Tải bản đầy đủ (.pdf) (40 trang)

Một số bài tập mẫu cho quyển cho giáo trình mạch điện tử docx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (392.05 KB, 40 trang )

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
1

MỘT SỐ BÀI TẬP MẪU CHO QUYỂN
“Giáo trình mạch điện tử I”

Chương I: DIODE BÁN DẪN.

I. Diode bán dẫn thông thường:
1) Vẽ dạng sóng chỉnh lưu: (Bài 1-1 trang 29)







Công thức tổng quát tính V
L
:
L
Li
DS
L
R
RR
V
V
V
+



=

V
D
= 0,7V (Si) và V
D
= 0,2V (Ge)

a- Vẽ V
L
(t) với V
S
(t) dạng sóng vuông có biên độ 10 và 1V














Kết quả với giả thiết: R
i

= 1Ω, R
L
= 9Ω, V
D
= 0,7V.
Vì Diode chỉnh lưu chỉ dẫn điện theo một chiều nên:
∗ Trong
0T
2
1
>
, Diode dẫn

i
D


0

i
L


0

V
L


0.

V37,89
9
1
7
,
0
10
V
1L
=
+

= và V27,09
9
1
7
,
0
1
V
2L
=
+

=


Trong 0T
2
1

< , Diode tắt → i
D
= 0 → i
L
= 0 → V
L
= 0.

i
L

i
D
R
L
R
i
V
L
V
s
+

-

-

+

V

D
10

-
10

0

1

-

-

+

+

V
S

2

3

4

t(ms)

1



-
1

0

1

-

-

+

+

V
S

2

3

4

t(ms)

8,37


0

1

V
L1

2

3

4

t(ms)

0,27

0

1

V
L2

2

3

4


t(ms)

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
2

b- Vẽ V
L
(t) với V
S
(t) dạng sóng sin có biên độ 10 và 1V.













Khi V
S
= 10sinω
o
t nghóa là V
Sm

= 10V >> V
D
=0,7V ta có:
99
91
10
R
RR
V
V
L
Li
Sm
1L
=
+

+


t
sin
9
V
01L
ω


(Ta giải thích theo
0T

2
1
>

0T
2
1
<
)


Khi V
S
= 1sinω
0
t

nghóa là V
Sm
= 1V so sánh được với 0,7V:
+
V
S
> 0,7V, Diode dẫn, i
D
≠ 0, i
L
≠ 0, V
L
≠ 0.

6,0tsin9,09
9
1
7
,
0
t
sin
1
V
0
0
2L
−ω=
+

ω
=

Tại sinω
0
t = 1, |V
L2
| = 0,27V.
+
V
S
< 0,7V, Diode tắt, i
D
= 0, i

L
= 0, V
L
= 0.
Với dạng sóng tam giác ta có kết quả tương tự như sóng sin.

2)
Bài 1-3:
Để có các kết quả rõ ràng ta cho thêm các giá trò điện trở: R
1
=
1KΩ, R
b
= 10KΩ, R
L
= 9KΩ.








a- Vẽ V
L
(t) với dạng sóng vuông có biên độ 10V và 1 V.


0T

2
1
>
, Diode dẫn, R
thD
≈ 0, dòng i
L
chảy qua R
i
, D, R
L
nên ta có:
V37,810.9.
10.910
7
,
0
10
R
RR
V
V
V
3
33
L
Li
DS
1L
=

+

=
+

=

V27,010.9.
10.910
7
,
0
1
R
RR
V
V
V
3
33
L
Li
DS
2L
=
+

=
+


=

i
L

R
L

9K
R
i
=1K

V
L
V
s
+

-

-

+

V
D
R
b
=10K


10

0

-
10

9

-

-

+

+

1

2

3

4

t(ms)

V
S


V
L1

0

1

2

3

4

t(ms)

1

0

-
1

1

2

3

4


t(ms)

V
S

V
L2

0

1

2

3

4

t(ms)

0,7

0,27

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
3




0T
2
1
< , Diode tắt, R
ng
= ∞, dòng i
L
chảy qua R
i
, R
b
, R
L
nên ta có.
V5,410.9.
10.91010
10
R
RRR
V
V
3
343
L
Lbi
S
1L
=
++

=
++
=

V45,010.9.
10.91010
1
R
RRR
V
V
3
343
L
Lbi
S
1L
=
++
=
++
=















b- Vẽ V
L
(t) với dạng sóng sin có biên độ 10V và 1 V.


Để đơn giản khi V
Sm
= 10V (>>V
D
= 0,7V) ta bỏ qua V
D
. Khi đó:
+
0T
2
1
>
, Diode dẫn, R
thD
≈ 0, dòng i
L
chảy qua R
i
, D, R

L
nên ta
có:
)V(tsin910.9.
10.910
tsin10
R
RR
V
V
0
3
33
0
L
Li
S
1L
ω=
+
ω
=
+
=


+
0T
2
1

<
, Diode tắt, R
ng
= ∞, dòng i
L
chảy qua R
i
, R
b
, R
L
nên ta có.
)V(tsin5,410.9.
10.91010
t
sin
10
R
RRR
V
V
0
3
343
0
L
Lbi
S
1L
ω=

++
ω
=
++
=



Khi V
S
= 1sinω
0
t so sánh được với V
D
ta sẽ có:
+
0T
2
1
> , khi V
Sm
≥ 0,7, Diode dẫn, R
thD
≈ 0, dòng i
L
chảy qua R
i
,
D, R
L

nên ta có:
)V(63,0tsin9,010.9.
10.910
7,0tsin1
R
RR
7,0tsin1
V
0
3
33
0
L
Li
0
2L
−ω=
+
−ω
=
+
−ω
=
Tại
2
t
0
π

, sinω

0
t = 1, ta có V
L2m
= 0,9 - 0,63 = 0,27V
+
0T
2
1
>
, khi V
Sm
< 0,7, Diode tắt, R
ngD
= ∞, dòng i
L
chảy qua R
i
,
R
b
, R
L
nên ta có:
10

-
10

0


1

-

-

+

+

V
S

2

3

4

t(ms)

1


-
1

0

1


-

-

+

+

V
S

2

3

4

t(ms)

8,37

0

1

V
L1

2


3

4

t(ms)

0,27

0

1

V
L2

2

3

4

t(ms)

-
4,5

-
0,45


Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
4

tsin315,010.9.
10.91010
tsin7,0
R
RRR
tsin7,0
V
0
3
343
0
L
Lbi
0
2L
ω=
++
ω
=
++
ω
=

+
0T
2

1
<
, Diode tắt, R
ng
= ∞, dòng i
L
chảy qua R
i
, R
b
, R
L
nên ta có.
tsin45,010.9.
10.91010
tsin1
R
RRR
tsin1
V
0
3
343
0
L
Lbi
0
2L
ω=
++

ω
=
++
ω
=













2) Dạng mạch Thevenin áp dụng nguyên lý chồng chập:
Bài 1-20 với V
i
(t) = 10sinω
0
t















a-

Vẽ mạch Thevenin:
Áp dụng nguyên lý xếp chồng đối với hai nguồn điện áp V
DC
và V
i
:


Khi chỉ có V
DC
, còn V
i
= 0 thì điện áp giữa hai điểm A-K:
V3
10.5,110
10.5,1
5
rR
r
VV

33
3
ii
i
DCAK
=
+
=
+
=



Khi chỉ có V
i
, còn V
DC
= 0 thì điện áp giữa hai điểm A-K là:
)V(tsin4
10.5,110
10
tsin.10
rR
R
VV
0
33
3
0
ii

i
iAK
ω=
+
ω=
+
=

V
L
+

-

V
i
+

-

i
D
R
L

1,4K
R
i
=1K


V
DC
=5v

K

A

r
i
=1,5K

R
T
i
d

V
T
K

A

R
L

R
i
//r
i

i
L

V
T
K

A

10

0

-
10

9

-

-

+

+

t(ms)

V
S


V
L1

t(ms)

1

0

-
1

t(ms)

V
S

V
L2

t(ms)

0,7

0,315

+

+


-

-

-
4,5

-
4,5

0,585

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
5



Vậy khi tác động đồng thời cả V
DC
và V
i
thì sức điện động tương
đương Thevenin giữa hai điểm A-K là:
)V(tsin43
rR
R
V
rR

r
VV
0
ii
i
i
ii
i
DCT
ω+=
+
+
+
=



Điện trở tương đương Thevenin chính là điện trở tương đương của
phần mạch khi Diode hở mạch là:
Ω=+
+
=+
+
= K210.4,1
10.5,110
10.5,1.10
R
rR
r.R
R

3
33
33
L
ii
ii
T


b-

Vẽ đường tải DC khi
2
,
3
,
2
,
3
,0t
0
π

π

π
π
=ω .



Tại
V
3
V
0
t
T0
=

=
ω



Tại
)V(46,6
2
3
43V
3
t
T0
=+=

π




Tại )V(71.43V

2
t
T0
=+=⇒
π



Tại
)V(46,0
2
3
43V
3
t
T0
−=−=

π
−=ω



Tại
)V(11.43V
2
t
T0
−=−=⇒
π

−=ω

















Theo đònh luật Ohm cho toàn mạch ta có.
T
T
D
TT
DT
R
V
V.
R
1
R

V
V
i +−=

=



Tại )mA(15,1
10
.
2
3
7,0.
10
.
2
1
i0t
33
0
=+−=⇒=ω


Tại )mA(88,2
10
.
2
46
,

6
7,0.
10
.
2
1
i
3
t
33
0
=+−=⇒
π

i
D
(mA)

3,15

2,88

1,15

3

6,46

7


-
1

V
T

t

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
6



Tại )mA(15,3
10
.
2
7
7,0.
10
.
2
1
i
2
t
33
0
=+−=⇒

π



Tại )mA(58,0
10
.
2
46
,
0
7,0.
10
.
2
1
i
3
t
33
0
−=−−=⇒
π
−=ω


Tại )mA(85,0
10
.
2

1
7,0.
10
.
2
1
i
2
t
33
0
−=−−=⇒
π
−=ω
c- Vẽ

( )
( )
)V(tsin8,21,2tsin437,0V7,0
10.2
V
10.4,1
Rr//R
V
R
R
V
.Ri.R)t(V
00T
3

T
3
Lii
T
L
T
T
LDLL
ω+=ω+==
=
+
===









II. Diode Zenner:
1)

Dạng dòng I
L
= const (bài 1-40); 200mA ≤ I
Z
≤ 2A, r
Z

= 0






a-

Tìm R
i
để V
L
= 18V = const.
I
min
= I
Zmin
+ I
L
= 0,2 + 1 = 1,2 A.
I
max
= I
Zmax
+ I
L
= 1 + 2 = 3 A.
Mặt khác ta có: V
imin

= 22V = I
Zmin
.R
i
+ V
Z
.
Suy ra:
Ω==

=

= 3,3
2,1
4
2,1
18
22
I
V
V
R
minZ
Zmini
i

V
imax
= 28V = I
Zmax

R
i
+ V
Z

Suy ra
Ω==

=

= 3,3
3
10
3
18
28
I
V
V
R
maxZ
Zmaxi
i

Vậy R
i
= 3,3Ω.

b-


Tìm công suất tiêu thụ lớn nhất của Diode Zenner:
P
Zmzx
= I
Zmax
.V
Z
= 2.18 = 36W.


V
L

0

-
0,7

2,1

4,9V

t

R
L
=18


V

Z
=18v

22v<V
DC
<28v

R
i
I
Z

V
L
I
L

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
7

2)

Dạng dòng I
L
≠ const: (bài 1-41), 10mA ≤ I
L
≤ 85mA.
I
Zmin

= 15mA.






a-

Tính giá trò lớn nhất của R
i

maxLminZ
Zi
i
minLmaxZ
Zi
II
V
V
R
II
V
V
+

≤≤
+





Khi V
DC
= 13V ta có
Ω=
+

≤ 30
085,0015,0
10
13
R
maxi



Khi V
DC
= 16V ta có
Ω=
+

≤ 60
085,0015,0
10
16
R
maxi


Vậy ta lấy R
imax
= 30Ω.

b-

Tìm công suất tiêu thụ lớn nhất của Diode Zenner.
P
Zmax
= I
Zmax
.V
Z
.
Mặt khác: V
imax
= I
Zmax
R
i
+ V
Z



mA200
30
10
16
R

V
V
I
i
Zmaxi
max
=

=

=



mA
190
19
,
0
01
,
0
2
,
0
I
I
I
minLmaxmaxz
=

=

=

=



W
9
,
1
10
19
,
0
P
maxz
=
×
=


3)

Dạng I
Z
≠ const; I
L
≠ const (Bài 1-42)

30 ≤ I
L
≤ 50mA, I
Zmin
= 10mA.
r
Z
= 10Ω khi I
Z
= 30mA; P
zmax
=800mW.







a-

Tìm R
i
để Diode ổn đònh liên tục:
mA80
10
8
,
0
V

P
I
Z
maxZ
maxZ
===

Vậy 10mA ≤ I
Z
≤ 80mA
Ta có: I
min
= I
Zmin
+ I
Lmax
= 60mA
I
max
= I
Zmax
+ I
Lmin
= 110mA
R
L

V
Z
=10v


20v<V
DC
<25v

R
i

10Ω
I
Z

V
L
I
L

R
L

V
Z
=10v

13v<V
DC
<16v

R
i

I
Z

V
L
I
R

I
L

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
8

Mặt khác: V
imin
= I
min
.R
i
+ V
Z
= 20V


Ω=

= 7,166
06,0

10
20
R
maxi

V
imax
= I
max
.R
i
+ V
Z
= 25V


Ω=

= 36,136
11,0
10
25
R
mini

Suy ra: 136,4Ω ≤ R
i
≤ 166,7Ω
Vậy ta chọn R
i

=150Ω

b-

Vẽ đặc tuyến tải:
Ta có: V
Z
+ I
Z
R
i
= V
DC
– I
L
R
i



Với V
DC
= 20V ta có:



==×−
==×−
=+
mA50IkhiV5,1215005,020

mA30IkhiV5,1515003,020
150IV
L
L
ZZ



Với DC = 25V ta có:



==×−
==×−
=+
mA50IkhiV5,1715005,025
mA30IkhiV5,2015003,025
150IV
L
L
ZZ

Tương ứng ta tính được các dòng I
Z:
mA7,36
150
10
5
,
15

I
1Z
=

= ; mA7,16
150
10
5
,
12
I
2Z
=

=
mA70
150
10
5
,
20
I
3Z
=

= ; mA50
150
10
5
,

17
I
4Z
=

= ;





















I
Z
(mA)


V
Z
36,7

50

30

80

70

10

20,5

17,5

15,5

V
Z
=10V

0

r
Z
=10



16,7

12,5

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
9

Chương II: TRANSISTOR HAI LỚP TIẾP GIÁP

I. Bộ khuếch đại R-C không có C
C
và không có C
E
(E.C).
1)

Bài 2-10: 20 ≤ β ≤ 60, suy ra I
CQ
không thay đổi quá 10%.
















Phương trình tải một chiều:
V
CC
= V
CEQ
+ I
CQ
(R
C
+ R
E
).
mA8
1010.5,1
525
RR
V
V
I
33
EC
CEQCC
CQ

=
+

=
+

=


Nếu coi đây là dòng điện ban đầu khi β = 60 sao cho sau một thời gian
β chỉ còn β = 20 thì yêu cầu I
CQ
≥ 7,2mA.


Ta giải bài toán bài toán một cách tổng quát coi β
1
= 20; β
2
= 60.
E22bbE11b
R
10
1
RRR
10
1
R β=≤≤β=

Ω==≤≤Ω== K610.60.

10
1
RRK210.20.
10
1
R
3
2bb
3
1b

Vậy 2KΩ ≤ R
b
≤ 6KΩ


Mặt khác
β
+

=
b
E
BB
CQ
R
R
7
,
0

V
I , nếu coi V
BB
≈ const thì ta có:
9,0
R
R
R
R
I
I
1
b
E
2
b
E
2CQ
1CQ

β
+
β
+
= (1)


Có thể tính trực tiếp từ bất phương trình (1):









β
+
β
−≥









β
+≥
β
+
12
bE
1
b
E
2
b

E
9,01
RR1,0
R
R9,0
R
R

Ω==
+−
=
β
+
β

≤⇒

K53,3
10.3,28
100
20
9,0
60
1
10.1,0
9,01
R1,0
R
3
3

12
E
b

V
CEQ
= 5V

+

-

+25V

R
2
R
1
R
C
=1,5K

R
E
=1K

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
10


Chọn R
b
= 3,5KΩ.


Nếu bỏ qua I
BQ
ta có V
BB
≈ V
BE
+ I
EQ
R
E
= 0,7 + 8.10
-3
.10
3
= 8,7V.
Suy ra:
Ω≈Ω==

=

= K4,55368
652,0
10.5,3
25
7,8

1
1
10.5,3
V
V
1
1
RR
3
3
CC
BB
b1

Ω≈Ω=== K06,1010057
7,8
25
10.5,3
V
V
RR
3
BB
CC
b2



Ta có thể tính tổng quát: Chọn R
b

= 4KΩ thay vào (1):
%9,88
1200
1067
20
10.4
10
60
10.4
10
I
I
3
3
3
3
2CQ
1CQ
==
+
+
=
, bò loại do không thỏa mãn (1).


Chọn R
b
=3KΩ thay vào (1):
91,0
1150

1050
20
10.3
10
60
10.3
10
I
I
3
3
3
3
2CQ
1CQ
==
+
+
=
thỏa
mãn bất phương trình (1), ta tính tiếp như trên.

2)

Bài 2-11: Với hình vẽ bài (2-10) tìm giá trò cho R
1
, R
2
sao cho dòng i
C

xoay
chiều có giá trò cực đại.


Điểm Q tối ưu được xác đònh như sau:
AC
ƯCQTTƯCEQ
ACDC
CC
TƯCQ
maxCm
R.IV
RR
V
II
=
+
==

Từ hình vẽ: R
DC
= R
C
+ R
E
= 1,5.10
3
+ 10
3
= 2,5KΩ.

R
AC
= R
C
+ R
E
= 1,5.10
3
+ 10
3
= 2,5KΩ.
Suy ra:
mA5
10.5,210.5,2
25
I
33
TƯCQ
=
+
=

V
CEQTƯ
= 5.10
-3
.2,5.10
3
= 12,5V



Chọn Ω==β= K1010.100.
10
1
R
10
1
R
3
Eb
(bỏ qua I
BQ
)










V
BB
≈ V
BE
+ I
CQTƯ
.R

E
= 0,7 + 5.10
-3
.10
3
= 5,7V
V
CE
(V)

i
C
(mA)

V
CEQTƯ
= 12,5

25

10
R
V
DC
CC
=

( )
5
RR2

V
EC
CC
=
+







−≡
3
10.5,2
1
ACLLDCLL

Q

0

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
11

Ω≈Ω==

=


= K13K95,12
772,0
10
25
7,5
1
1
10.10
V
V
1
1
RR
4
3
CC
BB
b1

Ω≈Ω=== K44K85,43
7,5
25
10
V
V
RR
4
BB
CC
b2


Vì R
DC
= R
AC
nên phương trìng tải DC và AC trùng nhau.

3)

Bài 2-14: Điểm Q
bất kỳ
vì biết V
BB
= 1,2V; β = 20. Tìm giá trò tối đa của dao
động có thể có được ở C và tính η.











Biết β = 20, V
BEQ
= 0,7V.
Ta có: mA3,3

50100
7,02,1
R
R
V
V
I
b
E
BEQBB
CQ
=
+

=
β
+

=


Để tìm giá trò tối đa của dao động có thể có được ở C ta phải vẽ
phương trình tải DC, AC












V
CEQ
= V
CC
– I
CQ
(R
C
+ R
E
) = 6 – 3,3.10
-3
.1,1.10
3
= 2,37V


Vậy giá trò tối đa của dao động là:
I
Cmmax
= i
Cmax
– I
CQ
= 5,45 – 3,3 = 2,15mA
Suy ra V

Lmax
= I
Cmmax
.R
C
= 2,15.10
3
.10
-3
= 2,15V


P
CC
= I
CQ
.V
CC
= 3,3.10
-3
.6 = 19,8mW
+6V

R
b
= 1K

R
C
= 1K


R
E
= 100


V
BB
= 1,2V

45,5
R
V
DC
CC
=

I
CQ
= 3,3

i
C
(mA)

V
CE
(V)

2,37


3

6

0

2,725

Q

Q
bk






−=
1100
1
ACLLDCLL

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
12

( )
(

)
mW31,210.10.15,2
2
1
R.I
2
1
P
3
2
3
C
2
maxCmL
===


Hiệu suất:
%7,11
10.8,19
10.31,2
P
P
3
3
CC
L
===η




II. Bộ KĐRC không có C
C
, C
E
(tụ bypass Emitter) (EC)
1)

Bài 2-15: Điểm Q bất kỳ.












a-

Tìm R
1
, R
2
để I
CQ
= 01mA (R

b
<< βR
E
)
Vì R
b
<< βR
E
nên ta có:
A10mA10
R
7
,
0
V
I
2
E
BB
CQ

==



suy ra V
BB
= 0,7 + 100.10
-2
= 1,7V


Ω==β= K1100.100
10
1
R
10
1
R
Eb


Ω≈=

=

= K2,1
83,0
10
10
7,1
1
10
V
V
1
1
RR
33
CC
BB

b1


Ω=== K88,5
7,1
10
10
V
V
RR
3
BB
CC
b2


b-

Để tìm I
Cmmax
với R
1
, R
2
như trên ta phải vẽ DCLL và ACLL:












C
E




V
cc
=10V

R
2
R
1
R
C
=150


R
E

100Ω
β

=100; V
BEQ
=0,7v

i
C
(mA)

V
CE
(V)

Q








150
1
ACLL









250
1
DCLL

7,5

60

10

V
CEmax
= 9V

I
Cmmax

15

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
13

V
CEQ
= V
CC
– I

CQ
(R
C
+ R
E
) = 10 – 10
-2
.250 = 7,5V
Từ hình vẽ ta nhận thấy để I
Cm
lớn nhất và không bò méo thì I
Cmmax
=
10mA.
Ta có thể tìm i
Cmax
và V
Cemax
theo phương trình
( )
CEQCE
C
CQC
VV
R
1
Ii −−=−

Cho V
CE

= 0 ⇒
mA60
150
5,7
10
R
V
Ii
2
C
CEQ
CQmaxC
=+=+=


Cho i
C
= 0 ⇒ V95,7150.10VR.IV
1
CEQCCQmaxCE
=+=+=



2)

Bài 2-16: Điểm Q tối ưu (hình vẽ như hình 2-15).
Để có dao động Collector cực đại ta có:
ACDC
CC

ƯCQT
maxCm
RR
V
II
+
== (1)
V
CEQTƯ
= R
AC
.I
CQTƯ
(2)
R
DC
= R
C
+ R
E
= 150 + 100 = 250Ω
R
AC
= R
C
= 150Ω
Thay vào (1) ta được: mA25
150
250
10

I
ƯCQT
=
+
=
V75,310.25.150V
3
ƯCEQT
==


















V
BB
≈ 0,7 + I

CQTƯ
.R
E
= 3,2V.
Ω==β= K1100.100.
10
1
R
10
1
R
Eb

Ω≈=

=

= K47,1
68,0
10
10
2,3
1
10
V
V
1
1
RR
33

CC
BB
b1

V
CE
(V)

i
C
(mA)

V
CEQTƯ


= 3,75
2I
CQTƯ
= 50

40
RR
V
EC
CC
=
+









150
1
ACLL

2V
CEQTƯ

=7

10


I
CQTƯ
= 25








250

1
DCLL

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
14

Ω≈Ω=== K1,33125
2,3
10
10
V
V
RR
3
BB
CC
b2

Để vẽ ACLL, rất đơn giản ta chỉ cần xác đònh:
i
Cmax
= 2I
CQTƯ
và V
Cemax
= 2V
CEQTƯ.

III. Bộ KĐ R-C có C

C
và C
E
(E.C).
1)

Bài 2-20: Điểm Q tối ưu
R
DC
= R
C
+ R
E
= 900 + 100 =1KΩ
Ω=
+
=
+
= 450
900900
900
.
900
RR
R
R
R
LC
LC
AC















mA9,6
RR
V
II
DCAC
CC
ƯCQT
maxCm

+
==
V
CEQTƯ
= I
CQTƯ
.R

AC
= 6,9.10
-3
.450 = 3,1V
V
BB
= 0,7 + R
E
.I
CQTƯ
= 0,7 + 100.6,9.10
-3
= 1,4V
Ω==β= K1100.100.
10
1
R
10
1
R
Eb














C
E




V
cc
=10V

R
2
R
1
R
C
=900


R
E

100Ω
C
C





R
L
=900K

V
CE
(V)

i
C
(mA)

V
CEQTƯ


= 3,1
2I
CQTƯ
= 13,8

10
RR
V
EC
CC
=

+








450
1
ACLL

6,2

10

0

I
CTƯ
= 6,9









1000
1
DCLL

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
15

Ω≈=

=

= 1163
86,0
10
10
4,1
1
10
V
V
1
1
RR
33
CC
BB
b1

Ω=== 7143

4,1
10
10
V
V
RR
3
BB
CC
b2

Ta có dòng xoay chiều:
V1,3V
mA45,39,6
900900
900
I.
RR
R
I
Lm
Cm
LC
C
Lm
=⇒
=
+
=
+

=


2)

Vẫn bài 2-20 nếu ta bỏ tụ C
E
thì ta sẽ có bộ khuếch đại R.C có C
C
mà không
có C
E
. Khi đó kết quả tính toán sẽ khác rất ít vì R
E
<< R
C
, R
L

R
DC
= R
C
+ R
E
= 900 + 100 = 1KΩ
Ω=
+
+=
+

+= 550
900900
900
.
900
100
RR
R
R
RR
LC
LC
EAC

mA45,6
55010
10
RR
V
II
3
ACDC
CC
maxCm
ƯCQT
=
+
=
+
==


V
CEQTƯ
= I
CQTƯ
.R
AC
= 6,45.10
-3
.550 = 3,55V
V
BB
= 0,7 + I
CQ
. R
E
= 0,7 + 6,45.10
-3
.100 = 1,345V
Ω==β= K1100.100.
10
1
R
10
1
R
Eb

Ω==


=

= 1155
8655,0
10
10
345,1
1
10
V
V
1
1
RR
33
CC
BB
b1

Ω=== 7435
345,1
10
10
V
V
RR
3
BB
CC
b2


mA225,310.45,6.
900900
900
I
RR
R
I
3
Cm
LC
C
Lm
=
+
=
+
=


V
Lm
= R
L
.I
Lm
= 900.3,225.10
-3
= 2,9V.


IV. Bộ KĐ R.C mắc theo kiểu C.C.
1)

Bài 2-22: Mạch có thiên áp Base.
* Đây là dạng bài điểm Q bất kỳ vì đã biết R
1
, R
2
.



V525.
10.2010.5
10.5
V
RR
R
V
33
3
CC
21
1
BB
=
+
=
+
=


mA1,2
60
10.4
10.2
7
,
0
5
R
R
7
,
0
V
I
3
3
b
E
BB
CQ
=
+

=
β
+

=


R
b
= = =

4K


R
1
+ R
2
R
1
R
2
5.10
3
+ 20.10
3

5.10
3
.20.10
3

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
16














(Vì
β
>>
b
E
R
R
nên có thể tính gần đúng theo công thức
E
BB
CQ
R
7
,
0
V
I


=
)
V
CEQ
= V
CC
– I
CQ
(R
C
+ R
E
) = 25 – 2,1.10
-3
.3.10
3
= 18,7V

















Từ hình vẽ ta thấy: I
CQ
< I
CQTƯ
nên I
Cm
= I
CQ
= 2,1mA
mA05,110.1,2.
10.210.2
10.2
I
RR
R
I
3
33
3
Cm
LE
L
Lm
=
+
=
+

=


V
Lmmax
= R
L
.I
Lm
= 2.10
3
.1,05.10
-3
= 2,1V
* Cách vẽ DCLL và ACLL của bộ KĐ R.C mắc C.C tương tự như cách mắc E.C
( )
CEQCE
AC
CQC
VV
R
1
Ii −−=−

với
Ω=
+
+= k2
RR
R

R
RR
LE
LE
CAC

Cho V
CE
= 0 suy ra
mA45,11
10.2
7,18
10.1,2
R
V
Ii
3
3
AC
CEQ
CQC
=+=+=


Q

V
CE
(V)


i
C
(mA)

V
CEQ


= 18,7
I
Cmax
= 11,45

3,8
R
V
DC
CC
=








3
10.2
1

ACLL

10

0


I
CQTƯ
= 5








3
10.3
1
DCLL

22,9

25

I
CQ
= 2,1


V
L

C
C




V
cc
=25V

R
2

20K
R
1

5K
R
C
=1K

R
E
=2K


R
L
2K
β
=60

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
17

i
C
= 0 suy ra
V9,2210.1,2.10.27,18IRVV
33
CQACCEQmaxCEQ
=+=+=


* Với bài toán trên nếu chưa biết R
1
và R
2
ta có thể thiết kế để dòng điện ra lớn
nhất: R
DC
= R
C
+ R
E

= 10
3
+ 2.10
3
= 3KΩ.
Ta có:
mA5
10.210.3
25
RR
V
I
33
ACDC
CC
ƯCQT
=
+
=
+
=

V
CEQTƯ
= I
CQTƯ
.R
AC
= 10V.


2)

Bài 2-24: Mạch được đònh dòng Emitter.
Theo đònh luật K.II: ΣV
kín
= 0 ta có
R
b
I
BQ
+ V
BEQ
+ R
E
.I
EQ
–V
EE
= 0
Suy ra
mA93
100
7
,
0
10
R
R
7
,

0
V
I
b
E
BB
EQ
=


β
+

=

V
CEQ
= V
CC
+ V
EE
– I
CQ
(R
C
+ R
E
)
= 10 + 10 – 93.10
-3

.150 = 6,05V

















mA5,4610.93.
100100
100
I
RR
R
I
3
Em
LE
E
Lm

=
+
=
+
=




V
Lm
= I
Lm
R
L
= 46,5.10
-3
.10
2
= 4,65V


Đây là điểm Q bất kỳ nên ta có:
( )
CEQCE
AC
CQC
VV
R
1

Ii −−=−

+
Cho V
CE
= 0 suy ra
mA214
R
V
Ii
AC
CEQ
CQmaxC
=+=

+
Cho i
C
= 0 suy ra
V675,1050.10.9305,6RIVV
3
ACCQCEQCE
=+=+=




i
L


I.


I
C
C




V
L
C
E




V
EE
=
-
10v

R
b
<<
β
R
E

R
C
=50


R
E
=100


R
L
=100


V
CC
=10v

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
18



















Nếu bài này được tính ở chế độ tối ưu thì:
R
DC
= R
C
+ R
E
= 150Ω
Ω=
+
= 50
RR
R
R
R
LE
LE
AC
khi đó
mA100A1,0

50150
20
RR
V
I
DCAC
CC
ƯCQT
==
+
=
+
=

V
CEQTƯ
= I
CQTƯ
.R
AC
= 5V



V
CE
(V)

i
C

(mA)

V
CEQ


= 6,05
214

133
RR
V
V
EC
EECC
=
+
+








50
1
ACLL


10,675

20

0

I
CQ
= 93








150
1
DCLL

Q

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
19

Chương IV
:
THIẾT KẾ VÀ PHÂN TÍCH TÍN HIỆU NHỎ TẦN SỐ THẤP.


I. Sơ đồ mắc Emitter chung E.C:
1)

Bài 4-7: Q bất kỳ.
a-

Chế độ DC















K3
205,3
20
.
5
,
3

RR
R
R
R
21
21
b

+
=
+
=

V320.
205,3
5
,
3
V
RR
R
V
CC
21
1
BB

+
=
+

=

mA6,4
100
10.3
500
7
,
0
3
I
3
CQ

+

=

V
CEQ
= V
CC
– I
CQ
(R
C
+ R
E
) = 20 – 4,6.10
-3

.2.10
3
= 10,8V
Ω==


760
10.6,4
10.25
h.4,1h
3
3
feie


b-

Chế độ AC:









Z
o
i

C
Z
i
R
i

2K
i
b
R
b
3K
i
i
R
C

1,5K
i
L

R
L
=1,5K

h
ie
100i
b
1,2K


R
L
=1,5K

i
i
R
C
=1,5K

C
C2




-

+

+V
CC
=20V

C
E
→∞

+


-

R
1

3,5K
i
L

R
2
=20K

R
i
=2K

R
E

1,5K

C
C1




-


+

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
20

i
b
b
L
i
L
i
i
i
i
i
i
i
A ==
(1)
50100.
10.5,110.5,1
10.5,1
h.
RR
R
i
i

i
i
i
i
33
3
fe
LC
C
b
C
C
L
b
L
−=
+
−=
+
−==

( )
61,0
76010.2,1
10.2,1
hR//R
R//R
i
i
3

3
iebi
bi
i
b
=
+
=
+
=

Thay vào (1) ta có: A
i
= -50.0,61 = -30,6
Z
i
= R
i
//R
b
//h
ie
= 1200//760 = 465Ω
Z
o
= R
C
= 1,5KΩ.

2)


Bài 4-11: Q bất kỳ và h
fe
thay đổi.
a-

Chế độ DC:


100R5010.50.
10
1
R
10
1
R
bE11b
=<Ω==β=
, không bỏ qua I
BQ
.


100R15010.150.
10
1
R
10
1
R

bE22b
=>Ω==β=
, bỏ qua I
BQ
.

















mA83
50
100
10
7
,
0
7

,
1
R
R
7
,
0
V
I
1
b
E
BB
1EQ
=
+

=
β
+

=

mA100
10
7
,
0
7
,

1
R
7
,
0
V
I
E
BB
2EQ
=

=



Ω≈=


21
10
.
83
10.25
.50.4,1h
3
3
1ie

Ω==



5,52
10
.
100
10.25
.150.4,1h
3
3
2ie

suy ra 21Ω ≤ h
ie
≤ 52,5Ω
R
L
=100


R
b
=100


V
BB
=1,7v

i

i
R
C
=100


C
C




-

+

+V
CC
=20v

C
E
→∞

+

-

i
L


R
E
10Ω
Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
21

b-

Chế độ AC:
ieb
b
fe
LC
C
i
b
b
L
i
L
i
hR
R
.h.
RR
R
i
i

i
i
i
i
A
++
−===

66,20
21
100
100
.50.
100
100
100
A
1i
−=
++
−=

1,49
5,52100
100
.150.
100100
100
A
2i

−=
++
−=

Z
i
= R
b
//h
ie
suy ra Z
i1
= 100//21 = 17,36Ω
Z
i2
= 100//52,5 = 34,43Ω
Vậy 20,66 ≤ A
i
≤ 49,18
17,36Ω ≤ Z
i
≤ 34,43Ω









3)

Bài 4-12: Dạng không có tụ C
E

a-

Chế độ DC:
mA5,4
100
10
10
7
,
0
7
,
5
h
R
R
7
,
0
V
I
4
3
fe
b

E
BB
CQ
=
+

=
+

=

(có thể tính I
CQ
= 5 mA)
V
CEQ
= V
CC
– I
CQ
(R
C
+ R
E
) = 20 – 4,5.10
-3
.(3.10
3
) = 6,5V
Ω==



778
10.5,4
10.25
.100.4,1h
3
3
ie
















R
b
=10K

V

BB
=5,7V

i
i
R
C
=2K

C
C




-

+

+V
CC
=20V

i
L

R
E
=1K


R
L
=1
00


i
C
i
b
R
b
100Ω
i
i
R
C

100Ω
i
L

h
ie
h
fe
i
b
R
L

= 100


Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
22

b-

Chế độ AC:









i
b
b
L
i
L
i
i
i
i
i

i
i
A ==
(1)
24,95h.
RR
R
i
i
i
i
i
i
fe
LC
C
b
C
C
L
b
L
−=
+
−==

09,0
1077810
10
RhhR

R
i
i
54
4
Efeieb
b
i
b
=
++
=
++
=

Thay vào (1) ta được A
i
= -95,24.0,09 = -8,6
[
]
Ω=≈+= K1,910//10Rhh//RZ
54
Efeiebi


II. Sơ đồ mắc B.C: Bài 4-21, h
oe
=
4
10


1) Chế độ DC:











91,0
11
10
h1
h
h
fe
fe
fb
==
+
=

Ω==
+
=



32
10
10.25
.10.4,1.
11
1
h1
h
h
3
3
fe
ie
ib

5
4
fe
oe
ob
10
11
10
h1
h
h


==

+
=





R
L
=100


i
b
R
b
10K
i
i
R
C

2K
i
L

h
fe
R
E

100i
b
h
ie
=778


V
CC
R
2
V
i
+

-

R
1
C
b




r
i
=50



R
L
=10K

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
23

2) Chế độ AC:









i
e
e
L
i
L
V
V
i
i
V
V

V
A ==
(1)
82791,0.
1010
10.10
h.
h
1
R
h
1
R
i
i
.
i
Ri
i
V
54
54
fb
ob
L
ob
L
e
C
C

LL
e
L
−=
+
−=
+
−==
012,0
3250
1
hR
1
hR
V
.
V
1
V
i
ibiibi
i
ii
e
−=
+
−=
+
−=
+


=

Thay vào (1) ta được A
V
= (-827).(-0,012) = 10,085 ≈ 10

III. Sơ đồ mắc C.C: Bài 4-23
1) Chế độ DC















V
CC
= I
BQ
R
b

+ V
BEQ
+ R
E
I
EQ

mA65,4
100
10
10
7
,
0
10
R
R
7
,
0
V
I
5
3
b
E
CC
EQ
=
+


=
β
+

=


V
CEQ
= V
CC
– R
E
I
EQ
= 10 – 4,65.10
-3
.10
3
= 5,35 V

R
L

10KΩ
i
L
1/h
ob


10
5

i
C
h
fb
i
e

0,91i
b
h
ib

32Ω
i
e
R
i
50


V
i
+

-


R
L

1KΩ
V
i
+

-

R
E

1KΩ

Z
o
Z
i
C
c2
→∞

r
i
500


100K



R
b
C
c1
→∞

+V
CC
=10V

Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
24

2) Chế độ AC

















Ω≈=


753
10.65,4
10.25
h4,1h
3
3
feie

i
b
b
L
i
L
v
V
V
V
V
V
V
A ==
(1)
(
)

( )
[ ]
985,0
000
.
50
753
500.100
R//Rhhi
R
//
R
h
.
i
V
V
LEfeieb
LEfeb
b
L
=
+
=
+
=
(2)
R

b

= R
b
//[h
ie
+ h
fe
(R
E
//R
L
)] = 33,3Ω
994,0
10.3,33500
K3,33
Rr
R
Rr
V
.R.
V
1
V
V
3'
bi
'
b
'
bi
i

'
b
ii
b
=
+

=
+
=
+
=
(3)
Thay (2), (3) vào (1) ta có: A
V
= 0,985.0,994 = 0,979 ≈ 0,98
[ ]
Ω≈+≈






+= 37,12553,7//10
h
R//r
h//RZ
3
fe

bi
ibEo

(
)
[
]
Ω==+= K3,33RR//Rhh//RZ
'
bLEfeiebi


i
L


r
i
500


V
i
+

-

h
ie
753



i
b
R
b
100KΩ
R
e
.hfe

100KΩ
R
L
.hfe

100KΩ
V
b
V
L
Z
i
h
ie
/h
fe
7,53



i
e
R
E
1KΩ
r
i
/hfe

5Ω
R
b
/hfe

1KΩ
Z
o
Khoa Điện - Điện tử Viễn thông Mạch Điện Tử I
Một số bài tập mẫu
25

Chương VI: MẠCH TRANSISTOR GHÉP LIÊN TẦNG.

I. Transistor ghép Cascading:
1) E.C – C.E

Bài 6-1: Điểm Q bất kỳ, 2 tầng hoàn toàn độc lập với nhau.
a - Chế độ DC
Ω==>Ω=
+

=
+
= 500R.h.
10
1
RK1,2
10.710.3
10.7.10.3
RR
R.R
R
Efeb
33
33
2111
2111
1b

suy ra, không được bỏ qua I
BQ1
;
V310.
10.710.3
10.3
V.
RR
R
V
33
3

CC
2111
11
1BB
=
+
=
+
=

mA2,16
50
2100
100
7
,
0
3
h
R
R
7
,
0
V
I
1fe
b
E
1BB

1EQ
1
1
=
+

=
+

=

V
CEQ1
= V
CC
– I
EQ1
(R
C1
+ R
E1
) = 10 – 16,2.10
-3
.300 = 5,14V
Ω===

−−
108
10.2,16
10.25

.50.4,1
I
10.25
.h4,1h
3
3
1EQ
3
1fe1ie

Ω==<Ω=
+
=
+
= 1250R.h.
10
1
RK9,0
10.910
10.9.10
RR
R.R
R
Efeb
33
33
2212
2212
2b


suy ra, được bỏ qua I
BQ2
;
V110.
10.910
10
V.
RR
R
V
33
3
CC
2212
12
2BB
=
+
=
+
=

mA2,1
250
3
,
0
50
900
250

7
,
0
1
2
h
R
R
7
,
0
V
I
2b
2E
2BB
2EQ
=≈
+

=
+

=

V
CEQ2
= V
CC
– I

EQ2
(R
C2
+ R
E2
) = 10 – 1,2.10
-3
.2250 = 7,3V
Ω===

−−
1458
10.2,1
10.25
.50.4,1
I
10.25
.h4,1h
3
3
2EQ
3
2fe2ie

b - Chế độ AC









i
1b
1b
2b
2b
L
i
i
i
.
i
i
.
i
i
A =
(1)

i
C2
V
L

Z
o

Z

i
R
b

2,1K

i
i
h
ie1

108
50i
b1
R
C1

200
R
b2

900
h
ie2

1458

50i
b2
R

C

2K
i
b1
i
b2
i
C1

×