3RLVVRQWUXQJEuQKFӫDOӟSYjOӟS
7tQKWRiQÿѭӧFFѭӡQJÿӝӭQJVXҩWQpQVLQKUDWUrQNKӕLPyQJFӑFPӣUӝQJ
q
p
ȝ
p
. q
max
ȝ
p
.
f
A
N¦
ĈHPVRViQKYӟLIF
. 7tQKWәQJFѭӡQJÿӝFKӏXWҧLJLӟLKҥQFӫDNKӕLPyQJFӑFÿDQJWKLӃWNӃWURQJWUѭӡQJ
KӧSWtQKWRiQFKRFҧQKyPFӑFR
a1
=
¸
¸
¹
·
¨
¨
©
§
¦
sii
bd
s
Lh
Aq
F
) (
.
.
1
W
K
F
s
= 2
y
3 /jKӋVӕDQWRjQȘ/jKӋVӕNӇÿӃQVӵEӕWUtFӑFNK{QJKRjQWRjQ
q
d
/jӬQJVXҩWWӟLKҥQFӫDJӕLWӵDWKҷQJÿӭQJWҥLPNJLFӫDFӑFTX\ѭӟF
q
d
= icĮF1
c
+ iȖȕȖ
1
.B
b
.N
Ȗ
+ iqȖ
2
.z.N
q
( ic = iȖ = iq = 1 )
Įȕ+ӋVӕFѭӡQJÿӝiSOӵFJӕLWӵDSKөWKXӝFYjRQӅQÿҩW
F/ӵFGtQKNӃWFӫDOӟSÿҩWWҥLYӏWUtPNJLFӑFTX\ѭӟF
Nc , NȖ , Nq +ӋVӕWUDEҧQJSKөWKXӝFYjRJyFQӝLPDViWFӫDOӟSÿҩWWҥLPNJL
WѭѫQJWӵQKѭSKҫQWtQKWRiQVӭFFKӏXWҧLFӫDFӑFErW{QJFӕWWKpS
=&DRWUuQKFӫDPNJLFӑFVRYӟLQӅQWӵQKLrQȖ
1
Ȗ
ÿҭ\QәL
Ȗ
2
Ȗ
Gҭ\QәL
.
¦IJdi.hi &ѭӡQJÿӝPDViWK{QJ[XQJTXDQKNKӕLFӑFPӣUӝQJ
Ӣÿk\NKiFYӟLFӑFErW{QJFӕWWKpS ¦IJdi.hi OjJLiWUӏ[iFÿӏQKWKHRF{QJWKӭFWKӵF
QJKLӋPYjQyFKӍJҫQÿ~QJNKLJLiWUӏ1637FzQWKҩSWӭFOjӣFKLӅXVkXWKҩSFjQJ[XӕQJ
VkXNKLJLiWUӏ1637WăQJOrQWKuQyNK{QJFzQFKtQK[iF QӳD
*LiWUӏ1WUEJҫQEҵQJWUXQJEuQKFӝQJFӫDJLiWUӏ1WUrQYӏWUtÿy'YjGѭӟL'
ĈӕLYӟLQӅQÿҩWFiWWKuIJ
d
i
=
l
N.10
ĈӕLYӟLQӅQÿҩWVpWEQWKuIJdi = min ( c , N ) .
l : 1ăQJOѭӧQJPDViWWUrQWKkQFӑFӕQJWKpS[LPăQJÿҩW7X\QKLrQӣÿk\iSOӵFJӕL
WӵDFӫDNKӕLNK{QJJk\UDPDViWQj\QrQO 1ӃXFyWKuQyVӁOjPJLҧPIJGL
Ls &KXYLNKӕLFӑFTX\ѭӟFYjWtQKJҫQÿ~QJQKѭVDX
L
s
=
ppyx
DDnn 5,0) 2.2(
SS
(Dp ÿѭӡQJNtQKFӑF[LPăQJÿҩW
. 6ӭFFKӏXWҧLFӫDNKӕLFӑFPӣUӝQJNKLWtQKWRiQYӟLFӑFÿѫQR
a2
=
s
gle
F
Rn
sin
.
ÈSOӵFJӕLWӵDWKҷQJÿӭQJFӫDPӝWFӑFÿѫQ5VLQJOHÿѭӧFWtQK WKHRF{QJWKӭF WKӵF
QJKLӋPVDX ĈӕLYӟLQӅQÿҩWFiWWKu5single = 75.Ntrb.Ap ĭ¦IJdi.hi .
ĈӕLYӟLQӅQÿҩWVpWEQWKu5single = 6.c.Ap ĭ¦IJdi.hi
Fĭ$S/ӵFGtQKNӃWFӫDÿҩWWҥLPNJLFӑFFKXYLGLӋQWtFKFӫDPӝWFӑFÿѫQ
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
159
Pile
H
Pile
2
1
S2
q
2
1
S1
N
trb
&KӍVӕ637WUXQJEuQKFӫDÿҩWWҥLYӏWUtPNJLFӑF&iFKOҩ\QKѭӣWUrQ
)V /jKӋVӕDQWRjQYjQOjWәQJVӕFӑFWURQJNKӕLÿDQJWtQKWRiQ
.LӇPWUDÿLӅXNLӋQ5a = min (R
a1
, R
a2
)
t
¦ N
3.3. TWRiQYjNL͋m tra &͕F;L0ăQJ± Ĉ̭WWKHRÿL͉XNL͏QEL͇QG̩QJ:
3.3.1. 7KHRSK˱˯QJSKiSFͯD*LiRV˱%URP
9ӟLEҧQFKҩWFNJQJOjPӝWGҥQJFӫDJLDFӕQӅQQrQYLӋFSKkQWtFKWtQKWRiQÿӝO~Qӣ
ÿk\YӅFѫEҧQFyWKӇGӵDWUrQQJX\rQWҳFWtQKWRiQO~QFӫDFӑFJLDFӕQӅQPjSKѭѫQJ pháp
WtQKWRiQWK{QJGөQJQKҩWKLӋQQD\FKtQKOjSKѭѫQJSKiSWtQKO~QGRJLiRVѭ%URPVÿӅ[XҩW .
ĈӝO~QFӫDNKӕLPyQJFӑFÿѭӧFWtQKWKHRF{QJWKӭFVDX6 61 + S2
S1 OjÿӝO~QEҧQWKkQFӫDNKӕLFӑFJLDFӕ;pWÿӃQ%LӃQGҥQJ FӫDFӑF
S
1
=
tb
i
E
Hq '.
=
sP
i
EaEa
Hq
)1(.
.
'
T7ҧLWUӑQJSKkQEӕFӫDF{QJWUuQK.1P
¨+i &KLӅXVkXFӫDOӟSÿҩWWKӭLPjNKӕLFӑFÿLTXD(m).
a =
LB
An
c
.
.
7ӍVӕJLӳDWәQJGLӋQWtFKFӑFJLDFӕYӟLGLӋQ
WtFKNKӕLJLDFӕ
Q7әQJVӕFӑF$p OjGLӋQWtFKWLӃWGLӋQFӑF
%/OjNtFKWKѭӟFNKӕLJLDFӕ
E
p
, E
s
0{ÿXQELӃQGҥQJFӫDYұWOLӋXFӑFYjFӫDÿҩWQӅQ
PjFӑFÿLTXD
S
2
OjÿӝO~QFӫD NKӕL ÿҩWErQGѭӟL PNJLFӑFÿѭӧFWtQK
WRiQWKHRQJX\rQOêFӝQJO~QWӯQJOӟSQKѭÿӝO~QWLrXFKXҭQYӟL
ÿӝGӕFӣÿk\Oj9jÿLӅXÿyFyQJKƭDOjGLӋQWtFKNKӕLPyQJTX\ѭӟFWăQJOrQOjPWҧL
WUӑQJWUX\ӅQ [ѭӕQJVӁJLҧPÿL
7UrQWKӵFWӃÿӝO~QFӫDPyQJEqFӑFWtQKWKHRSKѭѫQJSKiSQj\OjUҩWOӟQĈyOjGRWD
ÿmEӓTXDVӵOjPYLӋFFӫD%ҧQÿi\.KLEҧQÿi\FyWKDPJLDYjRWKuYLӋFWtQKO~QFKRFiFNKӕL
FӑFJLDFӕPӝWFiFKÿӝFOұSVӁNK{QJFzQSKKӧSQӳDEӣLYuO~FQj\OӵFWӯFKkQFӝWWUX\ӅQ
[XӕQJVӁNK{QJFKӍGRPuQKNKӕLFӑFӣQJD\GѭӟLQyQKұQKRjQWRjQPjQyÿmFyVӵSKkQ
SKӕLOҥLWҧLWUӑQJ
3.3.2. TKHRSK˱˯QJSKiSSK̯QW͵KͷXK̩QWUrQF˯VͧͱQJGͭQJSK̯QP͉P(7DEV
7KHRQKѭWUrQÿmSKkQWtFKWKuP{KuQKWtQKWRiQPyQJEqFӑFPjWDVӱGөQJӣWUrQ
FKtQKOjP{KuQK1ӅQÿjQKӗL:LQNOHU7KHRÿһFÿLӇPFӫDP{KuQK:LQNOHUWKuFKX\ӇQYӏ
ÿӝFOұSWҥLFiFJӕLWӵDGѭӟLSKҥPYLFKӏXWҧLFNJQJFKtQKOjÿӝO~QFӫDQӅQWҥLQKӳQJYӏWUtÿy
1KѭYұ\WDFyWKӇ[HPQKѭFKX\ӇQYӏFӫDJӕLÿjQKӗLFKtQKOjÿӝO~QFӫDQӅQÿҩWErQGѭӟL
0yQJEqFӑF0һWNKiFFӑFYӳDGRÿӵRFFKӃWҥRWӯYұWOLӋXFKtQKOj[LPăQJYjÿҩWQJD\GѭӟL
FKkQFӫDPyQJQrQWtQKELӃQGҥQJFӫDFӑFOjUҩWOӟQGRÿyӣÿk\WDFҫQ[iFÿӏQKWKrPELӃQ
GҥQJFӫDFӑFYӳDOj62¶1yFNJQJÿѭӧF[iFÿӏQKWѭѫQJWӵQKѭ61 FӫDSKҫQWtQKWRiQÿӝO~Q
FӫDNKӕLJLDFӕӣWUrQ.ӃWKӧSKDLÿӝO~QWUrQWDVӁFyÿѭӧFÿӝO~QFXӕLFQJ
3.4. TtQKWRiQE̫Qÿi\
9LӋFJLҧLEjLWRiQEҧQWUrQQӅQÿjQKӗLEҵQJWD\ OjPӝWÿLӅXKӃWVӭFSKӭFWҥSFKRG
WUѭӡQJKӧSWҧLWUӑQJWiFGөQJFyÿѫQJLҧQQKѭWKӃQjR%ӣLYuiSOӵFÿҩWQӅQWiFGөQJOrQEҧQ
ÿi\SKkQEӕNK{QJÿӅXÈSOӵFSKkQEӕÿySKөWKXӝFUҩWQKLӅXYjRÿӝFӭQJFӫDEҧQÿi\
7KHRNӃWTXҧWKӵFQJKLӋPFKRWKҩ\ÿӝ FӭQJFӫDEҧQÿi\FjQJOӟQWKuiSOӵFSKkQEӕOrQEҧQ
ÿi\FjQJSKkQEӕÿӅXÿһQKѫQYjO~FQj\P{KuQKOjPYLӋFFӫDQyFjQJJLӕQJQKѭPӝWEҧQ
VjQOұWQJѭӧFOҥLKѫQFKӏXWiFGөQJFӫDWҧLWUӑQJSKkQEӕEҵQJiSOӵFFӫDQӅQÿҩW
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
160
3000
90009000900090009000
800090009000900054003600
2500
7
6
21
G
E
D
C
B
A'
A
3
4 5
ӬQJGөQJSKҫQPӅP(WDEVPjWDFyWKӇ[iFÿӏQKÿѭӧFQӝLOӵFFӫDEҧQ9ӟLQӝLOӵFFy
ÿѭӧFWDWLӃQKjQKWtQKWRiQFӕWWKpSFKREqQKѭÿӕLYӟLPӝWVjQQҩPOұWQJѭӧFOҥLYұ\.
3.5. ͰQJGͭQJWtQKWRiQFKRF{QJWUuQKWKFW͇:
&{QJWUuQKÿѭӧFWtQKWRiQӣÿk\OjPyQJFӫDF{QJWUuQK9ƭQK7UXQJ3OD]DYӟLVѫÿӗEӕ
WUtFӑFQKѭKuQKYӁ
&KӑQ FѭӡQJÿӝFKӏXQpQJLӟL
KҥQFӫDPүXWKӱ)c = 2500 KN/m2.
'RÿyFѭӡQJÿӝWKLӃWNӃVӁOj
fc
2500
33
c
F
830KN/m2 .
.ӃWTXҧWtQKWRiQFKRFiFVӕKLӋX
NKӕLFӑFÿѭӧFWKӇKLӋQWURQJEҧQWtQh
QKѭErQGѭӟL7URQJÿy
) )«/jVӕKLӋXFӑF
Pj WҥL ÿy Fy Eӕ WUt Vӕ FӑF WKHR
phѭѫQJ2;OjFӑFYjWKHRSKѭѫng
OY là
%LӇXÿӗ0RPHQ0
11
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
161
F77 135514 418 3111.2 434991.1 3284.8 387601.8 387601.8 Thӓa mãn
F55 16634 217 849.4 21289.8 3137.5 39219.1 21289.8 Thӓa mãn
F54 16001 198 833.3 17819.4 3137.5 31375.3 17819.4 Thӓa mãn
F44 12361 162 833.3 14967.0 3137.5 25100.2 14967.0 Thӓa mãn
F34 11931 147 817.2 12018.0 3137.5 18825.2 12018.0 Thӓa mãn
F24 5091 63 801.1 9133.4 3137.5 12550.1 9133.4 Thӓa mãn
F23 4530 70 801.1 7146.6 3137.5 9412.6 7146.6 Thӓa mãn
F22 3092 115 801.1 5159.8 3137.5 6275.1 5159.8 Thӓa mãn
Kí
hiӋu
¦N
( KN)
q
L
(KN/m
2
)
q
d
(KN/m
2
)
R
a1
(KN)
R
single
(
KN
)
R
a2
(KN)
5GQJÿӇ kiӇm tra
%ҧQJWәQJKӧSÿӝO~QWKHRSKѭѫQJSKiS%URP
F77 59932.2 26324 163596 173.6 2.243 4.668 6.912
F55 3757.4
1670.4 18776.3 100 1.311 1.898 3.208
F54 3005.9
1336.4 17858.5 102.6 1.45 1.84 3.29
F44 2404.7
1069.1 14196.9 88 1.323 1.615 2.937
F34 1803.6
801.8 13551.5 91.2 1.481 1.598 3.078
F24 1202.4
534.5 7119.8 52.4 0.776 0.82 1.596
F23 901.8
400.9 6060 48.4 0.888 0.758 1.646
F22 601.2
267.3 3697.6 32.3 1.152 0.405 1.557
P
gl
(KN)
S
1
(cm)
S
'
(
cm
)
S
(
cm
)
Kí
hiӋu
G
pile
(
KN
)
G
soil
(KN)
N (KN)
%ҧQJWәQJKӧSÿӝO~Q7ӯSKҫQPӅP(WDEV
F77 59932.2
26324
163596 173.6 2.243 4.112 6.355
F55 3757.4
1670.4
18776.3 100 1.311 2.157 3.468
F54 3005.9
1336.4
17858.5 102.6 1.45 2.018 3.468
F44 2404.7
1069.1
14196.9 88 1.323 1.808 3.131
F34 1803.6
801.8
13551.5 91.2 1.481 1.728 3.209
F24 1202.4
534.5
7119.8 52.4 0.776 0.892 1.668
F23 901.8
400.9
6060 48.4 0.888 1.118 2.006
F22 601.2
267.3
3697.6 32.3 1.152 1.341 2.493
Kí
hiӋu
G
pile
(
KN
)
G
soil
(KN)
N (KN)
P
gl
(KN)
S
1
(
cm
)
S
'
(
cm
)
S
(
cm
)
7DQKұQWKҩ\FyVӵFKrQKOӋFKOӟQJLӳDEҧQJNӃWTXҧYjÿLӅXÿyFyWKӇJLҧLWKtFKEӣLVӵ
SKҧQiQKFKѭDÿ~QJKӋVӕQӅQFӫDQӅQÿҩW
4. ĈiQKJLiNӃWTXҧ
.ӃWTXҧWtQKWRiQӣWUrQFKRWKҩ\YӅFѫEҧQFiFSKѭѫQJSKiSWtQKWRiQӣWUrQÿmÿѭDUD
YjJLҧLTX\ӃWÿѭӧFFiFYҩQÿӅPӝWFiFKWѭѫQJÿӕLQKѭQJNӃWTXҧWKX ÿѭӧFWӯFiFSKѭѫQJ
SKiSYүQFKѭDWKӇFRLOjKӧSOê1JX\rQQKkQFKtQKOjGRWҩWFҧFiFSKѭѫQJSKiSWUrQYүQ
FKѭDSKҧQiQKÿ~QJEҧQFKҩWFӫDQӅQÿҩW
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
162
5. .LӃQQJKӏ
7URQJJLDLÿRҥQKLӋQQD\QӃXWLӃSWөFKRjQWKLӋQOêWKX\ӃWNӃWKӧSYӟLWKӵFQJKLӋPWKu
ÿӅWjLWUrQFyWKӇiSGөQJYjRFKRQKLӅXF{QJWUuQK[k\GӵQJÿһFELӋWYӟLFiFF{QJWUuQKYӯD
YjFDRWҫQJWӯ-WҫQJYjKLӋXTӫDNLQKWӃPjQyPDQJOҥLOjUҩWOӟQ
+ѭӟQJSKiWWULӇQFӫDÿӅWjL
7LӃSWөFQJKLrQFӭXPӕLOLrQKӋFӫDӭQJVXҩWYjELӃQGҥQJJLӳDQӅQÿҩWErQGѭӟLYj
EҧQÿi\ErQWUrQYӟL&ӑF9ӳD;L0ăQJĈҩWÿӇWӯÿySKҧQiQKFKtQK[iFKѫQQӳDFiFWtQKFKҩW
FѫOêFӫDQӅQÿҩW
1JKLrQFӭXVӵOjPYLӋFFKXQJFѭ0yQJ%q&ӑFÿӇFyWKӇÿѭDUDPӝWP{KuQKKRjQ
FKӍQK KѫQWURQJYLӋFWtQK WRiQ VӵSKkQFKLDQӝL OӵFFKREҧQÿi\ Yj FKR FӑFWӯÿyÿѭD UD
SKѭѫQJSKiSWtQK WRiQ ELӃQ GҥQJĈӝO~QFKR 0yQJ +ӛQ+ӧS ± 0yQJ%q&ӑFPӝWFiFK
FKtQK[iFKѫQ
7¬,/,ӊ87+$0.+Ҧ2
[1] 7KLӃWNӃYjWtQKWRiQPyQJQ{QJ 9NJ&{QJ1Jӳ7UѭӡQJĈҥL+ӑF;k\'ӵQJFK
[2] 7&;'919ө.KRDKӑFYj&{QJQJKӋ;k\%DQKjQKQJj\/12/2006.
[3] Foundation Analysis and Design , Fifth Edition, Joseph E. Bowles, P.E , S.E .
[4]
[5]
.
[6] .
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQFX.KRDKͥF´O̿QWK ĈҥLKӑFĈj1ҹQJ- 2008
163
6Ӱ'Ө1*Ӕ1*%Ç7Ð1*&Ï/Ӛ;81*48$1+
1*+,Ç1&Ӭ8.+Ҧ1Ă1*7+87+2È71ѬӞ&7+Ҩ0
ĈӔ,9Ӟ,*,ӂ1*+2¬1&+ӌ1+.+,;Æ<'Ӵ1*&È&
&Ð1*75Î1+7+8Ӹ&Ð1*
APPLY CONCRETE TUBE WITH HOLES AROUND, STUDY THE ABILITY
OF COLLECTING AND ESCAPING ABSORBED WATER TO COMPLETE
WELLS, WHEN BUIDING INRRIGATION WORKS
697+/Ç7Ҩ17581*
9®9Ă1+2È
6LQKYLrQ.KRD;'7/7Ĉ7U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
HDKH: 1*Ð9Ă1'lj1*
7U˱ͥQJĈ̩LK͕F%iFKNKRDĈ̩LK͕FĈj1̽QJ
7Ï07Ҳ7
%jLEiRQj\WUuQKEj\SKѭѫQJSKiSWtQKWRiQKҥWKҩS PӵFQѭӟFQJҫP011WURQJTXiWUuQK
OjPNK{KӕPyQJNKLWKLF{QJFiFF{QJWUuQK[k\GӵQJFKӏXҧQKKѭӣQJFӫDQѭӟFQJҫPYұQ
ÿӝQJWUuQKEj\SKѭѫQJSKiSFKӃWҥRVҧQ[XҩWORҥLӕQJOӑFEҵQJErW{QJYjFKѭѫQJWUuQKWtQK
WRiQWKLӃWNӃKӋWKӕQJJLӃQJSKөFYөFKRcông tác thi công.
ABSTRACT
This article explains the method of lowering the under-current level in the course of duying
foundation when executing construction works affeted by moving under-current, it also explains
the method of introducing conrecte filter tube and the program of desigring well system to dry
fourdation to serve exccuting work.
1. ĈһWYҩQÿӅ
4XiWUuQK[k\GӵQJFiFF{QJWUuQK7KXӹOӧLWUrQV{QJNKLQӅQPyQJFӫDF{QJWUuQKӣ
YQJEmRKRjQѭӟFOjORҥLÿҩWKҥWQKӓNKҧQăQJWKRiWQѭӟF\ӃXQӅQFiWFKҧ\PһWEҵQJWKL
F{QJFKұWKҽSKRһFTXiJҫQFiFF{QJWUuQKNӃFұQ«*LҧLSKiSWKRiWQѭӟFWKҩPOjPNK{Kӕ
PyQJEҵQJSKѭѫQJSKiSKҥWKҩS011YӟLKӋWKӕQJFiFJLӃQJWKҩPFyêQJKƭDOӟQYӅNLQKWӃ
YjNӻWKXұWYuQyFyQKӳQJѭXÿLӇPQәLEұWVDX
+ *LӳFKREӅPһWKӕPyQJOX{QOX{QÿѭӧFNK{UiR
+ .K{QJJk\FҧQWUӣFiFWKLӃWEӏWKLF{QJWҥLÿLӅXNLӋQPһWEҵQJWKLF{QJWKXұQOӧL
+ 7KtFKKӧSNKL[k\GӵQJFiFF{QJWUuQKFyQӅQOjÿҩWKҥWQKӓKӋVӕWKҩPEpÿһFELӋWOj
QӅQFyKLӋQWѭӧQJFiWFKҧ\
+ 1ӅQPyQJÿѭӧFJLDFӕGRTXiWUuQKEѫPK~WVӵGLFKX\ӇQFӫDGzQJWKҩPÿҩWQӅQÿѭӧF
QpQFKһWYjFӕNӃWYY
2. CѫVӣWtQKWRiQYjPӝWVӕP{KuQKӭQJGөQJ
2.1. &˯VͧWtQKWRiQ
;pWQJX\rQWӕGzQJWKҩPFKҧ\YjRJLӃQJWURQJKӋWRҥÿӝWUө U]QKѭKuQKYӁ