Tải bản đầy đủ (.pdf) (69 trang)

LUẬN VĂN VIỄN THÔNG PHƯƠNG PHÁP GIẢM NHỎ KÍCH THƯỚC ANTEN MF/HF VÀ THIẾT KẾ ANTEN CỘT BUỒM CÓ MẠCH GIẢM NHỎ KÍCH THƯỚC CỦA MÁY JSS720

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (526.29 KB, 69 trang )

0ÖFOÖF

§
§
§
§
§
§
§
§
§
§
§
§
§
§

/èLQLâX


&ÔQJYÂLQKSvWpQJWUuQJFƠDFzFQJKwQKNLQKWWKOQKYFWKsQJWLQOLrQO{F
SKzWWULQUWQKDQKFKQJQK|PSKăFYăQKXFXFXFVQJFRQQJuL7KsQJWLQ
OLrQO{FFYDLWUUWTXDQWUQJvLYÂLVSKzWWULQFƠDFzFQJKwQKQOwvQJ
OFWKĐFv\FKRVSKzWWULQFƠD[ảKLKLQv{L
&FWKLWEÊFFSKQWạWURQJKWKơQJWK{QJWLQOLzQOFSKLFĐVẳW}|QJ
WFVDRFKRFĐWKWUX\QGQWÂQKLX~WKLXTXFDRQKW$QWHQOPWESKQ
NK{QJWKWKLX~}FFDKWKơQJWK{QJWLQOLzQOFQKWOWK{QJWLQY{WX\Q~LQ
%LY~OKWKơQJY{WX\Q~LQWKSKLVạGãQJVĐQJ~LQWáQzQNK{QJWK
WKLX~}FWKLWEÊEằF[KRFWKXVĐQJ~LQWá
1Jw\QD\YÂLVSKzWWULQFƠDNKRDKFNWKXWWURQJOQKYFWKsQJWLQ
OLrQO{FvLKLDQWHQNKsQJFKvtQWKXQOwPQKLPYăEơF[{KD\WKXVQJvLQWâ


PwFQWKDPJLDYwRTXzWUQKJLDFsQJWQKLX
<rXFXJLxPQKNFKWKuÂFDQWHQFƯQJOwPWWURQJQKôQJvLKLFSEzFK
vLYÂLNWKXWYLQWKsQJQJw\QD\oLYÂLFzFGxLVQJWUXQJYwQJQGREuÂF
VQJOÂQOrQNFKWKuÂFDQWHQNKzvVUWWQNPWURQJ[q\GQJYwExRTXxQ
'R Y\ FQJLxP QK NFK WKuÂF DQWHQ vQ PơF WL WKLXv EÂW WUQJ OuÊQJYw
JLxPVFQJNQKFƠDDQWHQ
;XWSKzWWâQKôQJWuQJWUrQvq\YwVKuÂQJGQFƠDFzFWK\JLzRWURQJ
NKRD HP P{QK G{Q FKQ v WwL
SKQJSKSJLPQKNFK WKẽF
DQWHQ0I+)YWKLãWNãDQWHQFậWEXầPFPFKJLPQK
NFKWKẽFFểDP\MVV
oWwLvuÊFNWFXQKuVDX
-

&KonQJ,
&|VOWKX\WDQWHQ
-

&KonQJ,,
&FSK}|QJSKSJLPQKƠNÂFKWK}FDQWHQ
-

&KonQJ,,,
3KyQWÂFKDQWHQFWEXâPYPFKJLPQKƠNÂFKWK}F
-

&KonQJ,9
7ÂQKWRQPFK~LXK}QJDQWHQ

&KwvQJ,

FvVÂOWKX\WDQWHQ
Đ
wơLYLEWNẵPWKWKơQJ~LQWáQRFĐNKQxQJWRUD~LQWU}đQJKRF
WáWU}đQJELQWKLzQ~XFĐEằF[VĐQJ~LQWáWX\QKLzQWURQJWKẳFWVẳEằF[
Q\FK[\UDWURQJQKQJ~LXNLQQKW~ÊQK
wYÂGãWD[WPWPFKGDR~QJWK{QJVơWSWUXQJFĐNÂFKWK}FUWQKƠ
VRYLE}FVĐQJ+QKD
1X~WYRPFKPWVằF~LQ~QJELQ~êLWKWURQJNK{QJJLDQFDWãV
SKWVLQK~LQWU}đQJELQWKLzQ1K}QJ~LQWU}ÔQJWURQJQ\KXQK}NK{QJEằF
[UDQJRLPEÊUQJEXFYLFFSKQWạFDPFK'ÔQJ~LQGÊFKFKX\QTXD
WãWKHR~}đQJQJQQKWWURQJNKRQJNK{QJJLDQJLDKDLPWãQzQQxQJO}QJ
~LQWU}đQJEÊJLLKQWURQJNKRQJNK{QJJLDQ\&ÔQQxQJO}QJWáWU}đQJWS
WUXQJFK\XWURQJPWWKWÂFKQKƠWURQJOÔQJFXQFP1xQJO}QJFDFK
WKơQJV~}FERWRQQXNK{QJFĐWêQKDRQKLWWURQJFFFXQGy\GQY~LQ
P{LFDPFK
DE
FG
+QK
1XPUQJNÂFKWK}FFDWã~LQQK}KQKEWKGÔQJ~LQGÊFK~}F
ELXWKÊWURQJKQKYWUQJYLFF~}đQJVằF~LQWU}đQJVNK{QJFKGÊFKWURQJ
NKRQJNK{QJJLDQJLDKDLPWãPPWESKQVODQWƠDUDP{LWU}ÔQJQJRLY
FĐWKWUX\QWLQKQJ~LPQPFFK[DQJXâQQJXâQ~LQWU}đQJOFF~LQWÂFK
ELQ~êLWUzQKDLPWã~LQ
1XPUQJK|QQDNÂFKWK}FFDWã~LQQK}KQKFWKGÔQJ~LQGÊFK
VODQWƠDUDFQJQKLXYWRUD~LQWU}đQJELQWKLzQYLELzQ~OQK|QWURQJ
NKRQJNK{QJJLDQEzQQJRLwLQWU}đQJELQWKLzQV~}FWUX\QODQYLYQWơF
QKVQJ.KL~WWLPWNKRQJFFKNK[DQJXâQFKảQJVWKRWNKƠLVẳUQJ
EXFYLQJXâQQJKĂDONK{QJFÔQOLzQKYLFF~LQWÂFKWUzQKDLPWã~LQQD
7KWY\QXWD TXDQ VWFF~}đQJ VằF ~LQ WU}đQJ JQ Wã~LQWKWK\UQJ
FKảQJNK{QJWẳNKSNÂQPFĐ~LPEWQJXâQOFF~LQWÂFKWUzQKDLPWã~LQ

'R~ĐJLWUÊFD~LQWU}đQJQKQJ~LPQPWUzQFF~}đQJVằF\VELQWKLzQ
~âQJWKđLYLVẳELQWKLzQFD~LQWÂFKWUzQWã~LQ1K}QJQX[WPW~LP0
FFK[DQJXâQWKFĐWKWK\UQJWLWKđL~LPQR~Đ~LQWU}đQJWL0FĐWK~W
WLPWJLWUÊQKW~ÊQKWURQJOảF~LQWÂFKWUzQKDLPWã~LQOLELQ~êLTXDJL
WUÊ.KL\FF~}đQJVằF~LQVNK{QJFÔQUQJEXFYLFF~LQWÂFKQDP
FKảQJSKLWẳ NKSNÂQWURQJNK{QJJLDQQJKĂD O~KQKWKQKPW~LQWU}đQJ
[R\7KHRTX\OXWFD~LQWU}đQJELQWKLzQWK~LQWU}đQJ[R\VWRUDPWWá
WU}đQJELQ~êLWáWU}đQJELQ~êLOLWLSWãFWRUD~LQWU}đQJ[R\QJKĂDO~
KQKWKQKTXWUQKVĐQJ~LQWá
3KQQxQJO}QJ~LQWáWKRWUDNKƠLQJXâQYWUX\Q~LWURQJNK{QJJLDQWẳ
GR~}FJăLOQxQJO}QJEằF[KD\QxQJO}QJKXF{QJ
3KQ QxQJ O}QJ ~LQ Wá UQJ EXF YL QJXâQ V GDR ~QJ JQ QJXâQ
NK{QJWKDPJLDYRYLFWRWKQKVĐQJ~LQWá~}FJăLOQxQJO}QJY{F{QJ
'GQJQKQWK\UQJKWKơQJEằF[~LQWáFĐKLXTXVOKWKơQJ
P WURQJ ~Đ ~LQ WU}đQJ KRF Wá WU}đQJ ELQ WKLzQ FĐ NK QxQJ [yP QKS ~}F
QKLXYRNK{QJJLDQQJRL7á~ĐWK\UQJKWKơQJ~LQWáELXWKÊWUzQKQKF
VEằF[FĐKLXTXK|QKWKơQJWUzQKQKEwWxQJF}đQJNKQxQJEằF[
FDKWKơQJFQPUQJK|QQDNK{QJJLDQEDRWUPFD~}đQJVằF~LQWU}đQJ


KQKG'LSRO+HHW]OPWWURQJFFFXWUảFEằF[FĐKLXTX1Đ
~}FKQKWKQKWáFFKWKơQJ~LQWáQĐLWUzQYLVẳELQGQJFDKDLWPNLP
ORLFDWã ~LQWKQKKDL~RQGy\ GQPQKY KDL TXFX NLPORL KDL ~X
'LSRO+HHW]OPWWURQJFFQJXâQEằF[~|QJLQQKWYOSKQWạ~FXWUảF
QKQJDQWHQGy\SKằFWS

Đ
1JX\tQODQWHQWKX
&KơQWỉấL[QJOPYLáFFKãậWKX
*LVạFKQWạFĐ~GLOEQNÂQKDUWQKƠVRYLE}FVĐQJ


~}F~W
WURQJWU}đQJFDPWVĐQJWUX\QWLWKHRJĐF~ơLYLWUãFFKQWạFĐYFW|~LQ
WU}đQJ(QPWURQJPWSKQJWLKQK
+QKFKLXFDYFW|~LQWU}đQJOzQWUãFFKQWạVO
L
OYFW|~|QYÊWKHRK}QJWUãF] +QK
1XNKLX (
OF}đQJ~~LQWU}đQJFDVĐQJWLWyPFKQWạWK~LQ
WU}đQJWLSWX\QWL~LPFĐWăD~]WUzQFKQWạVO


==
jkzcos
0
z
jkzcos
0
z
e
.
sin
.
E
i
.e
E


E


'}LWFGãQJFD~LQWU}đQJWLSWX\QWUzQPôLSKQWạVSKWVLQKVằF
~LQ~QJ
G ( G ( VLQ

G
zki
e

cos
.


1K}Y\VĐQJSKQJWUX\QWLFKQWạ~FPằQJOzQFKQWạVằF~LQ~QJ
SKyQEơFĐELzQ~JLơQJQKDXPăL~LPEQJ(
VLQ

G YJĐFSKDELQ~êL
WKHRTX\OXWN]FRV


'}LWFGãQJFDVằF~LQ~QJSKyQEơWURQJFKQWạVSKWVLQKGÔQJ~LQ
'ÔQJ~LQQ\Jy\UD~LQS~XYRFKQWạ
6ằF~LQ~QJFD~XYRFKQWạO




=
2

0
0
sin
2
kl
cos
)
cos
2
kl
cos(
2
kl
sin
1
E
e

1X~XYRFKQWạ~}FPFWLWKWURQJWLV[XWKLQGÔQJ~LQ
&{QJWKằFWÂQKGÔQJ~LQ~XYRO




+
=
+
=
2
v

t
0
v
t
0
thu
sin
2
kl
cos
)
cos
2
kl
cos(
2
kl
sin
1
Z
Z
E
Z
Z
e
I

7URQJv ,
GÔQJ~LQFK\WURQJWL
z


z
i
.
E E
=

(
(
H VằF~LQ~QJ~XYR
(
F}đQJ~GLQWU}đQJWLWyPFKQWạ
= WUNKQJWL
=
WUNKQJYR
O ~GLPWQKQKFKQWạ
N KVơWUX\QVĐQJN




9\TXWUQKWKXVĐQJ~LQWáOTXWUQKFKX\QKĐDQxQJO}QJVĐQJ~LQ
WáWURQJNK{QJJLDQWKQKGÔQJFDRWQFK\WUzQJQKDQWHQ
&QJVXơWFFLWUQWLDQWHQWKX

w[F~ÊQK~}FKLXTXFDDQWHQWKXWDWPF{QJVXWWKX~}FWUzQWLPF
FẳFDQWHQ
*ăLWUNKQJWLDQWHQWKXO
=
5 L;

&{QJVXWKXÂFKGRWLWKX~}FVEQJ
)
2
.
1
(
R
I
2
1
P
t
2
thu
thu
=

7URQJ~ĐGÔQJ~LQFK\WURQJWLDQWHQWKX~}F[F~ÊQKEL

)
3
.
1
(
e
I
o
thu
+
=



,
GÔQJ~LQFK\WUzQWLDQWHQWKX
H
QJXâQVằF~LQ~QJFDDQWHQWKX
=
=
,
O
+QK
=  WU¯NKQJYRF´DDQWHQWKX
 7KD\YRWDF§

)
4
.
1
(
R
Z
Z
e
2
1
P
t
2
v
t

2
o
thu
+
=

7U}®QJK²SF§SK¬LK²SWU¯NKQJJLºDDQWHQYWLQJK¡DONKL
5
 5 ;  ; 
WDVQKQ~}²F
()
)
5
.
1
(
R
8
e
R
R
2
e
2
1
P
t
2
o
t

2
t
2
o
max
thu
==

5
WKQKSKQ~LQWU¯WKXQWURQJ= 
Đ
&|FWKDPVFĐDDQWHQ
+PSKQJKẽQJ
+PNK{QJFKXQKPQ\ELXWKÊJLWUÊWX\W~ơLFDF}đQJ~WU}đQJ
ằQJYLJĐF

Y

[F~ÊQKQR~Đ
I



(




+PFKXQOWắVơFDF}đQJ~WU}đQJWLPW~LPEWNẵYLF}đQJ~
WU}đQJWLPW~LPFĐJLWUÊPD[+PQ\FKFĐWÂQKFKWW}|QJ~ơL


()
()
()
)
6
.
1
(
,
E
,
F
max


=

ậUậQJFểDEếSKẽQJ
w~QKJLPằF~UQJKSFDEảSK}ĐQJQJ}đLWD~}DUDFFNKLQLP
~UQJEảSK}QJ~REQJJĐF

JĐFQ\FKRELWPằF~WSWUXQJQxQJO}QJ
WKXJăQWLPWK}QJQR~Đ
wUQJPằFKQKDOJĐFJLLKQELYFW|PWLGRPRGXO
F}đQJ~WU}đQJEQJPRGXOF}đQJ~WU}đQJFẳF~L
wUQJPằFKQKEOJĐFJLLKQELYFW|PWL~ĐPRGXO
F}đQJ~WU}đQJEQJPRGXOF}đQJ~WU}đQJFẳF~L
w UQJPằF KQK F OJĐFJLL KQ ELYF W| P WL ~Đ
PRGXOF}đQJ~WU}đQJEQJPRGXOF}đQJ~WU}đQJFẳF~L






DEF
+QK

+LáXVXơWFểDDQWHQ
+LXVXWFDDQWHQOWVơJLDF{QJVXWEằF[YLF{QJVXWWRQEP
DQWHQQKQ~}FWáP\SKW~}DWL

0
P
P

=

03
3

3
3

F{QJVXWEằF[FDDQWHQ
3
F{QJVXWYRDQWHQ
3
F{QJVXWWêQKDRWUzQDQWHQ



3
, 5

, 5
)
7
.
1
(
1
R
R
R
th

+
=



5

O~LQWUEằF[
5
O~LQWU~FWU}QJFKRVẳWêQKDRWURQJDQWHQ
9LVĐQJQJQYVĐQJFẳFQJQQJ}đLWDWK}đQJGQJFS~âQJWUãFKRF
ơQJGQVĐQJ~WUX\Q~}DQxQJO}QJWáP\SKWVĐQJWLDQWHQ&S~âQJWUãF
KRFơQJGQVĐQJFĐVẳWêQKDRUWQKƠGR~Đ~W~}FKLXVXWFDR
wơL YL VĐQJGLYVĐQJ WUXQJ WKQJ}đL WD WK}đQJGQJGy\VRQJKQK

KRFFSVRQJKQKFĐVẳWêQKDRQKLXK|QGR~ĐKLXVXWWKSK|Q
+áVấQKKẽQJ
w ~QK JL WÂQK K}QJ FD DQWHQ QJ}đL WD GQJ NKL QLP K Vơ ~ÊQK
K}QJ+VơQ\~FWU}QJFKRNKQxQJWSWUXQJQxQJO}QJ~LQWU}đQJYPW
KXQJQR~Đ
+Vơ~ÊQKK}QJOWVơJLDEQKSK}|QJF}đQJ~WU}đQJPWK}QJ
EWNẵYLEQKSK}|QJF}đQJ~WU}đQJWUXQJEQKYLWWFPăLSK}|QJ

()
)
8
.
1
(
E
,
E
D
2
tb
2

=

(



OF}đQJ~WU}đQJK}QJEWNẵ
(

OF}đQJ~WU}đQJWRELDQWHQY{K}QJFĐWêQKDR
+áVấWQJFKFểDDQWHQ
+VơWxQJÂFKOWVơJLDEQKSK}|QJF}đQJ~WU}đQJSK}|QJEWNẵ
FDDQWHQFĐK}QJFĐWêQKDRYLEQKSK}|QJF}đQJ~WU}đQJWRELDQWHQY{
K}QJNK{QJWêQKDR

()
)
9
.
1
(
E
,
E
G
2
o
2

=

(OF}®QJ~WU}®QJY{K}±QJNK{QJWªQKDR
+QK

&KLXGyLKLXGªQJF§DDQWHQ
 w£QKQJK¡DOFKLXGLF´DDQWHQFKQW¹W}¯QJW}²QJF§V¼SKyQG¤QJ~X
QKDXWUzQP¨L~LPF´DFKQW¹YG¤QJ~§EQJG¤QJ¯~LPFS~LQWUzQFKQW¹
WK¼FYFK¶QJF§F}®QJ~WU}®QJ¯SK}|QJE»F[PD[OQK}QKDX
 ;F~£QKFKLXGLKLXG·QJF´DDQWHQ










+QK

&§K}±QJF§
WªQKDR
(

θ


ϕ


(
(

9{K}±QJ
NK{QJWªQKDR
9{K}±QJF§
WªQKDR
6 h
×

O
O
,
6 
6  6 hOKDLF{QJVXWE»F[EQJQKDX
 *LV¹F§FKQW¹~¬L[»QJWK¼FFKLXGLO~}²FFSG¤QJWKHR TX\OXW
KQKVLQV§QJFK\ELzQ~WL~LPFS~LQO,
wLQW¢FK6F´DY³QJSKyQE¬
G¤QJF´DDQWHQF§FKQW¹WK¼FO6
KD\F{QJVXWE»F[
 7DF§PWFKQW¹W}¯QJW}²QJ~}²FFSG¤QJNK{QJ~ªLYG¤QJ~§EQJ,

F§~LQW¢FKSKyQE¬G¤QJO6

6
6 NKL~§FKLXFDRKLXG·QJF´DDQWHQWK¼FVO

()
dz
.
z
l
k
sin
I
2
S
l
0
m

i
−=


 7L~LPFS~LQOE·QJG¤QJ,
 ,

()
)
10
.
1
(
z
l
k
cos
k
1
kl
sin
I
2
S
l
0
o
i
−=


7URQJv,
 G¤QJ~LQ¯~LPFS~LQ
,
 ELzQ~G¤QJ~LQ
  ] ~LPNKRVW
  O FKLXGLPWQKQKFKQW¹
  N KV¬WUX\QV§QJN 
π

λ

 Y±L 
()
z
lkII
mz
−=
sin


k
l
I
I
k
l
II
m
m
sin

sin
0
0
=⇒
=

 WKD\] OY] YRWDF§

()
)
11
.
1
(
kl
cos
1
kl
sin
I
S
0
i

π
λ
=


h

d
i
lIS
0
'
=

P 6
 6 
()
h
d
lIkl
kl
I
0
0
cos
1
sin
=−⇒
π
λ

()
)
12
.
1
(

sin
cos
1
kl
kl
l
hd

=⇒
π
λ

7URQJ~§O
OFKLXGLKLXG·QJF´DDQWHQF§FKQW¹~¬L[»QJ
$QWHQFKQWơxL[đQJ

QKQJKắDFKơQWỉấL[QJ
&KQWạ~ơL[ằQJOPWFXWUảFJâPKDL~RQYWGQFĐKQKGQJW\
KQKWUãFKĐSHOLSVRLWFĐNÂFKWK}FJLơQJQKDX~WWKQJKQJWURQJNK{QJJLDQ
YJLDQơLYLQJXâQFDRWQ








3KQEấGQJLáQWUQFKơQWỉấL[QJ

*LVạFKQWạFĐ GQJQK}KQKDYLEQNÂQKDUWQKƠFKQWạOP
EQJGy\GQ~LQKQKWUãUWPQK3K}|QJSKSJQ~ảQJ~[F~ÊQKSKyQEơ
GÔQJ~LQWUzQFKQWạ~ơL[ằQJY~}đQJGy\VRQJKQKKPFK~XFXơLNK{QJ
WêQKDR~}FJăLOSK}|QJSKSOWKX\W~}đQJGy\
7KWY\Wá~}đQJGy\VRQJKQKKQKDFĐWKELQGQJ~QKQ~}F
FKQWạ~ơL[ằQJKQKEEQJFFKPUQJ~XFXơLFD~}đQJGy\~QNKLJĐF
PJLDKDLQKQKEQJ
YLFPUQJQ\VOPPWWÂQKNKSNÂQFD~}đQJGy\
VRQJKQKYWR~LXNLQ~KWKơQJFĐWKEằF[VĐQJ~LQWá







D
a
O O
D


a
O
E


O
a
F



+QK
a

a

O
=
=
+QK
*LVạNKLELQGQJ~}đQJGy\VRQJKQKWKQKFKQWạ~ơL[ằQJWKTX\
OXWSKyQEơGÔQJ~LQWUzQKDLQKQKYQNK{QJWKD\~êLQJKĂDOYQFĐGQJVĐQJ
~ằQJ

()
)
13
.
1
(
z
2
l
sin
I
z
I
b







=

7URQJ~Đ ,
OELzQ~GÔQJ~LQ~LPEãQJVĐQJ~ằQJ
OO~GLPWQKQKFKQWạ
7X\ QKLzQQKQJ VX\OXQ Y Vẳ W}|QJWẳ QzXWUzQ FKFĐWÂQK FKW JQ
~ảQJYNKLFKDLKWKơQJ~}đQJGy\VRQJKQKYFKQWạ~XOFFKWKơQJ
GDR~QJYLWK{QJVơSKyQEơQK}QJJLDFKảQJFĐQKQJ~LPNKFQKDX
&FWK{QJVơSKyQEơFD~}đQJGy\VRQJKQKNK{QJELQ~êLGăFWKHR
~}đQJGy\FÔQWK{QJVơSKyQEơFDFKQWạWKELQ~êLằQJYLFFYÊWUÂNKF
QKDXWUzQFKQWạKQKE
w}đQJGy\ VRQJKQKWKẳFWO KWKơQJ ~WUX\Q GQQxQJO}QJ FKằ
NK{QJSKLOKWKơQJEằF[FÔQFKQWạOKWKơQJEằF[
7URQJ~}đQJGy\VRQJKQKKPFK~XFXơLGÔQJ~LQFKELQ~êL
WKHR TX\ OXW VĐQJ ~ằQJ WKXQ Wả\ NKL ~}đQJ Gy\ OP Wá YW GQ O W}QJ
NK{QJWêQKDRFÔQ~ơLYLFKQWạQJD\FNKL~}FFXWRWáYWGQOW}QJ
FàQJOX{QFĐPWPWQxQJO}QJGREằF[PWPWKXÂFK'R~ĐQĐLPW
FFKFKÂQK[FWKSKyQEơGÔQJ~LQWUzQFKQWạVNK{QJWKHRTX\OXWVĐQJ
~ằQJKQKVLQ7X\QKLzQ~ơLYLFFFKQWạUWPQK~}đQJNÂQKD




NKL WÂQKWU}đQJ NKX[DGẳDWKHRJLWKLWSKyQEơGÔQJ~LQKQKVLQFàQJ
QKQ ~}FNWTXNK SKKSYLWKẳF QJKLP9Y\ WURQJ SKQOQFF

WÂQKWRQNWKXWFĐWKFKRSKSSGãQJJLWKLWSKyQEơGÔQJ~LQVĐQJ
~ằQJKQKVLQ
7U}đQJKSFKQWạ~WWURQJNK{QJJLDQWẳGR:

WDFĐ
)
14
.
1
(
e
sin
2
kl
cos
)
cos
2
kl
cos(
I
60
i
jkR
0














=

)
15
.
1
(
e
sin
2
kl
cos
)
cos
2
kl
cos(
2
kl
I
60
i

jkR
b














=


7URQJv,OGÔQJ~LQ~XYRFKQWạ

()






=
2

kl
sin
I
z
I
b

%LWTX\OXWSKyQEơFDGÔQJ~LQWUzQFKQWạV[F~ÊQK~}FTX\OXWSKyQ
EơJQ~ảQJFD~LQWÂFKEQJFFKSGãQJSK}|QJWUQKERWRQ~LQWÂFK
*LWKLWGÔQJ~LQWUzQFKQWạFKFĐWKQKSKQGăF,
~LQWÂFKQPWUzQ
EPWGy\YFĐPW~GL 4
7DFĐSK}|QJWUQKER WRQ~LQWÂFK~}FYLW
G}LGQJ
)
16
.
1
(
0
Q
i
d
dI
z
z
z
=+

,



D- OELzQ~GÔQJWLWăD~]FDFKQWạ
-
OPW~GÔQJ~LQPW
4
O~LQWÂFKPWWUzQPWG|QYÊFKLXGLFKQWạ
*LLSK}|QJWUQK~ơLYL4
WURQJ~ĐWKD\, ELSK}|QJWUQKWDFĐ
0
z
)
z
2
l
(
k
cos
i
kI
Q
0
z
)
z
2
l
(
k
cos

i
kI
Q
b
1
z
b
1
z
<+

=
>

=


3KyQEơ~LQWÂFKWUzQFKQWạ~ơL[ằQJ~}FELXGLQWUzQKQKEQJFF
QWUđL














a

DO


DO


DO


+QK


1KQ[W
'ÔQJSKRF~LQWÂFKWUzQFKQWạSKyQEơWKHRTX\OXWVĐQJFK\O
VĐQJGăFWKHRWáQJQKQKFDFKQWạELzQ~NK{QJ~êLQK}QJSKDELQ~êLWKHRYÊ
WUÂ


PôL~LPWUzQFKQWạGÔQJYSOFKSKDQKDX


%LzQ~GÔQJYSWL~LPFSQJXâQSKãWKXFYRWắVơO


&FK~XGy\


OX{QFĐEãQJGÔQJYQảW~LQS
7QKSKQJKẽQJFểDFKơQWỉấL[QJ
D;WWQKSKonQJKoQJWURQJPzWSKwQJNLQKWX\Q(






*LVạWDQJKLzQFằXPWFKQWạ~ơL[ằQJ~WWKQJ~ằQJFĐFKLXGLO
.KRVWPW~LP0NK[DFKQWạ
/\KDLSKQWạY{FQJQKƠG]
YG] FFKJơFWăD~O]FRLKDLSKQWạO
GLSRO~LQ
9NKRQJFFKWáGLSRO~LQ~Q~LP0NK[DQzQFRL5
5 5
w}đQJ~LFDFF~RQQ\FKzQKOFKQKDXO

5


5 5
5 5 5
0

5 ]FRV


ẻ5
5 ]FRV



5
5 ]FRV


7DFĐG]
EằF[WL0F}đQJ~WU}đQJOG(
a

G
G
]
0
O
O
5
5
5


+QK
)
18
.
1
(
e
sin
dz

I
60
j
dE
1
jkR
1
1
θ
λ
π
=

 7}|QJW¼G]
E»F[W±L0F}®QJ~WU}®QJOG( 
)
19
.
1
(
e
sin
dz
I
60
j
dE
2
jkR
2

2
θ
λ
π
=

95
5 ¯G}±LPXQzQ~W5 

5 

5 
 7DF§
)
cos
z
R
(
jk
1
0
e
sin
dz
I
60
j
dE
θ−
θ

λ
π
=


)
cos
z
R
(
jk
1
2
0
e
sin
dz
I
60
j
dE
θ+
θ
λ
π
=

9±LG¤QJ~LQSKyQE¬WKHRTX\OXWKQKVLQ
)
z

2
l
(
k
sin
I
I
m
−=

 &}®QJ~WU}®QJWªQJO

2
1
dE
dEdE
+=

)
20
.
1
(
)
e
e
(
e
sin
)

z
2
l
(
k
sin
dz
I
60
j
dE
cos
jkz
cos
jkz
jkR
m
0
θ−θ
+θ−
λ
π
=

)
cos
kz
cos(
2
sin

)
z
2
l
(
k
sin
dz
I
60
j
dE
m
θθ−
λ
π
=⇒

&}®QJ~WU}®QJWL0O

)
21
.
1
(
e
sin
kl
cos
)

cos
kl
cos(
kI
60
j
E
dz
)
cos
kz
cos(
)
z
2
l
(
k
sin
e
sin
I
120
j
dE
E
0
0
jkR
m

M
1
0
jkR
m
1
0
M
θ
−θ
=
θ−θ
λ
π
==
∫∫

 %LzQ~F}®QJ~WU}®QJWL0O

)
22
.
1
(
sin
kl
cos
)
cos
kl

cos(
kI
60
E
m
M
θ
−θ
=

+PSK}|QJK}±QJF´DFKQW¹~¬L[»QJ 
)
23
.
1
(
sin
kl
cos
)
cos
kl
cos(
)
(
f
θ
−θ



wâWKÊK}QJFDFKQWạ~ơL[ằQJWURQJPWSKQJNLQKWX\Q(











1KQ[W
9LPWJLWUÊFDWắVơO

~XNK{QJFĐEằF[GăFWKHRFKQWạ
9LO

WKFKQWạEằF[FẳF~LYKDLSKÂD




wâWKÊK}QJ
FDFKQWạFĐGQJKQKVơYFKFĐKDLEảSK}QJFKÂQK
9LO!

EW~X[XWKLQEảSSKãOFQJWxQJWKEảSSKãFQJOQ
EảSFKÂQKFQJJLPFKR~QNKLO


WKEảSFKÂQKPW~LFKFÔQEảSSKãOảFQ\
DQWHQEằF[FẳF~LYSKÂD
E;WWQKSKonQJKoQJWURQJPzWSKwQJYWX\Q+

7URQJPWSKQJYĂWX\QWK~UQJEảSK}QJ

FRQVW
ẻI

FRQVWQzQ~âWKÊK}QJOPW~}đQJWUÔQWằFOWURQJPWSKQJYĂ
WX\QFKQWạ~ơL[ằQJEằF[Y{K}QJ
&FWKQJVấFểDFKơQWỉấL[QJ
D7UNKtQJVQJFDFK~QWÔ
7}|QJWẳQK}~}đQJGy\VRQJKQK~ơLYLFKQWạ~ơL[ằQJFàQJFĐWK~}D
YR NKLQLP WU NKQJ VĐQJ7KHR OWKX\W ~}đQJ Gy\WK WU NKQJ VĐQJFD
~}đQJGy\VRQJKQKNK{QJWêQKDREQJ
)
24
.
1
(
C
L
1
1
d
=







+QK
7URQJ~Đ / O~LQFPSKyQEơFD~}đQJGy\
&
O~LQGXQJSKyQEơFD~}đQJGy\
0WNKFWDFĐ
d
C
LC
C
v
CL

à
àà
=====
1
1
1
1
1
1
4
4
1
1
1
1


YOYQWơFWUX\QWUzQ~}đQJGy\
1X~}đQJGy\~}F~WWURQJNK{QJJLDQWẳGRWK
à

à




7UNKQJ
VĐQJFD~}đQJGy\FĐWK~}FELXWKÊTXDWK{QJVơFDP{LWU}đQJYPWWURQJ
KDLWK{QJVơ/
KRF& FD~}đQJGy\
)
25
.
1
(
C
1
0
0
d
à
=

wơLYL~}đQJGy\VRQJKQK&
O~LO}QJNK{QJELQ~êLWKHRFKLXGL
FDGy\Y~}F[F~ÊQKELNÂFKWK}FFD~}đQJGy\

)
26
.
1
(
a
D
lg
276
d
=

'NKRQJFFKJLDKDLGy\GQ
DEQNÂQKGy\GQ
&ÔQ~ơLYLFKQWạ~ơL[ằQJKRFFFORLDQWHQGy\NKFWK~LQGXQJSKyQ
Eơ&
~y\NK{QJSKLOKQJVơPWKD\~êLGăFWKHRFKLXGLFDGy\~}FWÂQK
WKHRF{QJWKằF
)
27
.
1
(
)
1
a
l
(ln
120
=


OFKLXGLGy\
DEQNÂQKGy\GQ
E&mQJVX~WYqpLQWUEƯF[uFDFK~QWÔpL[ƯQJ
wÊQKQJKĂD~LQWUEằF[FDFKQWạO~LO}QJELXWKÊTXDQKJLD
F{QJVXWEằF[YEQKSK}|QJGÔQJ~LQWUzQFKQWạ
)
28
.
1
(
I
P
2
R
2
I
R
P
2
m
2
m




=
=


7URQJ~Đ 5

O~LQWUEằF[
3

OF{QJVXWEằF[
,OELzQ~GÔQJ~LQWUzQFKQWạ
7X\QKLzQWURQJWU}đQJKSQ\GÔQJ~LQFĐELzQ~SKyQEơNK{QJ~XGăF
WKHRFKQWạ9Y\NKLELXWKÊF{QJVXWEằF[WKHRELzQ~GÔQJ~LQWLYÊWUÂ
QR~ĐFDFKQWạWKW}|QJằQJVFĐFFJLWUÊFD~LQWUEằF[ằQJYLGÔQJ
~LQ~LP~Đ
1KQ[W
9L O

ẻ5

JăLOFKQWạQạDVĐQJ
O

ẻ5

JăLOFKQWạFVĐQJ
O

WKNKLOWxQJVWxQJVơSKQWạFĐGÔQJ~LQ~âQJSKDGR
~ĐWxQJF{QJVXWY~LQWUEằF[
O

!WKWUzQFKQWạV[XWKLQKDLSKQGÔQJ~LQQJ}FSKD
OPJLPF{QJVXWY~LQWUEằF[FDFKQWạ

F+VpQKKoQJFDFK~QWÔpL[ƯQJ
+Vơ~ÊQKK}QJFDFKQWạ~ơL[ằQJK}QJ

QR~Đ~}F[F~ÊQKEL
F{QJWKằF
)
29
.
1
(
WP
R
2
)
(
E
)
(
D
2
2
0


=

7URQJ~Đ '

OKVơ~ÊQKK}QJFDFKQWạ
3


OF{QJVXWEằF[
5ONKRQJFFKWáFKQWạ~Q~LPNKRVW
:OWUNKQJVĐQJFDP{LWU}đQJ
(

O~LQWU}đQJEằF[~}FWÂQKWKHRF{QJWKằF

















=
i
R
e
sin
2

kl
cos
)
cos
2
kl
cos(
jWI
jkR
b

1KQ[W
9L O

ẻ'

O

ẻ'

O

WxQJ~QẻKVơ~ÊQKK}QJWxQJ~Q
O

!ẻKVơ~ÊQKK}QJVJLP~L
G7UNKtQJYqRFDFK~QWÔpL[ƯQJ

wÊQKQJKĂD7UNKQJYRFDFKQWạ~ơL[ằQJEQJFKVơ~LQS~X
YRFDFKQWạ8

YGÔQJ~LQ~XYR,









)
30
.
1
(
jX
R
I
U
Z
v
v
0
0
v
+==

7URQJ~Đ 5
5


5
5
~LQWUWKXQFDDQWHQ
5

~LQWUEằF[WL~XYRFKQWạ
5
~LQWUWêQKDRFDDQWHQ
w[F~ÊQKFKÂQK[FWUNKQJYRFQELW~LQSYGÔQJ~LQ~XYR
QJKĂDOFQELWSKyQEơGÔQJ~LQGăFWKHRFKQWạ
7URQJWÂQKWRQNWKXW~[F~ÊQKWUNKQJYRFĐWKSGãQJJLWKLW
JQ~ảQJ~SKyQEơGÔQJ~LQKQKVLQ
wLQSYR8
WL~XYRKDLQKQKFKQWạ~}F[F~ÊQKWKHRF{QJWKằF
)
31
.
1
(
2
kl
cos
jI
U
a
0
0
=

7DFĐWUNKQJYRFDFKQWạ

)
32
.
1
(
2
kl
g
cot
j
I
U
Z
a
0
0
0
==

7URQJ~Đ
2
kl
sin
II
b
0
=

a
a

8
5

5
;
8
,
+QK
7á F{QJ WKằF WD WK\ WU NKQJ YR FD FKQ Wạ O ~L O}QJ WKXQ
NKQJwĐOYNKLWÂQKWRQ~SGãQJOWKX\W~}đQJGy\NK{QJWêQKDRQJKĂDO
NK{QJ[W~QSKQF{QJEằF[FDFKQWạ
&ÔQ~ơLYLFKQWạ~ơL[ằQJFĐWêQKDRWK~LQWUWêQKDRWK}đQJFĐJLWUÊ
QKƠQzQSKQF{QJVXWWKẳF~}DYRDQWHQKXQK}~}FFKX\QWKQKF{QJVXW
EằF[
3


3



)
33
.
1
(
2
kl
sin
R

R
I
I
R
R
I
2
1
R
I
2
1
2
2
0
2
m
0
2
m
0
2
0



==


5


~LQWUEằF[FKXQJFDFKQWạ
&{QJWKằFWÂQKWUNKQJYRFDFKQWạO
)
34
.
1
(
2
kl
g
cot
j
2
kl
sin
R
Z
a
2
v
=


Đ
$QWHQFKQWơNKuQJxL[đQJ
QKQJKắDFKơQWỉNKQJấL[QJ
&KQWạNK{QJ~ơL[ằQJOFKQWạPKDLQKQKFDQĐFĐNÂFKWK}FKQKKăF
NKFQKDX
&KQWạNK{QJ~ơL[ằQJ~}FằQJGãQJUQJULWWFFFGLVĐQJWáVĐQJ

FẳFQJQ~QVĐQJGLYFẳFGL7X\QKLzQPôLGLVĐQJNKFQKDXFKQWạFàQJ
FĐQKQJ~F~LPNWFXULzQJSKãWKXFYRE}ĐFVĐQJY~F~LPWUX\QODQ
FDGLVĐQJ\
$QWHQFâQ
DiQKQJKD
$QWHQFQOFKQWạFKFĐPWQKQK~XG}LQơLYLP\SKWP\WKX
FÔQ~XNLDFDP\SKWP\WKX~}FQơL[XơQJ~W
E7QKSKonQJKoQJ


O








O


9FKQWạNK{QJ~ơL[ằQJ~WWKQJ~ằQJVWQJD\WUzQPW~WGQ~LQO
W}QJQzQWDWKD\QKK}QJFDPW~WEQJPWFKQWạQK'R~ĐFKQWạWKẳF
Y QK WR WKQK PW FKQ Wạ ~ơL [ằQJ ~W WURQJ NK{QJ JLDQ Wẳ GR 9 Y\ WÂQK
K}QJFDFKQWạNK{QJ~ơL[ằQJ~WWKQJ~ằQJWUzQPW~WVJLơQJQK}WÂQK
SK}|QJK}QJFDFKQWạ~WWURQJNK{QJJLDQWẳGR~[W
Đ

+PSK}|QJK}QJFDPWSKQJNLQKWX\Q(

)
35
.
1
(
cos
kl
cos
)
sin
kl
cos(
)
(
f


=

9L



O~GLFKQWạ
N+VơWUX\QVĐQJ
&KQWạWKẳF
+QK
&KQWạWKẳF

×