www.VIETMATHS.com
Đề số 1 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) 1/ Khảo sát hàm số y =
+ −
−
2
1
1
x x
x
(C)
2/ Tìm các điểm trên đồ thị (C) mà tiếp tuyến tại các điểm ấy vuông góc với đường thẳng đi qua 2 điểm cực
đại và cực tiểu của (C).
Câu II: (2đ) 1/ Giải phương trình: 2sinx + cosx = sin2x + 1 2/ Giải bất pt:
2
4 5x x− +
+ 2x ≥ 3
Câu III: (2 đ) Trong kgOxyz, cho các đường thẳng ∆
1
, ∆
2
và mp(P) có pt: ∆
1
:
1 1 2
2 3 1
x y z+ − −
= =
,
∆
2
:
2 2
1 5 2
x y z− +
= =
−
, mp(P): 2x − y − 5z + 1 = 0
1/ Cmr ∆
1
và ∆
2
chéo nhau. Tính khoảng cách giữa 2 đường thẳng ấy.
2/ Viết pt đường thẳng ∆ vuông góc với mp(P), đồng thời cắt cả ∆
1
và ∆
2
.
Câu IV: (2đ) 1/ Tính tích phân I =
2
4
sin cos
1 sin 2
x x
dx
x
π
π
−
+
∫
2/ Cho các số thực x, y thay đổi thỏa điều kiện: y ≤ 0, x
2
+ x = y + 12. Tìm GTLN, GTNN của biểu
thức A = xy + x + 2y + 17
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Trong mpOxy, cho 2 đường thẳng d
1
: 2x + y − 1 = 0, d
2
: 2x − y + 2 = 0. Viết pt đường tròn
(C) có tâm nằm trên trục Ox đồng thời tiếp xúc với d
1
và d
2
.
2/ Tìm số tự nhiên n thỏa mãn đẳng thức:
0 2 2 4 4 2 2 15 16
2 2 2 2
3 3 3 2 (2 1)
n n
n n n n
C C C C+ + + + = +
Câu V.b: (2 điểm) 1/ Giải phương trình:
+ − = −
2 2
1 log (9 6) log (4.3 6)
x x
(1)
2/ Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh SA vuông góc với đáy,
·
ACB
= 60
0
, BC= a,
SA = a
3
. Gọi M là trung điểm cạnh SB. Chứng minh (SAB) ⊥ (SBC). Tính thể tích khối tứ diện MABC.
Đề số 2 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH
Câu I: (2đ) Cho hàm số y =
+ +
+
2
1x mx
x m
1/ Khảo sát hàm số khi m = −1 2/ Tìm m sao cho hàm số đạt cực đại tại x = 2
Câu II: (2đ) 1/ Giải hệ pt:
2 2
6
20
x y y x
x y y x
+ =
+ =
2/ Giải pt:
7 3 5
sin cos sin cos sin 2 cos7 0
2 2 2 2
x x x x
x x+ + =
Câu III: (2 đ) Trong kgOxyz, cho các đường thẳng d
1
:
2 1 0
1 0
x y
x y z
+ + =
− + − =
và d
2
:
3 3 0
2 1 0
x y z
x y
+ − + =
− + =
1/ Cmr d
1
và d
2
đồng phẳng và viết pt mp(P) chứa d
1
và d
2
.
2/ Tìm thể tích phần không gian giới hạn bởi mp(P) và ba mặt phẳng tọa độ.
Câu IV: (2đ) 1/ Tính tích phân I =
4
4 4
0
(sin cos )x x dx
π
−
∫
2/ Cho x, y, z > 0 và xyz = 1. Chứng minh rằng x
3
+ y
3
+ z
3
≥ x + y + z.
PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b
Câu V.a: (2 điểm) 1/ Trong mpOxy, cho 2 đường thẳng d
1
: 2x − 3y + 1 = 0, d
2
: 4x + y − 5 = 0. Gọi A là giao điểm
của d
1
và d
2
. Tìm điểm B trên d
1
và điểm C trên d
2
sao cho ∆ABC có trọng tâm G(3; 5).
2/ Giải hệ phương trình:
2
: 1:3
: 1: 24
x x
y y
x x
y y
C C
C A
+
=
=
www.VIETMATHS.com
Câu V.b: (2 điểm) 1/ Giải hệ phương trình:
2
2
2
2 2
3 7 6 0 (1)
3 3
lg(3 ) lg( ) 4lg 2 0 (2)
x y
x y
x y y x
−
−
+ − =
÷ ÷
− + + − =
2/ Cho hình lập phương ABCD.A’B’C’D’. Chứng minh rằng BD’ ⊥ mp(ACB’)
Bấm phím CTRL và Click chuột để tải tài liệu về
Xem chuyên đề ôn thi đại học hay nhất tại đây: Download
Tài liệu ôn thi đại học theo cấu trúc đề thi: Download
Kho Đề thi thử đại học năm 2012: Download
Hãy tìm them nhiều tài liệu hay trên
www.VIETMATHS.com