Tải bản đầy đủ (.pdf) (53 trang)

Nghiên cứu sự tương tác của nhóm cọc và nền đất dưới tác dụng của tải trọng ngang bằng mô hình số

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.59 MB, 53 trang )

7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

127
NGHIÊN CӬ8 6Ӵ7ѬѪ1*7È&&Ӫ$1+Ï0&Ӑ&9¬
1ӄ1ĈҨ7'ѬӞ,7È&'Ө1*&Ӫ$7Ҧ,75Ӑ1*1*$1G
%Ҵ1*0Ð+Î1+6Ӕ
STUDYING THE INTERACTION BETWEEN GROUP PILLS AND
FOUNDATION UNDER TRANSVERSAL LOAD BY NUMERICAL MODEL

SVTH: 3+Ҥ07Ă1*;8Æ1+2¬
/ͣS;&7U˱ͥQJĈ̩L+͕F%iFK Khoa
&%+'7K6ĈӚ0,1+ĈӬ&
.KRD;k\G͹QJ''&1, 7U˱ͥQJĈ̩L+͕F%iFK.KRD

7Ï07Ҳ7
7tQK WѭѫQJ WiF JLӳD QKyP FӑF Yj QӅQ ÿҩW Oj SKӭF WҥS 9LӋF WLӃS FұQ EjL WRiQ Qj\ EҵQJ
SKѭѫQJ SKiS JLҧL WtFKUҩW NKy NKăQ %iR FiR Qj\ WUuQKEj\ FiFK P{ KuQK KyD Yj Vӱ Gөng
SKѭѫQJSKiSVӕÿӇQJKLrQFӭXVӵOjPYLӋFÿӗQJWKӡLFӫDQKyPFӑFYjQӅQÿҩWFNJQJQKѭVӵ
WѭѫQJWiFJLӳDFK~QJYӟLQKDXGѭӟLWiFGөQJFӫDWҧLWUӑQJQJDQJFy[pWÿӃQNLӇXOLrQNӃWPӝW
FKLӅXJLӳDFӑFYjQӅQÿҩW
ABTRACT:
The interaction between group pills and foundation are complicated. To approach this problem
by analytic method is very difficult. This article presents the way to model and use the
numerical method in order to study the working together of group pills and foundation as well
as the interaction among them under transversal load with consideration of the incompressible
connection between pills and soil.

1. Mӣ ÿҫX
DѭӟL tác dөQJ cӫD tҧL trӑQJ, các cӑc có sӵ tác dөQJ tѭѫng hӛ giӳD chúng vӟL nhau cNJQJ
nhѭ giӳD chúng vӟL nӅQ ÿҩW. ViӋF ÿiQK giá mӝW cách chính xác sӵ làm viӋF cӫD chúng là mӝW
bài toán có khӕL lѭӧQJ tính rҩW lӟQ và rҩW phӭF tҥS. Vì vұ\, trong thӵF tӃ thiӃW kӃ các móng cӑF


ÿjL thҩS thѭӡQJ quan niӋP tҧL trӑQJ ngang tác dөQJ lên móng là do nӅQ ÿҩW tiӃS nhұQ và xem
cӑF làm viӋF ÿӝF lұS vӟL nӅQ ÿҩW. Quan ÿiӇP nhѭ vұ\ là chѭa phҧQ ҧQK ÿѭӧF sӵ làm viӋF thӵF
tӃ cӫD cӑF và nӅQ ÿҩW.
Vӟi sӵ phát triӇQ cӫD công cө tính toán, ÿһF biӋW là máy tính ÿiӋQ tӱ cùng phѭѫng pháp
tính, ÿһF biӋW là phѭѫng pháp sӕ ÿm có thӇ cho phép ÿѭӧF giҧL quyӃW bài toán theo quan ÿiӇP
cӑF và nӅQ ÿҩW làm viӋF ÿӗQJ thӡL nhѭ mӝW môi trѭӡQJ liên tөF.
VӟL lý do nhѭ vұ\, ÿӅ tài ÿѭӧF chӑQ ³Qghiên cӭX sӵ tѭѫng tác cӫD nhóm cӑF dѭӟL tác
dөQJ cӫD tҧL trӑQJ ngang bҵQJ phѭѫng pháp sӕ´WURQJÿy chӫ yӃX là ÿi mô hình hoá bài toán,
nghiên cӭX tính liên kӃW mӝW chiӅX gӳD cӑc và nӅQ ÿҩW, khҧR sát mӝW sӕ bài toán cө thӇ.
KӃW quҧ nghiên cӭX có thӇ cho phép áp dөQJ vào thӵF tӃ thiӃW kӃ nӅQ móng công trình
xây dӵQJ.
2. TәQJ quan
9ҩQÿӅYӅVӵWѭѫQJWiFFӫDFӑFYjQӅQÿҩWGѭӟLWiFGөQJ cӫD tҧL trӑQJ ngang ÿm có
nhiӅX cách tiӃS cұQ:
- Theo [3] & [6], tiӃQ hành thí nghiӋP ÿӇ rút ra kӃW quҧ, tӯ ÿy xây dӵQJ các ÿӗ thӏ và
các bҧQJ sӕ liӋX ÿӇ áp dөQg vào các bài toán thiӃW kӃ. Ĉky là cách tin cұ\ nhҩW nhѭng tӕQ kém
vӅ kinh tӃ và không thӇ mô tҧ cho tҩW cҧ các tình huӕQJ thiӃW kӃ mà trong thӵF tӃ rҩW ÿa dҥQJ.
- Trong [2] & [3], thay thӃ nӅQ bҵQJ các liên kӃW ÿjQ hӗi ÿѭӧF ÿһF trѭng bҵQJ hӋ sӕ nӅQ
theo phѭѫng ngang sau ÿy giҧL bài toán bҵQJ các phѭѫng pháp cӫD lý thuyӃW ÿjQ hӗL. Quan
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


128
ÿiӇP này là rӓ ràng vӅ lý thuyӃW nhѭng viӋF giҧL bài toán bҵQJ phѭѫng pháp giҧL tích là phӭF
tҥS, hѫn nӳa cNJQJ chѭa phҧQ ҧQK ÿѭӧF sӵ tѭѫng tác giӳD các cӑF và tính trung thӵF cӫD nӅQ
ÿҩW.
- Theo [4], các tác giҧ ÿѭa cӑF vӅ mӝW thanh công xѫn tѭѫng ÿѭѫng dӵD vào ÿiӅX kiӋQ
ngàm cӫD cӑF. Quan ÿiӇP này chӍ phù hӧS vӟL bài toán cӑF ÿѫn.
ĈӇ góp phҫQ khҳF phөF nhӳQJ hҥQ chӃ trên, trong ÿӅ tài này, các tác giҧ sӱ dөQJ thành
tӵX cӫD công nghӋ thông tin và phѭѫng pháp sӕ ÿӇ ÿi giҧL bài toán vӟL quan ÿiӇP xem các cӑF

và nӅQ ÿҩW làm viӋF nhѭ mӝW vұW thӇ ÿjQ hӗL liên tөF vӟL các ÿһF trѭng cѫ hӑF ÿѭӧF xác ÿӏQK tӯ
kӃW quҧ thí nghiӋP. Ngoài ra còn xét ÿӃQ tính liên kӃW mӝW chiӅX cӫD cӑF và nӅQ ÿҩW ÿӇ phҧQ
ҧQK chính xác hѫn nӳa tính chҩW cѫ hӑF cӫD ÿҩW.
3. Cѫ sӣ lý thuyӃW
3.1. Liên k͇W m͡W chi͉X
Khi cӑF chӏX tҧL trӑQJ, sӁ có mӝW cùng ép chһW vào
nӅQ ÿҩW trong khi vùng còn lҥL thì tách ra khӓL. Nhѭ vұ\
liên kӃW giӳD cӑF ÿҩW chӍ có thӇ làm viӋF theo mӝW chiӅX
nhҩW ÿӏnh (chiӅX gây nén) mà không thӇ theo chiӅX ngѭӧF
lҥL. KiӇX liên kӃW ÿy gӑL là liên kӃW mӝW chiӅX (kiӇX Gap
vӟL khoҧQJ hӣ bҵQJ không). Mô hình hoá liên kӃW mӝW
chiӅX chӍ chӏX nén nhѭ trên hình vӁ (H.3.1)
3.2. Mô hình hoá bài toán b̹QJ ph˱˯ng pháp s͙
Theo [5], [9], [10], nӝL dung cӫD phѭѫng pháp sӕ theo mô hình chuyӇQ vӏ ÿӇ áp dөQJ
vào bài toán này nhѭ sau: KӃW cҩX ÿѭӧF chia thành các phҫQ tӱ nӕL vӟL nhau tҥL các nút trong
ÿy cӑF là phҫQ tӱ thanh (Frame), nӅQ ÿҩW là phҫQ tӱ khӕL (Solid). Liên kӃW giӳD cӑF và ÿҩW là
liên kӃW mӝW chiӅX (Gap) có ÿӝ cӭQJ bҵQJ vô cùng. Phѭѫng trình cân bҵQJ tәQJ quát ӭQJ vӟL
trѭӡQJ hӧS hӋ chӏX tҧL trӑQJ tác dөQJ tƭQK:
[K(u)].[u] = [F] (3-1)
+ [K(u)] là ma trұQ ÿӝ cӭQJ
tәQJ thӇ. [K(u)] là hàm sӕ theo u do
tính phi tuyӃQ cӫD liên kӃW mӝW chiӅX.
+ [u] là véc tѫ chuyӇQ vӏ nút.
+ [F] là véc tѫ lӵF nút.
Ĉky là phѭѫ
ng trình phi tuyӃQ
nên sӱ dөQJ cách lһS ÿӇ giҧL.
Sau khi xác ÿӏQK ÿѭӧF véctѫ
chuyӇQ vӏ nút, vұQ dөQJ lý thuyӃW ÿjQ
hӗL ÿӇ xác ÿӏQK nӝL lӵF trong hӋ.

Trong ÿӅ tài, ÿӇ xâ\GӵQng mô
hình và giҧL bài toán, các tác giҧ sӱ
dөQJ phҫQ mӅP Sap 2000. PhҫQ PӅP
này có hiӋX suҩW giҧL cao vӟL sӕ ҭQ rҩW
lӟQ, әQ ÿӏQK, tin cұ\, có lӏFK sӱ phát triӇQ hѫn 30 năm và ÿѭӧF sӱ dөQJ rӝQJ rãi trong tính toán
kӃW cҩX.

3.3. Xác ÿ͓QK vùng biên cͯD mô hình bài toán
Khi hӋ chӏX tҧL trӑQJ, chӍ có mӝW vùng nӅQ ÿҩW gҫQ phҥP vi cӫD cӑF cùng tham gia chӏX
lӵF. ĈӇ giҧP khӕL lѭӧQJ tính toán, cҫQ xác ÿӏQK vùng biên này và thay thӃ vùng nӅQ ÿҩW bӏ bӓ
' 
k

+
0{KuQKOLrQN͇WFKL͉X
PhҫQ tӱ CӑF
PhҫQ tӱ Gap
PhҫQ tӱ ĈҩW
+
0̿WF̷WQJDQJP{KuQK&͕F- 1͉Qÿ̭W
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

129
ÿi bҵQJ các liên kӃW tѭѫng ӭQJ. Trong ÿӅ tài, các tác giҧ sӱ dөQJ cách giҧL lһS ÿӇ xác ÿӏQK
vùng biên này theo ÿiӅX kiӋQ chuyӇQ vӏ trên vùng biên xҩS xӍ bҵQJ không.
4. Nghiên cӭX bҵQJ sӕ
&KRKӋFӑF- QӅQÿҩW có cҩX tҥR:
- CӑF vuông có kích thѭӟF 200x200(mm) ÿѭӧF chӃ tҥR bҵQJ bêtông cӕW thép,
cҩS bӅQ B25, môÿun ÿjQ hӗL E = 3.10
7

(kN/m
2
), hӋ sӕ Poisson Q = 0,2.
- NӅQ ÿҩW gӗP: lӟS sét mӅP có G = 4(m); P = 0,4; E
s
= 20(MPa); lӟS cát chһW có
G = f; P = 0,35; E
s
= 65(MPa); (trong ÿy G; P; E
s
lҫQ lѭӧW là bӅ dày; hӋ sӕ nӣ hông;
môÿXQELӃQ dҥQJ lӟS ÿҩW.
- MӛL cӑF chӍ chӏX tҧL trӑQJ ngang Q = 6(kN).
Bài toán ÿѭӧF phân tích theo 3 mô hình: cӑF ÿѫn, nhóm 4 cӑF vӟL khoҧQJ cách
cӑF là 3D, nhóm 4 cӑF vӟL khoҧQJ cách cӑF là 6D. Trong ÿy, D = 0,2(m) là cҥQK tiӃW
diӋQ cӑF.
9LӋFP{KuQKKRiFӑF- QӅQWKӵFKLӋQEҵQJSKҫQPӅP6DSYjFKӑQFiFK
JLҧLEjLWRiQSKLWX\ӃQ

+uQK0̿WF̷WG͕FP{KuQK +uQK0̿WF̷WQJDQJP{KuQK
&͕F- 1͉Q ÿ̭W &͕F- 1͉Qÿ̭W

+uQK%L͋Xÿ͛P{PHQYjFKX\͋QY͓ͱQJYͣLFiFWU˱ͥQJKͫSSKkQWtFK
D&͕Fÿ˯QE1KyPF͕F'F1KyPF͕F'
9LӋFVR ViQKQӝLOӵFYjFKX\ӇQYӏOӟQQKҩW thӇ hiӋQ WURQJ%ҧQJ
a
b
c
Mô men
&KX\ӇQYӏ

Mô men
&KX\ӇQYӏ
Mô men
&KX\ӇQYӏ
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


130
%̫QJ%̫QJVRViQKN͇W TX̫SKkQWtFK


5. ĈiQKJLiNӃWTXҧ:
NӝL lӵF và chuyӇn vӏ FӫDFӑFWURQJQKyPFӑFÿӅX khác vӟL cӑF ÿѫn. Khi khoҧQJ cách
giӳD các cӑF là 6D, kӃW quҧ nӝL lӵF gҫQ bҵQJ cӑF ÿѫn. ĈiӅX này khҷQJ ÿӏQK tính chính xác vӟL
kӃW quҧ trong tài liӋX [3] & [6].
Ĉӝ lӋFh vӅ chuyӇQ vӏ trong BҧQJ 4.1 cho thҩ\ sӵ tѭѫng tác có xu hѭӟQJ làm
chuyӇQ vӏ tăng nhiӅX hѫn so vӟL nӝL lӵF.
KӃW quҧ cNJQJ cho thҩ\ các cӑF ӣ cuӕL cӫD nhóm chӏX tҧL trӑQJ cho kӃW quҧ nӝL
lӵF và chuyӇQ vӏ lӟQ hѫn ÿҫX nhóm khoҧQJ 1,02 lҫQ ӭQJ vӟL trѭӡQJ Kӧp khoҧQJ cách
'YjQKѭQKDXYӟLNKRҧQJFiFK'


6. .ӃWOXұQYjNLӃQQJKӏ:
ĈӅ tài ÿm xây dӵQJ ÿѭӧF cách tәQJ quát ÿӇ phân tích, ÿiQK giá sӵ tѭѫng tác cӫD
nhóm cӑF và nӅQ ÿҩW bҵQJ mô hình sӕ. Mô hình này cho phép giҧL bài toán tәQJ quát
vӟL ÿһF trѭng cѫ hӑF cѫ bҧQ nhҩW là m{ÿun ÿjQ hӗL và hӋ sӕ nӣ hông cӫD vұW liӋX. Mô
hình này cNJQJ có thӇ áp dөQJ cho trѭӡQJ hӧS tҧL trӑQJ tác dөQJ bҩW kǤ.
MӝW cách tiӃS cұQ mӟL là mô hình có cho phép
ÿӃQ tính liên kӃW mӝW chiӅX giӳa
cӑF và nӅQ ÿҩW. ĈiӅX này phҧQ ҧQK trung thӵF hѫn nӳD các ӭQJ xӱ thӵF tӃ cӫD cӑF - ÿҩW.

KӃW quҧ nghiên cӭX thӇ hiӋQ sӵ ÿ~QJ ÿҳQ cӫD mô hình và cho phép khҷQJ ÿӏQK
lҥL các kӃW luұQ lҥL các nghiên cӭX trѭӟF ÿky bҵQJ các mô hình khác.
Mô hình này cho kӃW quҧ tin cұy hѫn các mô hình bҵQJ lý thuyӃW trѭӟF ÿk
y. TҩW
nhiên, sӵ tѭѫng tác còn phө thuӝF vào nhiӅX yӃX tӕ nhѭ cѭӡQJ ÿӝ tҧL trӑQJ; tiӃW diӋQ
cӑF; môÿun ÿjQ hӗL, hӋ sӕ nӣ hôQJYjWtQKFKҩWNKiFFӫDQӅQÿҩW.
Nên áp dөQJ mô hình này vào viӋF phân tích nӝL lӵF và chuyӇQ vӏ ÿӇ có ÿѭӧF
kӃW quҧ chính xác hѫn trong công tác thiӃW kӃ móng cӑF.


TÀI LIӊ8 THAM K+Ҧ2

7LӃQJ9LӋW
[1] Lê Quí An, NguyӉQ Công MүQ, Hoàng Văn Tân (1998), Tính toán n͉Q móng theo tr̩QJ
thái giͣL h̩Q, Nhà xuҩW bҧQ Xây dӵQJ.
[2] Lê Anh Hoàng (2004), N͉Q Móng, Nhà xXҩW EҧQXây dӵQJ.
ĈҥL lѭӧQJ so
sánh
CӑF
ÿѫn
CӑF trong
nhóm 3D
LӋFK so vӟL
cӑF ÿѫn
CӑF trong
nhóm cӑF 6D
LӋFK so vӟL
cӑF ÿѫn
Mô men lӟQ
nhҩW (kN.m)

2,361 2,762 1,17 2,561 1,085
ChuyӇQ vӏ
ÿӍQK(mm)
3 10,50 3,50 3,60 1,200
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

131
[3] VNJ Công Ngӳ & NguyӉQ Thái (2006), Móng c͕F Phân tích và thi͇W k͇, Nhà xuҩW EҧQNKRD
KӑFNӻWKXұW+j1ӝi.
[4] NguyӉQ LӋ Thuӹ & NguyӉQ HӳX BҧQJ (2008), Tính c͕F ÿ˯n ch͓X t̫L tr͕QJ ngang trong
công trình khai thác d̯X khí ngoài bi͋Q, TҥS chí Xây Dӵng sӕ 1 năm 2008.
[5] 1JX\ӉQ0ҥQK<rQ3K˱˯QJSKiSV͙WURQJ&˯K͕FN͇WF̭X1Kj[XҩWEҧQNKRDKӑF
YjNӻWKXұW+j1ӝL
[6] Shamsher Prakash & Hari Dsharma (2000), Móng c͕F trong th͹F t͇ xây d͹QJ, Nhà xuҩW
bҧQ xây dӵQJ.

7LӃQJ$QK
[7] M. J Tolinson (1994), Pile design and construction practice, Fourth edidtion.
[8] Sap 2000, Basic Analysis Reference.
[9] Edward L. Wilson, Tree Dimensional Static and Dynamic Analysis of Structures,
Computers and Structures, Inc, Berkeley, California, USA, 1998.
[10] Oczienkiewicz, The finite element method in engineering science, Mc Graw ± Hill, Lon
Don, 1990.













7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


132
TÍ1+.+81*3+Ҷ1*&Ï;e7Ĉӂ1ĈӜĈ¬1 HӖ, &Ӫ$
1Ò7%Ҵ1*3+ѬѪ1*3+È3 &+8<ӆ19ӎ

ANALYSING PLANAR FRAMES WITH CONSIDERATION OF THE LINEAR
ELASTIC ROTATIONAL SPRINGS USING DISPLACEMENT METHOD

697+%Ô,$1+1*Ӑ&
/ͣS;/77U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
GVHD: Ths. ĈӚ 0,1+ĈӬ&
Khoa XDDD&CN 7U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1

TÓM TҲ7
%iRFiRQj\WUuQKEj\NӃWTXҧ[k\GӵQJSKѭѫQJSKiSWtQKNKXQJSKҷQJFy[pWÿӃQWtQKTXk\
ÿjQKӗLWX\ӃQWtQKFӫDQ~WNKXQJEҵQJSKѭѫQJSKiSFKX\ӇQYӏĈӇiSGөQJWiFJLҧÿmOұS
trìnhSKkQWtFKEҵQJVӕFKRPӝWVӕEjLWRiQFөWKӇWӯÿyÿiQKJLiYjVRViQKNӃWTXҧYӟL
FiFKWtQKWUX\ӅQWKӕQJ.ӃWTXҧWKXÿѭӧFWӯTXiWUuQKQJKLrQFӭXFyWKӇiSGөQJYjRKӑFWұS
QJKLrQFӭXYjWKLӃWNӃNӃWFҩX
ABSTRACT
This paper presents the results of building method for analysing planar frames including refer
the linear elastic rotational springs using displacement method. For calculation, author program
and analyse numerically some examples in order to assess and compare to conventional

caculation. The results which are gotten from those studying can be applied for learning,
research as well as design.

1. 0ӣÿҫX

.ӃWFҩXNKXQJOjORҥLNӃWFҩXFKӏXOӵFÿѭӧFVӱGөQJUӝQJUmLWURQJWKӵFWӃ1Jj\QD\,
YӟL\rXFҫX[k\GӵQJ FDRQKLӅXF{QJWUuQKÿzLKӓLNK{QJJLDQYà QKӏS FiFNӃWFҩX lӟQ, phӭF
tҥS thì YLӋFWtQKWRiQNӃWFҩXNKXQJ ÿzLKӓLSKҧLFjQJFKtQK[iFKѫn nӳD PӟLÿiSӭQJÿѭӧF

Trong cѫ hӑF vұW rҳQ biӃQ dҥQJ, có QKLӅX SKѭѫQJ SKiS WtQK WRiQ KӋ NӃW FҩX Qj\
SKѭѫQJSKiSOӵFSKѭѫQJSKiSFKX\ӇQYӏSKѭѫQJSKiSSKҫQWӱKӳX KҥQ«ĈӇÿѫQJLҧQWURQJ
thӵF hành, FiFSKѭѫQJSKiSQj\ÿӅXÿѭӧFWKLӃWOұSWUrQJLҧWKLӃWQ~WOLrQNӃWJLӳDFiFSKҫQWӱ
WURQJKӋOjWX\ӋWÿӕLFӭQJ.ӃWTXҧWtQKWRiQNK{QJJk\VDLVӕÿiQJ kӇ NKLQ~WNKXQJÿѭӧF
WKLӃWNӃYjFҩXWҥRFyÿӝFӭQJÿӫOӟQQKѭ NKXQJErW{QJFӕWWKpSÿәWRjQNKӕL7X\QKLrQ
WURQJQKLӅXWUѭӡQJKӧS WKӵFWӃYtGөQKѭkhung ErW{QJFӕWWKpSOҳSJKpSKRһFEiQOҳSJKpS
khung thép ÿѭӧFVӱGөQJQJj\FjQJSKәELӃQWURQJFiFF{QJWUuQKFDRWҫng, công trình nhà
F{QJQJKLӋS&ác kӃW cҩX này có nút liên kӃW vӟL ÿӝÿjQKӗLQKҩWÿӏQKVӁҧQKKѭӣQJÿiQJNӇ
ÿӃQ kӃW quҧ tính toán nӝL lӵc và biӃQ dҥQJ theo quan ÿiӇP trên.

ĈӇNӃW quҧ QӝLOӵFYjELӃQGҥQJViWYӟLWKӵFWӃOjPYLӋFFӫDKӋNӃW FҩXNKXQJ, quá
trình WtQKWRiQFҫQSKҧL[ét ÿӃQÿӝ ÿjQ hӗL FӫD Q~W NKLÿyYLӋFWtQKWRiQVӁSKӭF WҥSKѫQ
nhiӅXĈӇgóp phҫQ làm sáng tӓ QKӳQJYҩQÿӅÿyÿӅ tài ÿѭӧF chӑQ: ³7tQKNKXQJSKҷQJFy[pW
ÿӃQÿӝÿjQKӗLFӫDQ~WEҵQJSKѭѫQJSKiSFKX\ӇQYӏ´

2. 7әQJTXDQ

4XDQÿLӇPWtQKNKXQJFy[pWÿӃQWtQKÿjQKӗLFӫDQ~WÿmÿѭӧFQJKLrQFӭXWURQJQKLӅX
WjLOLӋXYà có nhӳQJ cách tLӃSFұQYjSKkQWtFKNKiFQKDX
+ Trong [1@WiFJLҧWұSWUXQJQJKLrQFӭXÿӇ giҧL bài toán bҵQJ SKѭѫQJSKiSlӵF và áp
dөQJ kӃW quҧ ÿӇ phân tích ÿiQK giá mӝW sӕ kӃW cҩX cө thӇ.

7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

133
+ Trong [3] & [5] các WiFJLҧ[k\GӵQJFiFKJLҧLEjLWRiQEҵQJSKѭѫQJSKiSSKҫQWӱ
KӳXKҥQYj iSGөQJFiFWLrX FKXҭQYjRWKӵFWӃWKLӃWNӃ[k\GӵQJ
+ 7URQJ>@FiFWiFJLҧÿLVkXYjRYLӋFP{KuQKKyDWtQKÿjQKӗL cӫD nút WӯFiFVӕOLӋX
WKtQJKLӋPWKӵFWӃFNJQJQKѭ[k\GӵQJFiFVѫÿӗFѫKӑFFKRFiFOLrQNӃW
&iFQJKLrQFӭXQj\FKR SKpSJLҧLTX\ӃWÿѭӧFQKLӅXYҩQÿӅYӅWtQKÿjQKӗLFӫDQ~W
NKXQJQKѭQJ vүQ FKѭa thҩ\ [k\GӵQJFiFKWLӃS cұQ EjLWRiQEҵQJSKѭѫQJSKiSFKX\ӇQYӏPӝW
SKѭѫQJSKiSUҩWFѫ EҧQNKLJLҧLFác EjLWRiQNӃWFҩX
Trong phҥP vi ÿӅ WjL các tác giҧ [k\ GӵQJ FiFK JLҧL EjL WRiQ EҵQJ SKѭѫQJ SKiS
FKX\ӇQ Yӏ PjQӝLGXQJFKӫ\ӃXOjQJKLên cӭX, lұS FiFSKҫQWӱPүXÿiQK giá ҧQKKѭӣQJ bӣL
WtQKÿjQKӗLFӫDQ~WNKXQJÿӃQQӝLOӵFYjELӃQGҥQJFӫD hӋ khung phҷQJ.

3. NhӳQJ nJKLrQFӭXOêWKX\ӃW
3.1. Ĉ͡ÿjQK͛LFͯDQ~WNKXQJ

ĈӇ ÿiQK JLi Wính ÿjQ KӗL FӫD Q~W NKXQJ,
ngѭӡL ta dùng ÿҥL lѭӧQJ R gӑL là ÿӝ cӭQJ ÿjQ hӗL
cӫD nút, là tӹ sӕ giӳD mômen tác dөQJ tҥL nút M vӟL
góc xoay biӃQ dҥQJ cӫD nút
M
.

M
M
R
(3.1)
R có thӭ nguyên (LӵF x chiӅX dài/rad)
Theo [1] và [4], ÿӇ xác ÿӏQKJLá trӏ ÿӝ cӭQJ

ÿjQ hӗL cӫD nút khung theo cҫQ có các kӃW quҧ tính
toán góc xoay bҵQJ lý thuyӃW và xác góc xoay thӵF tӃ bҵQJ thӵF nghiӋP. Tӯ ÿy xác ÿӏQK ÿѭӧF
góc xoay biӃQ dҥQJ cӫD nút khung
M
ӭQJ vӟL mômen M và xác ÿӏQK ÿӝ cӭQJ ÿjQ hӗL theo
công thӭF (3.1).
CNJQJ theo [1], R là khác nhau tùy theo vұW liӋX cNJQJ nhѭ cách cҩX tҥR nút và nҵP trong
khoҧQJ (6,5.10
7
± 200.10
7
)kN.m/rad.
Do cách cҩX tҥR khung lҳS ghép và khung thép là các cӝW thѭӡQJ liӅQ khӕL và các liên
kӃW thѭӡQJ ÿѭӧF chӃ tҥR tҥL vӏ trí nách dҫP (H.3.1). Chính các liên kӃW này tҥR ra ÿӝ ÿjQ hӗL
cӫD nút khung. Do vұ\, trong ÿӅ tài này chӍ xét tính ÿjQ hӗL tҥL vӏ trí liên kӃW cӫD dҫP vào cӝW.
7KHRPӝWVӕQJKLrQFӭXWUѭӟFÿk\>], nӃXÿӝFӭQJÿjQKӗLFӫDQ~WTXiOӟQWKuVӁJk\
WӕQ kém FKR F{QJ WiF FKӃ WҥR NKXQJ QӃX ÿӝ FӭQJ ÿjQ KӗL FӫD Q~W TXi Ep WKu QӝL OӵF Yj
FKX\ӇQYӏWURQJKӋNKXQJJLDWăQJYѭӧWTXiJLӟLKҥQFKRSKpSNKXQJEӏSKiKRҥL.
3.2. 3K˱˯QJSKiSFKX\͋QY͓
Cách tính khung có xét ÿӃQ ÿӝ ÿjQ hӗL cӫD nút bҵQJ phѭѫng pháp chuyӇQ vӏ vүQ ÿѭӧF
thӵF hiӋQ theo nguyêQWҳc chung, chӍ khác là ӣ bҧQJ tra các phҫQ tӱ mҫX. Theo [2], trình tӵ các
bѭӟF có thӇ tiӃQ hành nhѭ sau:
%ѭӟF;iFÿӏQKVӕ lѭӧQJ ҭQVӕFӫDKӋ
%ѭӟFTҥR KӋFѫEҧQ
%ѭӟF7KLӃWOұSSKѭѫQJWUuQKFKtQKWҳF


°
°
¯

°
°
®




0 R R R .Zr .Zr .Zr .Zr

0 R R R .Zr .Zr .Zr .Zr
0 R R R .Zr
.Zr .Zr .Zr
nzntnpnnn3n32n21n1
2z2t2pn2n323222121
1z1t1pn1n313212111
(3.2)

M
M
R
H
ình 3.1 Hình ̫QK Q~WÿjQK͛L
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


134
%ѭӟF;iFÿӏQKFiFKӋVӕYjVӕKҥQJWӵGRFӫDSKѭѫQJWUuQKFKtQKWҳF
%ѭӟF*LҧLKӋ SKѭѫQJWUình, [iFÿӏQKQӝLOӵFYjFKX\ӇQYӏFӫDKӋEDQÿҫX

ĈӇJLҧLKӋSKѭѫQJWUuQKFKtQKWҳF[iFÿӏQKnӝL lӵF và chuyӇQ vӏ, tURQJÿӅWjL, các tác

JLҧOұSWUuQKWtQKWRiQWUrQ Pi\WtQKEҵQJFKѭѫQJWUuQK0DWlab.
3.3. 0͡WV͙SK̯QW͵P̳X
ĈLӅXTXDQWUӑQJNKLOұSKӋFѫEҧQOjWURQJKӋFѫEҧQFKӍWӗQWҥLQKӳQJSKҫQWӱPүXÿm
ÿѭӧFQJKLrQFӭXWUѭӟFWӭFOjELӇXÿӗQӝLOӵFÿѭӧFFKRVҹQWURQJEҧQJ7URQJÿӅWjLQj\, các
WiFJLҧÿmWKLӃWOұSPӝWVӕSKҫQWӱPүXÿLӇQKuQK kӃW quҧ FKRWURQJ%ҧQJ

%̫QJ%̫QJWUDQ͡LO͹FFKRP͡WV͙SK̯QW͵







M
tr
=
M
l
EI4
.
4
3
21
1
rr
r


M

ph
=
M
l
EI4
.
4
3
.
2
21
12
rr
rr











M
tr
=
'



.
l
EI6
.
4
)2(
2
21
21
rr
rr

M
ph
=
'


.
l
EI6
.
4
)2(
2
21
12
rr
rr








M
tr
=
21
21
2
4
)2(3
.
12 rr
rrql



M
ph
=
21
12
2
4
)2(3
.

12 rr
rr
ql



7URQJEҧQJÿһW
EIl.R
l.R
r
3
1
1
1


(3.3),
EIl.R
l.R
r
3
2
2
2


(3.4)
KhҧR sát biӇX thӭF (3.3) và (3.4) cho thҩ\ r
1,
r

2
nҵP trong khoҧQJ [0;1]
r
1,
r
2
ӭQJYӟLOLrQNӃWӣQ~WNKXQJOjOLrQNӃWNKӟS
r
1,
r
2
ӭQJYӟLOLrQNӃWӣQ~W khung là tuyӋW ÿӕL cӭQJ.
r
1,
r
2
có thӇ xem nhѭ là các hӋ sӕ không thӭ nguyên.
Theo tài liӋX [3], các ÿҥL lѭӧQJ r
1,
r
2
nҵP trong khoҧQJ
94,077,0 y

3.4. %jLWRiQWtQKNKXQJSK̻QJÿL͋QKuQK
3.4.1. Các gi̫ thi͇W
- &KӍ xét ҧQK hѭӣQJ cӫD biӃQ dҥQJ uӕQ.
- ChӍ xét ÿӃQ tính ÿjQ hӗL tҥL vӏ trí liên kӃW cӫD
dҫP vào cӝW.
- Ĉӝ cӭQJ ÿjQ hӗL (R) cӫD nút là hҵQJ sӕ


3.4.2. 6͙OL͏XEDQÿ̯X
&KRNKXQJSKҷQJFyWҫQJQKӏS:
+ ChiӅX cao tҫQJ: a = 3,6(m).
+ ChiӅX dài nhӏS: l = 5(m).
+ TҧL trӑng ngang: P = 60(kN).
+ TҧL trӑng phân bӕ: q = 20(kN/m).
+ r
1
= r
2
= r.
R
2
R
1

M

EI
l
q
l
R
1

R
2

l

M
tr

M
p
h

'
l
R
2

R
1

M
tr

M
p
h

l
8
.
2
lq

M
p

h
M
tr

q
q
P
P
P
q
2EI
2EI
2EI
0,8EI
EI
EI
l
a

a

a

r
1
r
2
r
2
r

1
r
2
r
1
H
.3.4
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

135
+ Ĉӝ cӭQJ chӕQJ uӕQ EI = const.
TiӃQ hành xác ÿӏQK nӝL lӵF và chuyӇQ vӏ tҥL mӝW sӕ tiӃW diӋQ theo r ӭQJ vӟL trѭӡQJ hӧS
không chӏX tҧL trӑQJ ngang (P = 0) và có chӏX tҧL trӑQJ ngang.
3.4.3. .͇WTX̫
Sau khi thӵF hiӋQ theo trình tӵ tính toán trong MөF 3.2 vӟL các phҫQ tӱ mүX tra trong
BҧQJ 3.1, sӱ dөQJ chѭѫng trình Matlab, lұS trình tính giҧL nӝL lӵF và chuyӇQ vӏ tҥL mӝW sӕ tiӃW
diӋQ. KӃW quҧ thӇ hiӋQ trong BҧQJ 3.2

%̫QJ.͇WTX̫P{PHQYjFKX\͋QY͓ t̩L m͡W s͙ ti͇W di͏Q.
r

Mômen ÿҫX trái
dҫP WҫQJ1 (kNm)
Mômen ÿҫX SKҧL
dҫP WҫQJ1 (kNm)
0{PHQJLӳDdҫP
WҫQJ1 (kNm)
Mômen chân cӝW
trái WҫQJ1(kNm)
P = 0

(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
0 0,0000 0,0000 0,0000 0,0000
6,2500
6,2500 0,0000 -64,800
0,1 -0,5690 8,6774 -0,5690 -9,8154
5,6810
5,6810 0,1275 -36,406
0,2 -1,0457 12,0870 -1,0457 -14,1790
5,2043
5,2043 0,2308 -29,649
0,3 -1,4518 14,2500 -1,4518 -17,1540
4,7982
4,7982 0,3170 -26,181
0,4 -1,8023 15,7960 -1,8023 -19,4010
4,4477
4,4477 0,3903 -23,957

0,5 -2,1081 16,9690 -2,1081 -21,1860
4,1419
4,1419 0,4536 -22,371
0,6 -2,3773 17,8950 -2,3773 -22,6500
3,8727
3,8727 0,5089 -21,166
0,7 -2,6162 18,6470 -2,6162 -23,8790
3,6338
3,6338 0,5576 -20,213
0,75 -2,7259 18,9720 -2,7259 -24,4240
3,5241
3,5241 0,5799 -19,806
0,8 -2,8297 19,2700 -2,8297 -24,9290
3,4203
3,4203 0,6010 -19,436
0,85 -2,9281 19,5440 -2,9281 -25,4000
3,3219
3,3219 0,6209 -19,098
0,9 -3,0216 19,7960 -3,0216 -25,8390
3,2284
3,2284 0,6398 -18,788
0,95 -3,1104 20,0300 -3,1104 -26,2500
3,1396
3,1396 0,6577 -18,502
1 -3,1950 20,2460 -3,1950 -26,6360
3,0550
3,0550 0,6748 -18,238

r


Mômen ÿҫX trái
dҫP WҫQJ (kNm)
Mômen ÿҫX SKҧL
dҫP WҫQJ (kNm)
0{PHQJLӳDGҫP
WҫQJ (kNm)
(1/ E-&KX\ӇQYӏ
JLӳDGҫP tҫQJ(m)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
P = 0
(kN)
P = 60
(kN)
0 0,0000 0,0000 0,0000 0,0000
6,2500
6,2500 16,276 16,276
0,1 -0,5328 8,0676 -0,5328 -9,1332
5,7172
5,7172 14,498 14,498

0,2 -0,9317 7,9017 -0,9317 -9,7651
5,3183
5,3183 13,008 13,008
0,3 -1,2441 7,1769 -1,2441 -9,6650
5,0059
5,0059 11,739 11,739
0,4 -1,4966 6,4681 -1,4966 -9,4613
4,7534
4,7534 10,644 10,644
0,5 -1,7058 5,8547 -1,7058 -9,2662
4,5442
4,5442 9,6883 9,6883
0,6 -1,8822 5,3361 -1,8822 -9,1005
4,3678
4,3678 8,8469 8,8469
0,7 -2,0334 4,8978 -2,0334 -8,9646
4,2166
4,2166 8,1004 8,1004
0,75 -2,1012 4,7041 -2,1012 -8,9064
4,1488
4,1488 7,7577 7,7577
0,8 -2,1645 4,5250 -2,1645 -8,8540
4,0855
4,0855 7,4333 7,4333
0,85 -2,2237 4,3592 -2,2237 -8,8067
4,0263
4,0263 7,1257 7,1257
0,9 -2,2794 4,2054 -2,2794 -8,7641
3,9706
3,9706 6,8336 6,8336

0,95 -2,3317 4,0623 -2,3317 -8,7256
3,9183
3,9183 6,5560 6,5560
1 -2,3809 3,9289 -2,3809 -8,6907
3,8691
3,8691 6,2916 6,2916

7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


136
4. ĈiQKJLiNӃWTXҧ
7ӯNӃWTXҧ trong BҧQJ 3.2 WDWKҩ\
.KLFKӏXWҧLWUӑQJQJDQJÿӝFӭQJÿjQKӗLFӫDFiFQ~WNKXQJFjQJJLҧPWKuP{PHQXӕQ
YjFKX\ӇQYӏ WҥLFiFPһW JLӳDQKӏSFҵQJWăQJOrQOjPJLҧPÿӝEӅQFӫDNKXQJ
.KL NK{QJ FKӏX WҧL WUӑQJ QJDQJ QӃX ÿӝFӭQJ ÿjQ KӗL FӫD Q~W NKXQJ FjQJ WăQJ WKu
P{PHQXӕQWҥLFiFWLӃWGLӋQÿҫX GҫPFNJQJWăQJWKHRNKLU!WKuNKXQJOàm viӋF gҫQ nhѭ
trѭӡQJ hӧS nút cӭQJ (r = 1 hay R = f)
7KHRQJKLrQFӭXÿӅ cұS trong [3]WKuÿӝFӭQJÿjQKӗLFӫDQ~WNKXQJWKѭӡQJFyJLiWUӏ
trung bình là r = 0,85. NKѭYұ\, NKLWtQKWRiQNӇÿӃQÿӝÿjQKӗLFӫDQ~WNKXQJ so vӟL nút cӭQJ
tuyӋW ÿӕL r = 1 thì:
+ M{PHQWҥLFiFWLӃWGLӋQÿҫXGҫPWҫQJ 3 tăQJNKRҧQJ
+ M{PHQWҥLFiFWLӃWGLӋQÿҫXGҫPWҫQJ 1 giҧP 3,5% ÿӃQ 4,5%.
0{PHQWҥLJLӳDQKӏSWăQJÿӃQ 8 %.
+ ChuyӇQ YӏWҥLJLӳDQKӏSWăQJKѫQ
ĈLӅXÿyFKӭQJWӓQӝLOӵFYjFKX\ӇQYӏWURQJNKXQJFyQ~WÿjQKӗLOӟQKѫQQӝLOӵFYj
FKX\ӇQYӏWURQJNKXQJFyQ~WFӭQJ
.ӃWTXҧQj\FjQJFNJQJFӕQKӳQJQKұQ[pWWURQJQJKLrQFӭXFӫDFiFWiFJLҧNKiFWUѭӟF
ÿk\ [1], [4].
5. .ӃWOXұQ


ĈӅWjLÿmWUuQKEj\PӝWFiFKWәQJTXDQYӅOêWKX\ӃWWtQKNӃWFҩXNKXQJSKҷQJFyNӇÿӃQ
ÿӝÿjQKӗLFӫDQ~WNKXQJCách sӱGөQJSKѭѫQJSKiSFKX\ӇQYӏTXHQWKXӝFÿӇJLҧLEjLWRiQ
Các tiFJLҧÿmWKLӃWOұSÿѭӧFFiFSKҫQWӱPҭXÿLӇQKuQKOұSWUuQKJLҧLKӋSKѭѫQJWUuQKchính
WҳFWUrQFKѭѫQJWUuQK0DWODEQKҵPJLҧLEjLWRiQPӝWFiFKQKDQKFKyQJ

%ҵQJYLӋF[iFÿӏQKQӝLOӵFYjFKX\ӇQYӏFKRPӝWEjL WRiQÿLӇQKuQK các WiFJLҧÿm
ÿiQKJLiÿѭӧFҧQKKѭӣQJFӫDÿӝÿjQKӗLFӫDQ~WWӟLVӵOjPYLӋFWKӵFWӃFӫDNKXQJÿӇÿLÿӃQ
NӃWOXұQ³.ӃWTXҧWtQKWRiQNKLNӇÿӃQÿӝÿjQKӗLFӫDQ~WNKXQJ YjNKLFRLQ~WNKXQJOjFӭQJ
WX\ӋWÿӕLOjFyVӵNKiFQKDX1ӝLOӵFYjFKX\ӇQYӏWURQJNKXQJFyQ~WÿjQKӗLOӟQKѫQNKL
NKXQJFyQ~WFӭQJWX\ӋWÿӕL´.

7ӯNӃWOXұQÿyÿӅ[XҩWFҫQWtQKWRiQÿӃQÿӝÿjQKӗLFӫDQ~WNKXQJÿһFELӋWOjÿӕLYӟL
FiFNӃWFҩXNKXQJFyÿӝFӭQJÿjQKӗLFӫDQ~WNKXQJNK{QJOӟQQKѭNӃWFҩXNKXQJOҳSJKpS
EiQOҳSJKpSYjFiFNKXQJWKpSWK{QJWKѭӡQJ

7¬,/,ӊ87+$0.+Ҧ2

TiӃQJ ViӋW

[1] 1J{7KDQK'NJQJTính kKXQJSK̻QJFyN͋ÿ͇Qÿ͡ÿjQK͛LFͯDQ~WNKXQJ/XұQ
YăQWKҥFVӻNӻWKXұW+j1ӝL
[2] /ӅX7Kӑ7UuQK&˯K͕FN͇WF̭X1Kj[XҩWEҧQNKRDKӑFNӻWKXұW+j1ӝL


7LӃQJ$QK
[3] W Chen (2000), Practical Analysis for semi ± rigid Frame design, Pubished World
Scienticfic Pulishing Co Pte.Ttd, Singapore.
[4] C.Faella, V.Piluso and G.Rizzano (2000), Structural steel semirigid connections,
Published by CRC Press LLC.

[5] Ali Ugur Ozturk and Hikmet H.Catal (2005), Dynamic Analysis of semi ± rigid Frames.
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

149
;e76Ӵ3+Æ1%Ӕ1Ӝ,/Ӵ&7521*9È&+&Ӭ1*1HÀ
&$27Ҫ1*&+ӎ87Ҧ,75Ӑ1**,Ï
CONSIDER THE INTERNAL FORCE DISTRIBUTION IN THE SHEAR WALL
OF HIGH - RISE BUILDING CHARGED BY WIND LOAD

697+1*8<ӈ148$1*7Ô1*
6LQKYLrQ.KRD;'''&17U˱ͥQJĈ̩LK͕F%iFKNKRD
CBHD: Th.S BÙI THIÊN LAM
.KRD;'''&17U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
7yPWҳW
0өFÿtFKFӫDÿӅWjLOjWuPKLӇXҧQKKѭӣQJFӫDGDRÿӝQJ[RҳQÿӃQKӋNӃWFҩXQKjFDRWҫQJ
FKӏXWҧLWUӑQJJLyEҵQJOêWKX\ӃWYjVӱGөQJSKҫQPӅP(7$%6ÿӇNKҧRViWQӝLOӵFWURQJ
PӝW VӕYiFKFӭQJ
Abstract
The purpose of this report is learning the influence of torsion vibration to design the high-rise
EXLOGLQJ¶V EHDULQJ VWUXFWXUH 8VLQJ VRIWZDUH (7$%6  WR VXUYH\ WKH LQWHUQDO IRUFH RI WKH
bearing structure and proposing the petition.

1. 0ӣÿҫX
.ӃWFҩXQKjFDRWҫQJFyQKXFҫXQJj\FjQJQKLӅXӣQѭӟFWD QyÿҧPEҧRWLӃWNLӋPTXƭ
ÿҩWQKҩWOjNKLGkQVӕÿ{WKӏQJj\FjQJJLDWăQJYjJLiQKjÿҩWWKuQJj\FjQJÿҳWÿӓ9LӋF[k\
GӵQJQKjFDRWҫQJKjQJORҥWFNJQJSKҧQiQKTXDQÿLӇPFӫDFiFQKjWKLӃWNӃNKLJLҧLTX\ӃWEjL
WRiQTX\KRҥFKYj[k\GӵQJÿ{WKӏ
.KLWKLӃWNӃQKjFDRWҫQJGRÿLӅXNLӋQNKiFKTXDQKD\FKӫTXDQPjPһWEҵQJNӃWFҩX
FyWKӇÿӕL[ӭQJKD\NK{QJÿӕL[ӭQJ7URQJWUѭӡQJKӧSPһWEҵQJÿӕL[ӭQJWkPFӭQJWUQJ
YӟLWkPNKӕLOѭӧQJ thӍҧQKKѭӣQJFӫDKLӋQWѭӧQJ[RҳQÿӃQF{QJWUuQKOjNK{QJOӟQ.KLWkP

FӭQJNK{QJWUQJWkPNKӕLOѭӧQJWKuGDRÿӝQJ[RҳQOjOӟQYjҧQKKѭӣQJÿiQJNӇÿӃQVӵOjP
YLӋFFӫDQJ{LQKj&iFFXӝFNKҧRKLӋQWUѭӡQJÿӝQJÿҩWYjJLyEmRJҫQÿk\FNJQJÿmFKӍUDҧQK
KѭӣQJ[RҳQOjPӝWWURQJQKӳQJQJX\rQQKkQFKtQKJk\KѭKҥLKӋNӃWFҩX
'RWtQKFKҩWWKD\ÿәLEҩWWKѭӡQJFӫDJLyQrQGF{QJWUrQFyNӃWFҩXÿӕL[ӭQJYүQ[m\
UDKLӋQWѭӧQJ[RҳQ&KRÿӃQQD\WURQJWLrXFKXҭQWtQKWRiQWҧLWUӑQJJLyFӫD9LӋW1DP>@YүQ
FKѭDTXDQWkPQKLӅXÿӃQWKjQKSKҫQ[RҳQFӫDWҧLWUӑQJJLy9uYұ\YLӋFQJKLrQFӭXWuPUDҧQK
KѭӣQJFӫDKLӋQWѭӧQJ[RҳQGRJLyÿӃQVӵSKkQEӕQӝLOӵFOrQYiFKFӭQJNӃWFҩXQKjFDRWҫQJ
OjFҫQWKLӃWQKҵPJySSKҫQYjRYLӋFWtQKWRiQWKLӃWNӃQKjFDRWҫQJÿѭӧFDQWRjQKLӋXTXҧ
KѫQ
2. 7әQJTXDQ
6ӵOjPYLӋFFӫDWRjQEӝF{QJWUuQKFDRWҫQJJLӕQJQKѭPӝWFRQVROHFyWӹVӕÿӝPҧQK
YӯDSKҧL7X\QKLrQQyNKiFYӟLFҩXNLӋQFӝWÿLӇQKuQKEҧQFKҩWFӫDQyOjFҩXNLӋQFKӏXXӕQ
VӵXӕQFӫDWRjQEӝF{QJWUuQKNK{QJFKӍEDRJӗPGҥQJXӕQPjFyWKӇÿѭӧFWKD\WKӃEӣLGҥQJ
FҳWKRһFGҥQJWәKӧSFӫDXӕQYjFҳW+ѫQQӳDQKӳQJKuQKGҥQJQj\FyWKӇ[ҧ\UDNK{QJFKӍ
YӟLXӕQWKHRSKѭѫQJQJDQJPjFzQ[RҳQKRһFGҥQJXӕQ- [RҳQ>@
'ѭӟLWiFGөQJFӫDWҧLWUӑQJQJDQJQJ{LQKjFKX\ӇQYӏWKHRSKѭѫQJQJDQJ7ҥLQKӳQJ
ÿLӇPNKiFQKDXWUrQWӯQJPһWFҳWQJDQJFӫDQJ{LQKjVӁFyQKӳQJFKX\ӇQYӏNKiFQKDX&iF
NӃWTXҧSKkQWtFKFӫD%%.KDQVLÿmFKRWKҩ\ҧQKKѭӣQJFӫDKLӋQWѭӧQJ[RҳQÿӃQFKX\ӇQYӏ
QJDQJOjÿiQJNӇ>@
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


150
PKkQWtFKNӃWFҩXQKjFDRWҫQJFKӏXOӵFWKHRVѫÿӗNK{QJJLDQWiFJLҧ/r7KDQK+XҩQ
ÿmÿӅFұSÿӃQKLӋQWѭӧQJ[RҳQFӫDF{QJWUuQKFyYiFKNtQKRһFKӣYjÿmÿѭDUDSKѭѫQJSKiS
FNJQJQKѭFiFSKѭѫQJWUuQK[iFÿӏQKQӝLOӵFWURQJFiFYiFKFӭQJ>@
7URQJWLrX FKXҭQWtQKWRiQWҧLWUӑQJJLyFӫD 1KұWFӫD0ӻÿӅXÿmÿӅ FұSÿӃQ WKjQK
SKҫQ[RҳQFӫDWҧLWUӑQJJLy>@>@
&iFF{QJWUuQKQJKLrQFӭXFӫDFiFWiFJLҧÿmWҥRUDQKӳQJWKXұQOӧLWURQJF{QJWiFWtQK
WRiQYjWKLӃWNӃNӃWFҩXQKjFDRWҫQJ7X\QKLrQFiFWiFJLҧYүQFKѭDÿLVkXYjRJLҧLTX\Ӄt

PӕLTXDQKӋJLӳDGDRÿӝQJ[RҳQYjQӝLOӵFFӫDYiFKFӭQJGѭӟLWiFGөQJFӫDWҧLWUӑQJQJDQJ
'RÿyÿӅWjLQj\VӁÿLVkXWuPKLӇXYҩQÿӅPӝWFiFKFөWKӇKѫQWҥRÿLӅXNLӋQFKRYLӋFWtQK
WRiQYjWKLӃWNӃWNӃÿѭӧFGӉGjQJKѫQ
3. /êWKX\ӃWWtQKWRiQ
3.1. Tính toán W̫LWU͕QJJLyWKHRWLrXFKX̱Q9L͏W1DP-.K{QJN͋ÿ͇QW̫LWU͕QJ
JLy[R̷Q>1]
a. 7KjQKSK̯QWƭQKFͯDW̫LWU͕QJJLy
ÈSOӵFWLrXFKXҭQFӫDWҧLWUӑQJJLyWƭQKWiFÿӝQJYjRÿLӇPj FDRÿӝ
j
z
ÿѭӧF[iFÿӏQK
WKHRF{QJWKӭF
0
.( ).
tc
jjj
WWkzc
(daN/m
2
)
-
0
W
ÈSOӵFJLyWLrXFKXҭQOҩ\WKHRSKkQYQJiSOӵFJLyWURQJ7&91-1995.
-
()
j
kz
KӋVӕ[pWÿӃQVӵWKD\ÿәLiSOӵFJLySKөWKXӝFÿӏDKuQKWtQKWRiQYjÿӝFDR
j

z
FӫDÿLӇPj. -
j
c
KӋVӕNKtÿӝQJOҩ\WURQJ7&91-1995.
b. 7KjQKSK̯Qÿ͡QJW̫LWU͕QJJLy
- 3KkQWtFKGDRÿӝQJWKHRWӯQJSKѭѫQJ[pWWӯQJSKѭѫQJULrQJELӋW
- 7KHRSKѭѫQJ;FyFiFWҫQVӕGDRÿӝQJULrQJ
12
, , ff
YjFiFFKX\ӇQYӏGDRÿӝQJ
11 21 1 12 22 2
, , , , , , , ,
nn
yy yyy y

- 7KHRSKѭѫQJ<WѭѫQJWӵFNJQJFyFiFWҫQVӕGDRÿӝQJULrQJ
12
, , ff
YjFiFFKX\ӇQ
YӏGDRÿӝQJ
11 21 1 12 22 2
, , , , , , , ,
nn
yy yyy y

- So sánh
1
f
YӟLWҫQVӕJLӟLKҥQ

L
f
<
L
f
WUDEҧQJWUDQJ7&;'>6]
- 1ӃX
1 L
ff!
F{QJWUuQKFyÿӝFӭQJOӟQWKjQKSKҫQÿӝQJFӫDWҧLWUӑQJJLyFKӍGR
[XQJYұQWӕFJLyJk\UD
- 1ӃX
1 L
ffd
F{QJWUuQKFyÿӝFӭQJEpWKjQKSKҫQÿӝQJFӫDWҧLWUӑQJJLySKҧLNӇ
ÿӃQWiFÿӝQJFӫDFҧ[XQJYұQWӕFJLyYjOӵFTXiQWtQKFӫDF{QJWUuQKYjFҫQWtQKYӟLs GҥQJ
GDRÿӝQJÿҫXWLrQFyWҫQVӕGDRÿӝQJULrQJ
L
ffd
.
;pWWUѭӡQJKӧS
1 L
ff!
:
- ÈSOӵFWLrXFKXҭQFӫDWҧLWUӑQJJLyÿӝQJYjRÿLӇPj ÿѭӧF[iFÿӏQKWKHRF{QJWKӭF

tc tc
pj j j
WW
]Q



;pWWUѭӡQJKӧS
1 L
ffd
: FҫQ[pWs GҥQJGDRÿӝQJFyWҫQVӕGDRÿӝQJULrQJ
L
ffd
.
*LiWUӏWLrXFKXҭQFӫDWҧLWUӑQJJLyÿӝQJYjRWҫQJj ӣGҥQJGDRÿӝQJi ÿѭӧF[iFÿӏQK
WKHRF{QJWKӭF
()
.
pji j i i ji
WM y
[\


7әKӧSWҧLWUӑQJJLy
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

151
1ӝLOӵFYjFKX\ӇQYӏJk\UDGRWKjQKSKҫQWƭQKYjÿӝQJFӫDWҧLWUӑQJJLyÿѭӧF[iFÿӏQK
QKѭVDX
¦


s
i
dt

XXX
1
2
)(
.
7URQJÿy;± OjPRPHQXӕQ[RҳQOӵFFҳWOӵFGӑFKRһFFKX\ӇQYӏ;
t
± là momen
XӕQ[RҳQOӵFFҳWOӵFGӑFKRһFFKX\ӇQYӏGRWKjQKSKҫQWƭQKFӫDWҧLWUӑQJJLyJk\UD;
d
±
OjPRPHQXӕQ[RҳQOӵFFҳWOӵFGӑFKRһFFKX\ӇQYӏGRWKjQKSKҫQWƭQKFӫDWҧLWUӑQJJLyJk\
UDNKLGDRÿӝQJӣGҥQJWKӭLV± VӕGDRÿӝQJWtQKWRiQ
3.2. 7tQK WRiQ W̫L WU͕QJJLy WKHR WLrX FKX̱Q $,- 1K̵W %̫Q &y N͋ ÿ͇Q WKjQK SK̯Q JLy
[R̷Q>@
7̫LWU͕QJJLyG͕FWUrQNKXQJN͇WF̭X

AGCqW
DDHD

. (N)
7̫LWU͕QJJLyWUrQPiL

RRRHR
AGCqW
. (N)
7̫LWU͕QJJLyQJDQJ

LLLHL
Rg

H
Z
ACqW
2'
13
I

(N)
ÈSGөQJNKLF{QJWUuQKWKӓDPmQFiFÿLӅXNLӋQVDX
-0һWFҳWQJDQJF{QJWUuQKYX{QJÿӅXWӯGѭӟLOrQ
-
6/ dBDH
;
5/2,0 dd DB
;
10)/( dBDfU
LH
.
7̫LWU͕QJJLy[R̷Q
TTTTHT
Rg
H
Z
ABCqW
2'
18,1
I

(N)
ÈSGөQJNKLF{QJWUuQKWKӓDPmQFiFÿLӅXNLӋQVDX

-0һWFҳWQJDQJF{QJWUuQKYX{QJÿӅXWӯGѭӟLOrQ
-
6/ dBDH
;
5/2,0 dd DB
;
10)/( dBDfU
LH
.
7͝KͫSW̫LWU͕QJJLy
%ҧQJWәKӧSWҧLWUӑQJJLy
7URQJÿyȡ
LT
-KӋVӕWѭѫQJTXDQJLӳDGDRÿӝQJJLyQJDQJYjJLy[RҳQÿѭӧF[iFÿӏQK
WURQJPөF$>@
7әKӧSJLyWKHRSKѭѫQJQJDQJYjJLyWUrQPiLÿѭӧF[pWÿӗQJWKӡL
3.3. ;iFÿ͓QKWkPNK͙LO˱ͫQJWkPFͱQJ>@YjQ͡LO͹FWURQJYiFK>@

7әKӧS *LyGӑF Gió ngang *Ly[R̷Q
1 W
D
0,4W
L
0,4W
T
2
)/6,04,0(
DD
GW 


W
L


TLT
W)122( 
U

3
)/6,04,0(
DD
GW 


LLT
W)122( 
U

W
T
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


152
7D[pWWUѭӡQJKӧS SKәELӃQWURQJWKӵFWӃOjWUөFFKtQKFӫDFiFKӋWѭӡQJFӭQJVRQJ
VRQJYӟLFiFWUөFQKj
7kPNKӕLOѭӧQJFӫDF{QJWUuQKOjÿLӇPÿһWOӵFTXiQWtQK.
*ӑL[
CM;
y

CM
) - WӑDÿӝWkPNKӕLOѭӧQJÿѭӧF[iFÿӏQKQKѭVDu:
¦
¦

i
ii
CM
p
pa
x
.
¦
¦

i
ii
CM
p
pb
y
.

7kPFӭQJFzQFyWrQOjWkPXӕQKD\WkP[RD\FӫDF{QJWUuQKOjÿLӇPPjKӧSOӵF
FӫDWҧL
WUӑQJQJDQJÿLTXDÿyFKӍJk\FKRF{QJWUuQKFiFFKX\ӇQYӏWKҷQJFzQFKX\ӇQYӏ[RD\EҵQJ
không(
T
=0).
*ӑL[

CR
; y
CR
)- WӑDÿӝWkPFӭQJ
r
i
-NKRҧQJFiFKWӯYiFKFӭQJWKӭLÿӃQWkPFӭQJ
r
xi
=O
xi
-x
CR
. r
yi
=O
yi
-y
CR
.
7RҥÿӝWkPFӭQJÿѭӧF[iFÿӏQKQKѭVDX
¦
¦

xi
xi
CR
EJ
E
x

xi
J.
O

¦
¦

yi
yi
CR
EJ
E
y
yi
J.
O

ĈӝFӭQJFKӕQJ[RҳQFӫDQJ{LQKj
) (
22
yiyixixi
EJrEJrB 
¦
Z

0RPHQWWURQJYiFKFӭQJWKӭLFyWKӇÿѭӧF[iFÿӏQKQKѭVDX
9ӟLWҧLWUӑQJT
y
, ta có: M
xi

= M
x
(K
yyi
. Kx + C
x
.K
Zxi
.K
Z
)
M
yi
= M
x
(K
yxi
. K
y
+ C
x
.K
Zyi
.K
Z
)
9ӟLWҧLWUӑQJT
x
ta có: M
xi

= M
y
(K
xyi
. Kx + C
x
.K
Zxi
.K
Z
)
M
yi
= M
y
(K
xxi
. Ky + C
x
.K
Zyi
.K
Z
)
9ӟL0
x
, M
y
WәQJPRPHQWXӕQGRWҧLWWUӑQJJLyWiFÿӝQJYjRQJ{LQKjWKHRSKѭѫQJ;<
+ӋVӕSKkQSKӕLWҧLWUӑQJ

K
xxi
= J
yi
/ J
y
; K
yyi
= J
xi
/ J
x

K
xyi
= J
xyi
/ J
y
; K
yxi
= J
xyi
/ J
x


j
K
-FiFKӋVӕ

Z
KKK
,,
yx
[iFÿӏQKWKHRFiFF{QJWKӭF
x
tch
x
G
G
85.1
1
1


K
;
y
tch
y
G
G
85.1
1
1


K
Z
Z

K
G
G
tch
85.1
1
1



7ѭѫQJWӵÿӕLYӟLOӵFFҳWWURQJYiFK
4. .KҧRViWVӵSKkQEӕQӝLOӵFWURQJFiFYiFKFӭQJQKjFDRWҫQJWK{QJTXDPӝWVӕP{
KuQKWtQKWRiQFөWKӇ
;pWPӝWF{QJWUuQKFDRWҫQJYӟLNӃWFҩXNKXQJYiFKFKӏXOӵFQҵPWURQJYQJ,,ÿӏD
hình B (theo TCVN 2737-WKHRWLrXFKXҭQ$,-OjÿӏDKuQK,,,FKӏXWҧLWUӑQJJLy
YӟLJLiWUӏiSOӵFJLy:
o
=950 N/m
2
.( q
H
=950 N/m
2
YұQWӕFJLy8
H
PV7ӹVӕFҧQ]=0.02.
Công trình:- 0һWEҵQJF{QJWUuQK[P
2
- &KLӅXFDRWҫQJP- Sàn dày 16 cm
- 7LӃWGLӋQFӝWP[P- 7LӃWGLӋQGҫPP[P- Bêtông B25.

- 7ҧLWUӑQJSKkQEӕÿӅXWUrQVjQ7P
2
EDRJӗPWUӑQJOѭӧQJEҧQWKkQ
Tính toán công trình theRKDLWUѭӡQJKӧSWҧLWUӑQJJLy
- Theo TCVN 2737-1995
-7KHRWLrXFKXҭQ$,-
0һWEҵQJF{QJWUuQKÿѭӧFEӕWUtWKHRWUѭӡQJKӧSVDX
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

153
7UѭӡQJKӧS+ӋNӃWFҩXFyPһWEҵQJÿӕL[ӭQJWKHRFҧKDLSKѭѫQJ
7UѭӡQJKӧS +ӋNӃWFҩXÿӕL[ӭQJTXDWUөF;YjNK{QJÿӕL[ӭQJTXDWUөF<
7UѭӡQJKӧS+ӋNӃWFҩXNK{QJÿӕL[ӭQJWKHRFҧKDLSKѭѫQJ

7UѭӡQJKӧS 7UѭӡQJKӧS 7UѭӡQJKӧS

7UѭӡQJKӧS 7UѭӡQJKӧS
4.1. Quy trình tính toán:
- 7KLӃWOұSP{KuQKWtQKWRiQ
- 3KkQWtFKGDRÿӝQJF{QJWUuQKYӟLVӵKӛWUӧFӫDSKҫQPӅP(7$%6;iFÿӏQK
FiFFKXNǤGDRÿӝQJWKHRFiFSKѭѫQJWtQKWRiQ
- 7tQKWRiQWҧLWUӑQJJLyWKHR7&91-1995: *LyWƭQKJLyÿӝQJ
- 7tQKWRiQWҧLWUӑQJJLyWKHRWLrXFKXҭQ$,-*LyGӑFJLyQJDQJJLy[RҳQ
- ;iFÿӏQKQӝL OӵFWURQJ FiFYiFKYӟLWӯQJWUѭӡQJKӧSPһW EҵQJF{QJWUuQKYӟL WҧL
WUӑQJJLyWѭѫQJӭQJ
- 7әKӧSQӝLOӵFWKHRFiFSKѭѫQJSKiSÿmWUuQKEj\ӣWUrQ
4.2. .͇WTX̫WtQKWRiQ
&iFGҥQJGDRÿӝQJULrQJ
- 7UѭӡQJKӧS0һWEҵQJÿӕL[ӭQJ
7kPFӭQJ(C

R
YjWkPNKӕLOѭӧQJ&
M
) trùng nhau.
&KXNǤGDRÿӝQJ7
D
= 2.5157s T
L=
2.5215 s T
T
=1.9 s
- 7UѭӡQJKӧS0һWEҵQJNK{QJÿӕL[ӭQJ
.KRҧQJFiFKJLӳDWkPFӭQJYjWkPNKӕLOѭӧQJOjP
&KXNǤGDRÿӝQJ7
D
=2.49 s T
L
=2.52 s T
T
=2.0962 s
- 7UѭӡQJ KӧS0һWEҵQJNK{QJÿӕL[ӭQJ
.KRҧQJFiFKJLӳDWkPFӭQJYjWkPNKӕLOѭӧQJOjP
&KXNǤGDRÿӝQJ7
D
=2.3 s T
L
=2.4 s
T
T
=2.1226 s

- 7UѭӡQJKӧS0һWEҵQJNK{QJÿӕL[ӭQJ
.KRҧQJFiFKJLӳDWkPFӭQJYjWkPNKӕLOѭӧQJOjP
&KXNǤ GDRÿӝQJ7
D
=2.25 s T
L
=2.37 s
T
T
=1.28 s
- 7UѭӡQJKӧS0һWEҵQJNK{QJÿӕL[ӭQJ
.KRҧQJFiFKJLӳDWkPFӭQJYjWkPNKӕLOѭӧQJOjP
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


154
&KXNǤGDRÿӝQJ7
D
=2.08 s T
L
=2.26 s
T
T
=1.36 s
%ҧQJ0RPHQW[RҳQFKkQF{QJWUuQKFKX\ӇQYӏJyFÿӍQKF{QJWUuQKYjQӝLOӵF
FKkQYiFKFӫDYiFKJLӳDYjYiFKELrQ7&91
Vách biên 9iFKJLӳD Vách biên 9iFKJLӳD
1 0 0 0 117.4 118.66 -1.06 2126.3 2123 0.16
2 0.7 710.24 0.00031 150.44 122.6 22.71 2471.9 2161 14.39
3 1.45 710.24 0.00083 160.8 114.04 41.00 3637 3268 11.29

4 0.7 710.24 0.00013 123.3 102.99 19.72 1517 1436 5.64
5 1.45 710.24 0.0002 125.71 105.11 19.60 2223 2163 2.77
7UѭӡQJ
KӧS
.KRҧQJ
FiFKJLӳD
C
M
và C
R
/ӵFFҳW7
Moment (T.m)
'
Q/Q
(%)
'
M/M
(%)
Moment
[RҳQFKkQ
ctrình (T.m)
&KX\ӇQYӏ
JyFÿӍQK
ctrình (rad)
%ҧQJ0RPHQW[RҳQFKkQF{QJWUuQKFKX\ӇQYӏJyFÿӍQKF{QJWUuQKYjQӝLOӵF
FKkQYiFKFӫDYiFKJLӳDYjYiFKELrQ$,-
Vách biên 9iFKJLӳD Vách biên 9iFKJLӳD
1 0 718 0.00036 147.67 141.35 4.47 2486.5 2344.7 6.05
2 0.7 1395.00 0.00056 184.11 146.69 25.51 2833.76 2369 19.62
3 1.45 1500.00 0.00103 192.69 136.27 41.40 4004.1 3490.7 14.71

4 0.7 1374.00 0.00023 153.23 123.36 24.21 1740.8 1581 10.11
5 1.45 1475.00 0.00033 158.66 125.65 26.27 2470 2307 7.07
7UѭӡQJ
KӧS
.KRҧQJ
FiFKJLӳD
C
M
và C
R
Moment
[RҳQFKkQ
ctrình (T.m)
&KX\ӇQYӏ
JyFÿӍQK
ctrình (rad)
/ӵFFҳW7
'
Q/Q
(%)
Moment (T.m)
'
M/M
(%)

1KұQ[pW
7KHRWLrXFKXҭQ$,-
NKLWkPFӭQJ FӫDF{QJWUuQKWUQJWkPNKӕLOѭӧQJYүQWӗQWҥLKLӋQ
WѭӧQJ[RҳQ7kPFӭQJFjQJ[DWkPNKӕLOѭӧQJWKuFKXNǤ[RҳQFjQJOӟQ.KLNKRҧQJFiFK
JLӳD&

M
và C
R
là 0Æ0.7ÆPWKuFKXNǤ[RҳQWKD\ÿәLWӯÆ 2.09Æ V7UѭӡQJKӧS
YiFKKӣ
&{QJWUuQKFyNӃWFҩXÿӕL[ӭQJWKuQӝLOӵFWURQJFiFYiFKVӁWѭѫQJÿѭѫQJQKDX1KѭQJ
ÿӕLYӟLFiFF{QJWUuQKFyNӃWFҩXNK{QJÿӕL[ӭQJWkPFӭQJNK{QJWUQJWkPNKӕLOѭӧQJWKu
QӝLOӵFWURQJFiFYiFKVӁFKrQKOӋFKÿiQJNӇ
&KrQKOӋFKQӝLOӵFJLӳDYiFKELrQYjYiFKJLӳDNKLNK{QJNӇ
YjFyNӇÿӃQÿӝOӋFKWkPQJүXQKLrQ
7UѭӡQJ
KӧS
.KRҧQJFiFK
JLӳD&
M
và C
R

TCVN AIJ
'Q/Q (%)'M/M (%)'Q/Q

(%)'M/M

(%)
1 0 -1.06 0.16 4.47 0.16
2 0.7 22.71 14.39 25.51 14.39
3 1.45 41.00 11.29 41.40 11.29
4 0.7 19.72 5.64 24.21 5.64
5 1.45 19.60 2.77 26.27 2.77
7URQJWUѭӡQJKӧSPһWEҵQJYjOӵFFҳWYjPRPHQWFKkQYiFKJLҧPÆ20% và

30ÆVRYӟLWUѭӡQJKӧS PһWEҵQJYj9ұ\FiFYiFKFӭQJQӃXÿѭӧFOLrQNӃWOҥLWKjQK
O}LFӭQJVӁOjPWăQJÿӝFӭQJFKӕQJ[RҳQFKRQJ{LQKjQӝLOӵFJLҧPPҥQK1KӡÿyNӃWFҩXFy
NKҧQăQJFKӏXOӵFWӕWKѫQVӵFKrQKOӋFKQӝLOӵFWURQJYiFKFNJQJJLҧPÿLQKLӅX
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

155
0һFGWKjQKSKҫQJLyGӑFWKHR7&91-OjOӟQKѫQVRYӟL$,-QKѭQJ
GR$,-FyNӇÿӃQWKjQKSKҫQJLyQJDQJYjJLy[RҳQVӁJk\[RҳQNӇ FҧNKLF{QJWUuQKÿӕL
[ӭQJ'RYk\NKLWtQKWRiQF{QJWUuQKFKӏXWҧLWUӑQJJLyWKHR7&91-NK{QJNӇÿӃQ
ÿӝOӋFKWkPQJүXQKLrQWKuQӝLOӵFWURQJYiFKVӁEpKѫQVRYӟLNKLWtQKWKHR$,-
&KrQKOӋFKQӝLOӵFFKkQYiFKNKLWtQKWRiQWKHR7&VN 2737-1995 và AIJ 2004
7UѭӡQJ
KӧS
/ӵFFҳWFKkQYiFK47 Moment chân vách M (T.m)
TCVN
2737-
1995
AIJ 2004
'Q/Q
TCVN
(%)
TCVN
2737-
1995
AIJ 2004
'M/M
TCVN
(%)
1 117.4 147.67 20.4
2126.3

2486.55
14.48
2 150.44 184.11 18.48
2471.9
2833.8
12.7
3 160.8 192.69 16.66
3637
3974.8
9.28
4 123.36 153.23 19.3465
1517
1740
12.8
5 125.65 158.66 20.08
2223
2470
10
5. .ӃWOXұQ
4XDNӃWTXҧSKkQWtFKQKѭWUrQWDWKҩ\UҵQJKLӋQWѭӧQJ[RҳQF{QJWUuQKGROӋFKWkP
QJүXQKLrQKD\OӋFKWkPJk\UDEӣLNӃWFҩXNK{QJÿӕL[ӭQJFNJQJOjPWăQJÿiQJNӇQӝLOӵFӣ
FiFYiFKELrQӣ[DWkPFӭQJWăQJFKX\ӇQYӏ[RD\YjGRÿyҧQKKѭӣQJÿӃQNKҧQăQJFKӏXOӵF
FӫDNӃWFҩXYjFyWKӇJk\NKyFKӏXFKRQJѭӡLVӱGөQJ
.KLFKӏX[RҳQWKuYiFKFjQJӣ[DWkPFӭQJFjQJFyQӝLOӵFOӟQFKӭQJWӓOj càng góp
SKҫQYjRÿӝFӭQJFKӕQJ[RҳQFӫDF{QJWUuQK
6. .LӃQQJKӏ
1ӃXF{QJWUuQKNK{QJÿӕL[ӭQJWKuQrQEӕWUtYiFKFӭQJ[DWkPFӭQJF{QJWUuQKÿӇWăQJ
NKҧQăQJFKӕQJ[RҳQFKRF{QJWUuQK1ӃXEӕWUtQJRjLELrQWKuWăQJÿӝFӭQJFKӕQJ[RҳQQKѭQJ
FKӏXҧQKKѭӣQJFӫDELӃQGҥQJQKLӋWYjFRQJyWNKi nhà dài)9uYұ\SKҧLWӫ\ÿLӅXNLӋQFөWKӇ
ÿӇEӕWUtYiFKFӭQJKӧSOêQKҩW

&iFYiFKFӭQJQrQÿѭӧFWәKӧSWKjQKO}LFӭQJÿӃWăQJÿӝFӭQJQJDQJFNJQJQKѭGӝ
FӭQJFKӕQJ[RҳQFKRF{QJWUuQK
1rQiSGөQJWKjQKSKҫQ[RҳQ FӫDWҧLWUӑQJJLyNKLWtQKWRiQNӃWFҩXF{QJWUuQKQKѭ
Yұ\VӁWKLrQYӅDQWRjQKѫQ

7¬,/,ӊ87+$0.+Ҧ2

[1] TCXD 2737- 1995
[2] Tall Building Structure: Analysis and Design ± Autor: Bryan Stafford Smith and Alex
Coul.
[3] /r7KDQK+XҩQ (2005), .͇WF̭XQKjFDRW̯QJ%7&7- 1Kj[XҩWEҧQ[k\GӵQJ .
[4] 7LrXFKXҭQ$,-
[5] Wind Load Provision of ASE 7-02
[6] TCXD 229- 1999
[7] 3KҥP9ăQ&~F1JX\ӉQ/r1LQK7tQKWRiQYjF̭XW̩RNKiQJFK̭QFiFF{QJWUuQK
QKL͉XW̯QJ- 1Kj[XҩWEҧQ[k\GӵQJ.
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


156
1*+,Ç1&Ӭ83+ѬѪ1*3+È37Ë1+72È19¬7+,ӂT
.ӂ0Ï1*&Ӑ&;,0Ă1*- ĈҨ7.ӂ7+Ӧ39Ӟ,0Ï1*
BÈ CHO CÔNG TRÌNH CA27Ҫ1*/2Ҥ,,
RESEARCH ON CALCULATING METHODS AND DESIGNING FOR SOIL
CEMENT PILE FOUNDATION IN COMBINATION WITH RAFT FOUNDATION
FOR HIGH BUILDING TYPE 1

SVTH: /Æ048Ӕ&7+Ӕ1*
6LQKYLrQNKRD;'''&17U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
CBHD: .61*8<ӈ17+Ҥ&9lj

.KRD;'''&17U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
7yPWҳW
ĈӅWjLQJKLrQFӭXYjÿѭD UDSKѭѫQJSKiSWtQK WRiQPyQJ&ӑF;L0ăQJ ± ĈҩWNӃWKӧSYӟL
Móng bè cho FiFF{QJWUuQKGkQGөQJYӯDYjFDRWҫQJORҥL-WҫQJWUrQFѫVӣNӃWKӧSOê
WKX\ӃWWtQKWRiQFӫDFiFWiFJLҧWURQJQJRjLQѭӟFYjӭQJGөQJSKҫQPӅP(7DEV9.ӃW
TXҧQJKLrQFӭXQӃXÿѭӧFPӣUӝQJYjiSGөQJYjRWKӵFWӃVӁJySSKҫQKҥWKҩSJLiWKjQKxây
GӵQJF{QJWUuQKYjJLҧLWӓDÿѭӧFFѫQVӕWJLiFҧQJX\rQYұWOLӋXKLӋQQD\
Abstract
This major is carried out to do a research on Soil Cement Pile and to propose the calculating
methods for them . Basing on combinating the theory of authors outside and inside the country
as well as applying the ETabs V9.14 software. This research result will make contribution to
reducing the construction price and solve the current materials and raw materials price fever if
it is specifically studied and applied into the practice

1. Mӣ ÿҫX
&QJYӟLVӵSKiWWULӇQQKDQKFKyQJFӫDQӅQNLQKWӃWKӏWUѭӡQJ[k\GѭQJӣ9LӋW1DP
WӯEDRJLӡÿmWUӣQrQQyQJEӓQJYӟLKjQJORҥWFiFF{QJWUuQKFDRWҫQJPӑFOrQQKDQKFKyQJӣ
FiFNKXÿ{WKӏOӟQ7KHRÿyFiFF{QJQJKӋPyQJFӑFQKӗLFӑFFiWFӑFpSÿmÿѭӧFNKDLWKiF
VӱGөQJWULӋWÿӇÿӃQQәLNpRWKHRÿyOjVӵKҥJLҧPJLiWKjQKWKLF{QJ[k\GӵQJWURQJNKLJLi
QJX\rQYұWOLӋXYүQWLӃSWөFWăQJYӟLWӕFÿӝFKyQJPһWOjPFKRFiFQKjWKҫXYjFKӫÿҫXWѭÿӅX
FKӏXQKLӅXWәQWKҩW
.K{QJQKӳQJWKӃ FiFF{QJQJKӋFӑFpSFӑFQKӗLWX\FyVӭFFKӏXWҧLUҩWOӟQQKѭQJErQ
FҥQKÿyQyFNJQJEӝFOӝQKӳQJQKѭӧFÿLӇPFNJQJUҩWOӟQ&yQKLӅXFKLSKtWӕQNpPSKөWKHR
JLiWKjQKFDRPҩWQKLӅXWKӡLJLDQWKLF{QJJk\{QKLӉPP{LWUѭӡQJVLQKWKiL[XQJTXDQK
dӉ[ҧ\UDVӵFӕWURQJTXiWUuQKWKLF{QJ
&KtQKYuWKӃPjPӝWF{QJQJKӋPӟLÿmÿѭӧFQJKLrQFӭXYjÿDQJÿѭӧFiSGөQJUӝQJUmL
ӣQKLӅXQѫLWUrQWKӃJLӟLĈyFKtQKOjF{QJQJKӋ&ӑF;L0ăQJ- ĈҩW
6RYӟLFiFF{QJQJKӋPyQJFӑFNKiFF{QJ QJKӋPyQJFӑFYӳD[LPăQJÿҩWWӓUDFy
KLӋXTXҧNLQKWӃKѫQQKLӅXEӣLQyFyWKӇWұQGөQJQJXӗQQJX\rQOLӋXWҥLFKӛQJD\GѭӟLFKkQ
F{QJWUuQKĈһWELӋWQyFKtQKOjPӝWJLҧLSKiSY{FQJKӧSOêFKRFiFQӅQÿҩW\ӃXPjWURQJÿy

YQJĈӗQJ%ҵQJ1DP%ӝFӫDQѭӟF WDFKtQKOjPӝWÿLӇQKuQK
2. TәQJ quan
Ӣ1KұW%ҧQF{QJQJKӋQj\ÿѭӧFQJKLrQFӭXÿҫXWLrQEӣLJLiRVѭ7HQR[.\XVKXFӫD
ÿҥLKӑF7RN\RYjRQKӳQJQăPFӫDWKӃNӍWUѭӟF7UrQFѫVӣFKҩSQKұQTXDQÿLӇP[HPNKӕL
&ӑF;L0ăQJ- ĈҩWQKѭPӝWFӑFFӭQJ{QJÿmÿѭDUDFiFF{QJWKӭFWtQKWRiQVӭFFKӏXWҧLFӫD
NKӕL&ӑF;L0ăQJ- ĈҩWQKѭÿӕLYӟLFӑFErW{QJFӕWWKpSErQFҥQKPӝWVӕF{QJWKӭFWKӵF
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

157
QJKLӋPWҩWFҧFiFF{QJWKӭFÿyÿӅXGӵDWUrQFѫVӣWKtQJKLӋPYjTXDQViWWKӵFWӃFiFF{QJ
WUuQKPj{QJÿmWKLӃWNӃ .
0ӣUӝQJUDNKLPyQJFӑFYӳDNӃWKӧSYӟLPyQJEqErQWUrQVӁWҥRWKjQKPӝWPyQJ
NKӕLKӛQKӧSFyWiFGөQJSKkQSKӕLOҥLWҧLWUӑQJFӫDF{QJWUuQK[XӕQJFiFÿҫXFӑF6ӵNӃWKӧS
ÿyWҥRWKjQKPӝW0yQJ%q&ӑFPjFyVӭFFKӏXWҧLYjWtQKәQÿӏQKUҩWcao cho công trình .
7KHR&DUVWHQ$KQHUYj'PLWUL6XNKRYWKuVRYӟLPyQJFӑFQyFyѭXÿLӇPKѫQYӅÿӝ
VkXKҥFӑFEӣLQyNK{QJFҫQWKLӃWSKҧL[X\rQTXDKӃWOӟSÿҩWVpW\ӃXÿӇFKӕQJOrQOӟSÿҩWWӕW
PjFyWKӇGӯQJӣFDRWUuQKErQWUrQ9uWKӃVRYӟLPyQJFӑFYӟLFKLӅXGjLFӑFOӟQWKuQyVӁ
O~QQKLӅXKѫQQKѭQJYүQÿҧPEҧRÿѭӧFJLӟLKҥQFKRSKpSYjKLӇQQKLrQOjQyVӁO~QtWKѫQ
QKLӅX VR YӟL PyQJ Eq &KtQK Yu Yұ\ Pj PyQJ Eq FӑF ÿm ÿѭӧF Vӱ GөQJ UҩW WKjQK F{QJ ӣ
)UDQNIXUW&ӝQJKzDOLrQEDQJĈӭFYjQKLӅXQѫLNKiFWUrQWKӃJLӟLӣQKӳQJQѫLPjQӅQÿҩW
FyOӟSWUҫPWtFKVpWWӗQWҥLYӟLFKLӅXVkXTXiOӟQ
1KѭӧFÿLӇPOӟQQKҩWFӫDPyQJEqFӑFFKtQKOjYLӋFWtQKWRiQUҩWSKӭFWҥSGRFK~QJWD
NKyPjÿiQKJLiFKtQK[iFVӵSKkQFKLDQӝLOӵFJLӳDEҧQVjQÿi\%qYjFӑFYjELӃQGҥQJFӫD
NKӕLPyQJQj\ÿӝO~QVӁÿѭӧFWtQKWRiQQKѭWKӃQjROjKӧSOê
7UrQFѫVӣNӃWKӧSOêWKX\ӃWWtQKWRiQFӫDJLiRVѭ7HQR[.\XVKXYӟLOêWKX\ӃWPyQJ
FӑFErW{QJFӕWWKpSÿӇWtQKWRiQNLӇPWUDÿLӅXNLӋQFѭӡQJÿӝFӫD&ӑF;L0ăQJ- ĈҩWÿӗQJ
WKӡLJLҧLTX\ӃWEjLWRiQWtQKWRiQQӝLOӵFEҧQÿi\WUrQFѫVӣNӃWKӧSOêWKX\ӃW0{+uQK1ӅQ
Winkler YjSKҫQPӅP(WDEV9
3. &ѫVӣNKRDKӑFÿӇWKLӃWNӃ0yQJ%qWUrQQӅQ&ӑF;L0ăQJĈҩW
3.1. 4XDQÿL͋PWtQKWRiQ

9LӋc tính toán &ӑF;L0ăQJ- ĈҩWÿѭӧFWLӃQKjQKQJѭӧFOҥLVRYӟLWtQKWRiQFӑFEr
W{QJFӕWWKpSWӭFOjWDVӁOӵDFKRQWUѭӟFVӕOѭӧQJYjFKLӅXGjLFӫDFӑFVDXÿyÿLNLӇPWUD[HP
YӟLOӵDFKӑQÿyWKuFyÿҧPEҧRÿѭӧFNKҧQăQJFKӏXOӵFKD\NK{QJ
&KҩSQKұQJLҧWKLӃWUҵQJFӑFYӳD[LPăQJÿҩWFKӍFKӏXWҧLWUӑQJWKҷQJÿӭQJFzQWRjQEӝ
WҧLWUӑQJQJDQJVӁGRWRjQEӝEqErQWUrQQyWLӃSWKXUӗLWUX\ӅQFKR[XQJTXDQK .
.KLWtQKWRiQYjNLӇPWUDELӃQGҥQJÿӝO~QFӫDQӅQÿҩWErQGѭӟLWDVӁNӃWKӧSVRVánh
JLӳDFiFSKѭѫQJSKiS;XҩWWUӵFWLӃSNӃWTXҧFKX\ӇQYӏFӫDFiFJӕLWӵDÿjQKӗLWӯSKҫQPӅP
(WDEVKD\WtQKWRiQELӃQGҥQJFӫDPyQJWKHRQJX\rQWҳFNKӕLPyQJTX\ѭӟFEҵQJ QKLӅXF{QJ
WKӭF&{QJWKӭFFӫD*LiRVѭ%URPKRһFPӝWYjLF{QJWKӭFNKiFVӁÿѭӧFÿӅFұSWURQJSKҫQ
WtQKWRiQErQGѭӟL
3.2. 7tQKWRiQYjNL͋PWUDF˱ͥQJÿ͡FKR&͕F;L0ăQJ± Ĉ̭W
9LӋFWtQKWRiQYjNLӇPWUDVӁÿѭӧFWLӃQKjQKFKRÿLӅXNLӋQVD
X
TS ȝSTPD[
d
fc
Ra = min( Ra1, Ra2 )
t
¦ N
- TrìQKWӵWtQKWRiQ
&KӑQWUѭӟFFKLӅXGjLFӑFÿѭӡQJNtQKFӑFYjFҧVӕOѭӧQJFӑFEӕWUtQ[Q\
;iFÿӏQKKӋVӕWұSWUXQJӭQJVXҩWȝ
p
=
]).1'(1[
'
p
an
n


F{QJWKӭFWKӵFQJKLӋP
Lb, Bb .tFKWKѭӟFWKHRSKѭѫQJ;<FӫDEҧQÿi\TX\ѭӟFQҵPWUrQÿҫXFӑF
/%.tFKWKѭӟF;<FӫDSKҫQGLӋQWtFKEҧQÿi\WUX\ӅQ[XӕQJNKӕLFӑF
A
f
/%'LӋQWtFKEҧQÿi\WUX\ӅQ[XӕQJNKӕLPyQJFӑF
A
b
= L
b
.B
b
'LӋQWtFKFӫDEҧQÿi\TX\ѭӟFQҵPWUrQ ÿҫXFӑF
Q¶ 
) (
).(
211
12
pL
Lp
nE
nE


OD
O
+ӋVӕSKkQEәӭQJVXҩWa
p
=
f

col
A

.
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


158
Į
1
=
).21).(1(
)1(
21
1
QQ
Q


/jKӋVӕNӇÿӃQVӵWăQJOrQFӫD0{ÿXQ%LӃQGҥQJWKHRKѭӟQJ
WKҷQJÿӭQJÿѭӧFVLQKUDEӣLVӵKҥQFKӃFӫD PһWSKҷQJErQWKkQFӑF
Ȝ
L
=
p
B
H
1
9ӟL+
1

OjFKLӅXGj\FӫDOӟSÿҩWWKӭQKҩWEDRTXDQKFӑF
B
p
%ӅUӝQJWKHRKѭӟQJOkQFұQQJҳQKѫQFӫDSKҫQWӱFӑFPӣUӝQJ
E
1
, E
2
, E
p
0{ÿXQELӃQGҥQJWUXQJEuQKFӫDOӟSÿҩWYjOӟS;HPQKѭOӟSÿҩW
FKtQKOjWRjQEӝFiFOӟSÿҩWPjFӑFÿLTXDFzQOӟSÿҩWOjOӟSÿҩWErQGѭӟLPNJLFӑF0{ÿXQ
ELӃQGҥQJFӫDFӑF;L0ăQJ- ĈҩWÿѭӧF[iFÿӏQKWKHRWKtQJKLӋP
n
12
=
2
1
E
E
; n
P2
=
2
E
E
P
&iFKӋVӕWtQKWRiQ
Ȟ1 = v2 +ӋVӕ3RLVVRQWUXQJEuQKFӫDOӟSYjOӟS
7tQKWRiQÿѭӧFFѭӡQJÿӝӭQJVXҩWQpQVLQKUDWUrQNKӕLPyQJFӑFPӣUӝQJ

q
p
ȝ
p
. q
max
ȝ
p
.
f
A

ĈHPVRViQKYӟLIF
. 7tQKWәQJFѭӡQJÿӝFKӏXWҧLJLӟLKҥQFӫDNKӕLPyQJFӑFÿDQJWKLӃWNӃWURQJWUѭӡQJ
KӧSWtQKWRiQFKRFҧQKyPFӑFR
a1
=
¸
¸
¹
·
¨
¨
©
§

¦
sii
bd
s

Lh
Aq
F
) (
.
.
1
W
K

F
s
= 2
y
3 /jKӋVӕDQWRjQȘ/jKӋVӕNӇÿӃQVӵEӕWUtFӑFNK{QJKRjQWRjQ
q
d
/jӬQJVXҩWWӟLKҥQFӫDJӕLWӵDWKҷQJÿӭQJWҥLPNJLFӫDFӑFTX\ѭӟF
q
d
= icĮF1
c
+ iȖȕȖ
1
.B
b
.N
Ȗ
+ iqȖ
2

.z.N
q
( ic = iȖ = iq = 1 )
Įȕ+ӋVӕFѭӡQJÿӝiSOӵFJӕLWӵDSKөWKXӝFYjRQӅQÿҩW
F/ӵFGtQKNӃWFӫDOӟSÿҩWWҥLYӏWUtPNJLFӑFTX\ѭӟF
Nc , NȖ , Nq +ӋVӕWUDEҧQJSKөWKXӝFYjRJyFQӝLPDViWFӫDOӟSÿҩWWҥLPNJL
WѭѫQJWӵQKѭSKҫQWtQKWRiQVӭFFKӏXWҧLFӫDFӑFErW{QJFӕWWKpS
=&DRWUuQKFӫDPNJLFӑFVRYӟLQӅQWӵQKLrQȖ
1
Ȗ
ÿҭ\QәL
Ȗ
2
Ȗ
Gҭ\QәL
.
¦IJdi.hi &ѭӡQJÿӝPDViWK{QJ[XQJTXDQKNKӕLFӑFPӣUӝQJ
Ӣÿk\NKiFYӟLFӑFErW{QJFӕWWKpS ¦IJdi.hi OjJLiWUӏ[iFÿӏQKWKHRF{QJWKӭFWKӵF
QJKLӋPYjQyFKӍJҫQÿ~QJNKLJLiWUӏ1637FzQWKҩSWӭFOjӣFKLӅXVkXWKҩSFjQJ[XӕQJ
VkXNKLJLiWUӏ1637WăQJOrQWKuQyNK{QJFzQFKtQK[iF QӳD
*LiWUӏ1WUEJҫQEҵQJWUXQJEuQKFӝQJFӫDJLiWUӏ1WUrQYӏWUtÿy'YjGѭӟL'
ĈӕLYӟLQӅQÿҩWFiWWKuIJ
d
i
=
l
N.10
ĈӕLYӟLQӅQÿҩWVpWEQWKuIJdi = min ( c , N ) .
l : 1ăQJOѭӧQJPDViWWUrQWKkQFӑFӕQJWKpS[LPăQJÿҩW7X\QKLrQӣÿk\iSOӵFJӕL
WӵDFӫDNKӕLNK{QJJk\UDPDViWQj\QrQO 1ӃXFyWKuQyVӁOjPJLҧPIJGL

Ls &KXYLNKӕLFӑFTX\ѭӟFYjWtQKJҫQÿ~QJQKѭVDX
L
s
=
ppyx
DDnn 5,0) 2.2(
SS

(Dp ÿѭӡQJNtQKFӑF[LPăQJÿҩW
. 6ӭFFKӏXWҧLFӫDNKӕLFӑFPӣUӝQJNKLWtQKWRiQYӟLFӑFÿѫQR
a2
=
s
gle
F
Rn
sin
.

ÈSOӵFJӕLWӵDWKҷQJÿӭQJFӫDPӝWFӑFÿѫQ5VLQJOHÿѭӧFWtQK WKHRF{QJWKӭF WKӵF
QJKLӋPVDX ĈӕLYӟLQӅQÿҩWFiWWKu5single = 75.Ntrb.Ap ĭ¦IJdi.hi .
ĈӕLYӟLQӅQÿҩWVpWEQWKu5single = 6.c.Ap ĭ¦IJdi.hi
Fĭ$S/ӵFGtQKNӃWFӫDÿҩWWҥLPNJLFӑFFKXYLGLӋQWtFKFӫDPӝWFӑFÿѫQ
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

159
Pile
H
Pile
2

1
S2
q
2
1
S1
N
trb
&KӍVӕ637WUXQJEuQKFӫDÿҩWWҥLYӏWUtPNJLFӑF&iFKOҩ\QKѭӣWUrQ
)V /jKӋVӕDQWRjQYjQOjWәQJVӕFӑFWURQJNKӕLÿDQJWtQKWRiQ
.LӇPWUDÿLӅXNLӋQ5a = min (R
a1
, R
a2
)
t
¦ N
3.3. TWRiQYjNL͋m tra &͕F;L0ăQJ± Ĉ̭WWKHRÿL͉XNL͏QEL͇QG̩QJ:
3.3.1. 7KHRSK˱˯QJSKiSFͯD*LiRV˱%URP
9ӟLEҧQFKҩWFNJQJOjPӝWGҥQJFӫDJLDFӕQӅQQrQYLӋFSKkQWtFKWtQKWRiQÿӝO~Qӣ
ÿk\YӅFѫEҧQFyWKӇGӵDWUrQQJX\rQWҳFWtQKWRiQO~QFӫDFӑFJLDFӕQӅQPjSKѭѫQJ pháp
WtQKWRiQWK{QJGөQJQKҩWKLӋQQD\FKtQKOjSKѭѫQJSKiSWtQKO~QGRJLiRVѭ%URPVÿӅ[XҩW .
ĈӝO~QFӫDNKӕLPyQJFӑFÿѭӧFWtQKWKHRF{QJWKӭFVDX6 61 + S2
S1 OjÿӝO~QEҧQWKkQFӫDNKӕLFӑFJLDFӕ;pWÿӃQ%LӃQGҥQJ FӫDFӑF
S
1
=
tb
i
E

Hq '.
=
sP
i
EaEa
Hq
)1(.
.

'

T7ҧLWUӑQJSKkQEӕFӫDF{QJWUuQK.1P
¨+i &KLӅXVkXFӫDOӟSÿҩWWKӭLPjNKӕLFӑFÿLTXD(m).
a =
LB
An
c
.
.
7ӍVӕJLӳDWәQJGLӋQWtFKFӑFJLDFӕYӟLGLӋQ
WtFKNKӕLJLDFӕ
Q7әQJVӕFӑF$p OjGLӋQWtFKWLӃWGLӋQFӑF
%/OjNtFKWKѭӟFNKӕLJLDFӕ
E
p
, E
s
0{ÿXQELӃQGҥQJFӫDYұWOLӋXFӑFYjFӫDÿҩWQӅQ
PjFӑFÿLTXD
S

2
OjÿӝO~QFӫD NKӕL ÿҩWErQGѭӟL PNJLFӑFÿѭӧFWtQK
WRiQWKHRQJX\rQOêFӝQJO~QWӯQJOӟSQKѭÿӝO~QWLrXFKXҭQYӟL
ÿӝGӕFӣÿk\Oj9jÿLӅXÿyFyQJKƭDOjGLӋQWtFKNKӕLPyQJTX\ѭӟFWăQJOrQOjPWҧL
WUӑQJWUX\ӅQ [ѭӕQJVӁJLҧPÿL
7UrQWKӵFWӃÿӝO~QFӫDPyQJEqFӑFWtQKWKHRSKѭѫQJSKiSQj\OjUҩWOӟQĈyOjGRWD
ÿmEӓTXDVӵOjPYLӋFFӫD%ҧQÿi\.KLEҧQÿi\FyWKDPJLDYjRWKuYLӋFWtQKO~QFKRFiFNKӕL
FӑFJLDFӕPӝWFiFKÿӝFOұSVӁNK{QJFzQSKKӧSQӳDEӣLYuO~FQj\OӵFWӯFKkQFӝWWUX\ӅQ
[XӕQJVӁNK{QJFKӍGRPuQKNKӕLFӑFӣQJD\GѭӟLQyQKұQKRjQWRjQPjQyÿmFyVӵSKkQ
SKӕLOҥLWҧLWUӑQJ
3.3.2. TKHRSK˱˯QJSKiSSK̯QW͵KͷXK̩QWUrQF˯VͧͱQJGͭQJSK̯QP͉P(7DEV
7KHRQKѭWUrQÿmSKkQWtFKWKuP{KuQKWtQKWRiQPyQJEqFӑFPjWDVӱGөQJӣWUrQ
FKtQKOjP{KuQK1ӅQÿjQKӗL:LQNOHU7KHRÿһFÿLӇPFӫDP{KuQK:LQNOHUWKuFKX\ӇQYӏ
ÿӝFOұSWҥLFiFJӕLWӵDGѭӟLSKҥPYLFKӏXWҧLFNJQJFKtQKOjÿӝO~QFӫDQӅQWҥLQKӳQJYӏWUtÿy
1KѭYұ\WDFyWKӇ[HPQKѭFKX\ӇQYӏFӫDJӕLÿjQKӗLFKtQKOjÿӝO~QFӫDQӅQÿҩWErQGѭӟL
0yQJEqFӑF0һWNKiFFӑFYӳDGRÿӵRFFKӃWҥRWӯYұWOLӋXFKtQKOj[LPăQJYjÿҩWQJD\GѭӟL
FKkQFӫDPyQJQrQWtQKELӃQGҥQJFӫDFӑFOjUҩWOӟQGRÿyӣÿk\WDFҫQ[iFÿӏQKWKrPELӃQ
GҥQJFӫDFӑFYӳDOj62¶1yFNJQJÿѭӧF[iFÿӏQKWѭѫQJWӵQKѭ61 FӫDSKҫQWtQKWRiQÿӝO~Q
FӫDNKӕLJLDFӕӣWUrQ.ӃWKӧSKDLÿӝO~QWUrQWDVӁFyÿѭӧFÿӝO~QFXӕLFQJ
3.4. TtQKWRiQE̫Qÿi\
9LӋFJLҧLEjLWRiQEҧQWUrQQӅQÿjQKӗLEҵQJWD\ OjPӝWÿLӅXKӃWVӭFSKӭFWҥSFKRG
WUѭӡQJKӧSWҧLWUӑQJWiFGөQJFyÿѫQJLҧQQKѭWKӃQjR%ӣLYuiSOӵFÿҩWQӅQWiFGөQJOrQEҧQ
ÿi\SKkQEӕNK{QJÿӅXÈSOӵFSKkQEӕÿySKөWKXӝFUҩWQKLӅXYjRÿӝFӭQJFӫDEҧQÿi\
7KHRNӃWTXҧWKӵFQJKLӋPFKRWKҩ\ÿӝ FӭQJFӫDEҧQÿi\FjQJOӟQWKuiSOӵFSKkQEӕOrQEҧQ
ÿi\FjQJSKkQEӕÿӅXÿһQKѫQYjO~FQj\P{KuQKOjPYLӋFFӫDQyFjQJJLӕQJQKѭPӝWEҧQ
VjQOұWQJѭӧFOҥLKѫQFKӏXWiFGөQJFӫDWҧLWUӑQJSKkQEӕEҵQJiSOӵFFӫDQӅQÿҩW
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


160

3000
90009000900090009000
800090009000900054003600
2500
7
6
21
G
E
D
C
B
A'
A
3
4 5
ӬQJGөQJSKҫQPӅP(WDEVPjWDFyWKӇ[iFÿӏQKÿѭӧFQӝLOӵFFӫDEҧQ9ӟLQӝLOӵFFy
ÿѭӧFWDWLӃQKjQKWtQKWRiQFӕWWKpSFKREqQKѭÿӕLYӟLPӝWVjQQҩPOұWQJѭӧFOҥLYұ\.
3.5. ͰQJGͭQJWtQKWRiQFKRF{QJWUuQKWK͹FW͇:
&{QJWUuQKÿѭӧFWtQKWRiQӣÿk\OjPyQJFӫDF{QJWUuQK9ƭQK7UXQJ3OD]DYӟLVѫÿӗEӕ
WUtFӑFQKѭKuQKYӁ
&KӑQ FѭӡQJÿӝFKӏXQpQJLӟL
KҥQFӫDPүXWKӱ)c = 2500 KN/m2.
'RÿyFѭӡQJÿӝWKLӃWNӃVӁOj
fc
2500
33
c
F


830KN/m2 .
.ӃWTXҧWtQKWRiQFKRFiFVӕKLӋX
NKӕLFӑFÿѭӧFWKӇKLӋQWURQJEҧQWtQh
QKѭErQGѭӟL7URQJÿy
) )«/jVӕKLӋXFӑF
Pj WҥL ÿy Fy Eӕ WUt Vӕ FӑF WKHR
phѭѫQJ2;OjFӑFYjWKHRSKѭѫng
OY là






%LӇXÿӗ0RPHQ0
11



7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

161
F77 135514 418 3111.2 434991.1 3284.8 387601.8 387601.8 Thӓa mãn
F55 16634 217 849.4 21289.8 3137.5 39219.1 21289.8 Thӓa mãn
F54 16001 198 833.3 17819.4 3137.5 31375.3 17819.4 Thӓa mãn
F44 12361 162 833.3 14967.0 3137.5 25100.2 14967.0 Thӓa mãn
F34 11931 147 817.2 12018.0 3137.5 18825.2 12018.0 Thӓa mãn
F24 5091 63 801.1 9133.4 3137.5 12550.1 9133.4 Thӓa mãn
F23 4530 70 801.1 7146.6 3137.5 9412.6 7146.6 Thӓa mãn
F22 3092 115 801.1 5159.8 3137.5 6275.1 5159.8 Thӓa mãn


hiӋu
¦N
( KN)
q
L
(KN/m
2
)
q
d
(KN/m
2
)
R
a1
(KN)
R
single
(
KN
)
R
a2
(KN)
5GQJÿӇ kiӇm tra
%ҧQJWәQJKӧSÿӝO~QWKHRSKѭѫQJSKiS%URP
F77 59932.2 26324 163596 173.6 2.243 4.668 6.912
F55 3757.4
1670.4 18776.3 100 1.311 1.898 3.208

F54 3005.9
1336.4 17858.5 102.6 1.45 1.84 3.29
F44 2404.7
1069.1 14196.9 88 1.323 1.615 2.937
F34 1803.6
801.8 13551.5 91.2 1.481 1.598 3.078
F24 1202.4
534.5 7119.8 52.4 0.776 0.82 1.596
F23 901.8
400.9 6060 48.4 0.888 0.758 1.646
F22 601.2
267.3 3697.6 32.3 1.152 0.405 1.557
P
gl
(KN)
S
1
(cm)
S
'
(
cm
)
S
(
cm
)

hiӋu
G

pile
(
KN
)
G
soil
(KN)
N (KN)

%ҧQJWәQJKӧSÿӝO~Q7ӯSKҫQPӅP(WDEV
F77 59932.2
26324
163596 173.6 2.243 4.112 6.355
F55 3757.4
1670.4
18776.3 100 1.311 2.157 3.468
F54 3005.9
1336.4
17858.5 102.6 1.45 2.018 3.468
F44 2404.7
1069.1
14196.9 88 1.323 1.808 3.131
F34 1803.6
801.8
13551.5 91.2 1.481 1.728 3.209
F24 1202.4
534.5
7119.8 52.4 0.776 0.892 1.668
F23 901.8
400.9

6060 48.4 0.888 1.118 2.006
F22 601.2
267.3
3697.6 32.3 1.152 1.341 2.493

hiӋu
G
pile
(
KN
)
G
soil
(KN)
N (KN)
P
gl
(KN)
S
1
(
cm
)
S
'
(
cm
)
S
(

cm
)

7DQKұQWKҩ\FyVӵFKrQKOӋFKOӟQJLӳDEҧQJNӃWTXҧYjÿLӅXÿyFyWKӇJLҧLWKtFKEӣLVӵ
SKҧQiQKFKѭDÿ~QJKӋVӕQӅQFӫDQӅQÿҩW

4. ĈiQKJLiNӃWTXҧ
.ӃWTXҧWtQKWRiQӣWUrQFKRWKҩ\YӅFѫEҧQFiFSKѭѫQJSKiSWtQKWRiQӣWUrQÿmÿѭDUD
YjJLҧLTX\ӃWÿѭӧFFiFYҩQÿӅPӝWFiFKWѭѫQJÿӕLQKѭQJNӃWTXҧWKX ÿѭӧFWӯFiFSKѭѫQJ
SKiSYүQFKѭDWKӇFRLOjKӧSOê1JX\rQQKkQFKtQKOjGRWҩWFҧFiFSKѭѫQJSKiSWUrQYүQ
FKѭDSKҧQiQKÿ~QJEҧQFKҩWFӫDQӅQÿҩW
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008


162
5. .LӃQQJKӏ
7URQJJLDLÿRҥQKLӋQQD\QӃXWLӃSWөFKRjQWKLӋQOêWKX\ӃWNӃWKӧSYӟLWKӵFQJKLӋPWKu
ÿӅWjLWUrQFyWKӇiSGөQJYjRFKRQKLӅXF{QJWUuQK[k\GӵQJÿһFELӋWYӟLFiFF{QJWUuQKYӯD
YjFDRWҫQJWӯ-WҫQJYjKLӋXTӫDNLQKWӃPjQyPDQJOҥLOjUҩWOӟQ
+ѭӟQJSKiWWULӇQFӫDÿӅWjL
7LӃSWөFQJKLrQFӭXPӕLOLrQKӋFӫDӭQJVXҩWYjELӃQGҥQJJLӳDQӅQÿҩWErQGѭӟLYj
EҧQÿi\ErQWUrQYӟL&ӑF9ӳD;L0ăQJĈҩWÿӇWӯÿySKҧQiQKFKtQK[iFKѫQQӳDFiFWtQKFKҩW
FѫOêFӫDQӅQÿҩW
1JKLrQFӭXVӵOjPYLӋFFKXQJFѭ0yQJ%q&ӑFÿӇFyWKӇÿѭDUDPӝWP{KuQKKRjQ
FKӍQK KѫQWURQJYLӋFWtQK WRiQ VӵSKkQFKLDQӝL OӵFFKREҧQÿi\ Yj FKR FӑFWӯÿyÿѭD UD
SKѭѫQJSKiSWtQK WRiQ ELӃQ GҥQJĈӝO~QFKR 0yQJ +ӛQ+ӧS ± 0yQJ%q&ӑFPӝWFiFK
FKtQK[iFKѫQ

7¬,/,ӊ87+$0.+Ҧ2


[1] 7KLӃWNӃYjWtQKWRiQPyQJQ{QJ 9NJ&{QJ1Jӳ7UѭӡQJĈҥL+ӑF;k\'ӵQJFK
[2] 7&;'919ө.KRDKӑFYj&{QJQJKӋ;k\%DQKjQKQJj\/12/2006.
[3] Foundation Analysis and Design , Fifth Edition, Joseph E. Bowles, P.E , S.E .
[4]
[5]
.
[6] .
7X\͛QWͅS%iRFiR³+ͱLQJKͣ6LQKYLrQ1JKLrQF΁X.KRDKͥF´O̿QWK΁ ĈҥLKӑFĈj1ҹQJ- 2008

163
6Ӱ'Ө1*Ӕ1*%Ç7Ð1*&Ï/Ӛ;81*48$1+
1*+,Ç1&Ӭ8.+Ҧ1Ă1*7+87+2È71ѬӞ&7+Ҩ0
ĈӔ,9Ӟ,*,ӂ1*+2¬1&+ӌ1+.+,;Æ<'Ӵ1*&È&
&Ð1*75Î1+7+8Ӹ&Ð1*
APPLY CONCRETE TUBE WITH HOLES AROUND, STUDY THE ABILITY
OF COLLECTING AND ESCAPING ABSORBED WATER TO COMPLETE
WELLS, WHEN BUIDING INRRIGATION WORKS


697+/Ç7Ҩ17581*
9®9Ă1+2È
6LQKYLrQ.KRD;'7/7Ĉ7U˱ͥQJĈ̩LK͕F%iFKNKRDĈ+Ĉ1
HDKH: 1*Ð9Ă1'lj1*
7U˱ͥQJĈ̩LK͕F%iFKNKRDĈ̩LK͕FĈj1̽QJ

7Ï07Ҳ7
%jLEiRQj\WUuQKEj\SKѭѫQJSKiSWtQKWRiQKҥWKҩS PӵFQѭӟFQJҫP011WURQJTXiWUuQK
OjPNK{KӕPyQJNKLWKLF{QJFiFF{QJWUuQK[k\GӵQJFKӏXҧQKKѭӣQJFӫDQѭӟFQJҫPYұQ
ÿӝQJWUuQKEj\SKѭѫQJSKiSFKӃWҥRVҧQ[XҩWORҥLӕQJOӑFEҵQJErW{QJYjFKѭѫQJWUuQKWtQK
WRiQWKLӃWNӃKӋWKӕQJJLӃQJSKөFYөFKRcông tác thi công.

ABSTRACT
This article explains the method of lowering the under-current level in the course of duying
foundation when executing construction works affeted by moving under-current, it also explains
the method of introducing conrecte filter tube and the program of desigring well system to dry
fourdation to serve exccuting work.

1. ĈһWYҩQÿӅ
4XiWUuQK[k\GӵQJFiFF{QJWUuQK7KXӹOӧLWUrQV{QJNKLQӅQPyQJFӫDF{QJWUuQKӣ
YQJEmRKRjQѭӟFOjORҥLÿҩWKҥWQKӓNKҧQăQJWKRiWQѭӟF\ӃXQӅQFiWFKҧ\PһWEҵQJWKL
F{QJFKұWKҽSKRһFTXiJҫQFiFF{QJWUuQKNӃFұQ«*LҧLSKiSWKRiWQѭӟFWKҩPOjPNK{Kӕ
PyQJEҵQJSKѭѫQJSKiSKҥWKҩS011YӟLKӋWKӕQJFiFJLӃQJWKҩPFyêQJKƭDOӟQYӅNLQKWӃ
YjNӻWKXұWYuQyFyQKӳQJѭXÿLӇPQәLEұWVDX
+ *LӳFKREӅPһWKӕPyQJOX{QOX{QÿѭӧFNK{UiR
+ .K{QJJk\FҧQWUӣFiFWKLӃWEӏWKLF{QJWҥLÿLӅXNLӋQPһWEҵQJWKLF{QJWKXұQOӧL
+ 7KtFKKӧSNKL[k\GӵQJFiFF{QJWUuQKFyQӅQOjÿҩWKҥWQKӓKӋVӕWKҩPEpÿһFELӋWOj
QӅQFyKLӋQWѭӧQJFiWFKҧ\
+ 1ӅQPyQJÿѭӧFJLDFӕGRTXiWUuQKEѫPK~WVӵGLFKX\ӇQFӫDGzQJWKҩPÿҩWQӅQÿѭӧF
QpQFKһWYjFӕNӃWYY

2. CѫVӣWtQKWRiQYjPӝWVӕP{KuQKӭQJGөQJ
2.1. &˯VͧWtQKWRiQ
;pWQJX\rQWӕGzQJWKҩPFKҧ\YjRJLӃQJWURQJKӋWRҥÿӝWUө U]QKѭKuQKYӁ

×