0ÖFOÖF
§
§
§
§
§
§
§
§
§
§
§
§
§
§
/èLQLâX
&ÔQJYÂLQKSvWpQJWUuQJFƠDFzFQJKwQKNLQKWWKOQKYFWKsQJWLQOLrQO{F
SKzWWULQUWQKDQKFKQJQK|PSKăFYăQKXFXFXFVQJFRQQJuL7KsQJWLQ
OLrQO{FFYDLWUUWTXDQWUQJvLYÂLVSKzWWULQFƠDFzFQJKwQKQOwvQJ
OFWKĐFv\FKRVSKzWWULQFƠD[ảKLKLQv{L
&FWKLWEÊFFSKQWạWURQJKWKơQJWK{QJWLQOLzQOFSKLFĐVẳW}|QJ
WFVDRFKRFĐWKWUX\QGQWÂQKLX~WKLXTXFDRQKW$QWHQOPWESKQ
NK{QJWKWKLX~}FFDKWKơQJWK{QJWLQOLzQOFQKWOWK{QJWLQY{WX\Q~LQ
%LY~OKWKơQJY{WX\Q~LQWKSKLVạGãQJVĐQJ~LQWáQzQNK{QJWK
WKLX~}FWKLWEÊEằF[KRFWKXVĐQJ~LQWá
1Jw\QD\YÂLVSKzWWULQFƠDNKRDKFNWKXWWURQJOQKYFWKsQJWLQ
OLrQO{FvLKLDQWHQNKsQJFKvtQWKXQOwPQKLPYăEơF[{KD\WKXVQJvLQWâ
PwFQWKDPJLDYwRTXzWUQKJLDFsQJWQKLX
<rXFXJLxPQKNFKWKuÂFDQWHQFƯQJOwPWWURQJQKôQJvLKLFSEzFK
vLYÂLNWKXWYLQWKsQJQJw\QD\oLYÂLFzFGxLVQJWUXQJYwQJQGREuÂF
VQJOÂQOrQNFKWKuÂFDQWHQNKzvVUWWQNPWURQJ[q\GQJYwExRTXxQ
'R Y\ FQJLxP QK NFK WKuÂF DQWHQ vQ PơF WL WKLXv EÂW WUQJ OuÊQJYw
JLxPVFQJNQKFƠDDQWHQ
;XWSKzWWâQKôQJWuQJWUrQvq\YwVKuÂQJGQFƠDFzFWK\JLzRWURQJ
NKRD HP P{QK G{Q FKQ v WwL
SKQJSKSJLPQKNFK WKẽF
DQWHQ0I+)YWKLãWNãDQWHQFậWEXầPFPFKJLPQK
NFKWKẽFFểDP\MVV
oWwLvuÊFNWFXQKuVDX
-
&KonQJ,
&|VOWKX\WDQWHQ
-
&KonQJ,,
&FSK}|QJSKSJLPQKƠNÂFKWK}FDQWHQ
-
&KonQJ,,,
3KyQWÂFKDQWHQFWEXâPYPFKJLPQKƠNÂFKWK}F
-
&KonQJ,9
7ÂQKWRQPFK~LXK}QJDQWHQ
&KwvQJ,
FvVÂOWKX\WDQWHQ
Đ
wơLYLEWNẵPWKWKơQJ~LQWáQRFĐNKQxQJWRUD~LQWU}đQJKRF
WáWU}đQJELQWKLzQ~XFĐEằF[VĐQJ~LQWáWX\QKLzQWURQJWKẳFWVẳEằF[
Q\FK[\UDWURQJQKQJ~LXNLQQKW~ÊQK
wYÂGãWD[WPWPFKGDR~QJWK{QJVơWSWUXQJFĐNÂFKWK}FUWQKƠ
VRYLE}FVĐQJ+QKD
1X~WYRPFKPWVằF~LQ~QJELQ~êLWKWURQJNK{QJJLDQFDWãV
SKWVLQK~LQWU}đQJELQWKLzQ1K}QJ~LQWU}ÔQJWURQJQ\KXQK}NK{QJEằF
[UDQJRLPEÊUQJEXFYLFFSKQWạFDPFK'ÔQJ~LQGÊFKFKX\QTXD
WãWKHR~}đQJQJQQKWWURQJNKRQJNK{QJJLDQJLDKDLPWãQzQQxQJO}QJ
~LQWU}đQJEÊJLLKQWURQJNKRQJNK{QJJLDQ\&ÔQQxQJO}QJWáWU}đQJWS
WUXQJFK\XWURQJPWWKWÂFKQKƠWURQJOÔQJFXQFP1xQJO}QJFDFK
WKơQJV~}FERWRQQXNK{QJFĐWêQKDRQKLWWURQJFFFXQGy\GQY~LQ
P{LFDPFK
DE
FG
+QK
1XPUQJNÂFKWK}FFDWã~LQQK}KQKEWKGÔQJ~LQGÊFK~}F
ELXWKÊWURQJKQKYWUQJYLFF~}đQJVằF~LQWU}đQJVNK{QJFKGÊFKWURQJ
NKRQJNK{QJJLDQJLDKDLPWãPPWESKQVODQWƠDUDP{LWU}ÔQJQJRLY
FĐWKWUX\QWLQKQJ~LPQPFFK[DQJXâQQJXâQ~LQWU}đQJOFF~LQWÂFK
ELQ~êLWUzQKDLPWã~LQ
1XPUQJK|QQDNÂFKWK}FFDWã~LQQK}KQKFWKGÔQJ~LQGÊFK
VODQWƠDUDFQJQKLXYWRUD~LQWU}đQJELQWKLzQYLELzQ~OQK|QWURQJ
NKRQJNK{QJJLDQEzQQJRLwLQWU}đQJELQWKLzQV~}FWUX\QODQYLYQWơF
QKVQJ.KL~WWLPWNKRQJFFKNK[DQJXâQFKảQJVWKRWNKƠLVẳUQJ
EXFYLQJXâQQJKĂDONK{QJFÔQOLzQKYLFF~LQWÂFKWUzQKDLPWã~LQQD
7KWY\QXWD TXDQ VWFF~}đQJ VằF ~LQ WU}đQJ JQ Wã~LQWKWK\UQJ
FKảQJNK{QJWẳNKSNÂQPFĐ~LPEWQJXâQOFF~LQWÂFKWUzQKDLPWã~LQ
'R~ĐJLWUÊFD~LQWU}đQJQKQJ~LPQPWUzQFF~}đQJVằF\VELQWKLzQ
~âQJWKđLYLVẳELQWKLzQFD~LQWÂFKWUzQWã~LQ1K}QJQX[WPW~LP0
FFK[DQJXâQWKFĐWKWK\UQJWLWKđL~LPQR~Đ~LQWU}đQJWL0FĐWK~W
WLPWJLWUÊQKW~ÊQKWURQJOảF~LQWÂFKWUzQKDLPWã~LQOLELQ~êLTXDJL
WUÊ.KL\FF~}đQJVằF~LQVNK{QJFÔQUQJEXFYLFF~LQWÂFKQDP
FKảQJSKLWẳ NKSNÂQWURQJNK{QJJLDQQJKĂD O~KQKWKQKPW~LQWU}đQJ
[R\7KHRTX\OXWFD~LQWU}đQJELQWKLzQWK~LQWU}đQJ[R\VWRUDPWWá
WU}đQJELQ~êLWáWU}đQJELQ~êLOLWLSWãFWRUD~LQWU}đQJ[R\QJKĂDO~
KQKWKQKTXWUQKVĐQJ~LQWá
3KQQxQJO}QJ~LQWáWKRWUDNKƠLQJXâQYWUX\Q~LWURQJNK{QJJLDQWẳ
GR~}FJăLOQxQJO}QJEằF[KD\QxQJO}QJKXF{QJ
3KQ QxQJ O}QJ ~LQ Wá UQJ EXF YL QJXâQ V GDR ~QJ JQ QJXâQ
NK{QJWKDPJLDYRYLFWRWKQKVĐQJ~LQWá~}FJăLOQxQJO}QJY{F{QJ
'GQJQKQWK\UQJKWKơQJEằF[~LQWáFĐKLXTXVOKWKơQJ
P WURQJ ~Đ ~LQ WU}đQJ KRF Wá WU}đQJ ELQ WKLzQ FĐ NK QxQJ [yP QKS ~}F
QKLXYRNK{QJJLDQQJRL7á~ĐWK\UQJKWKơQJ~LQWáELXWKÊWUzQKQKF
VEằF[FĐKLXTXK|QKWKơQJWUzQKQKEwWxQJF}đQJNKQxQJEằF[
FDKWKơQJFQPUQJK|QQDNK{QJJLDQEDRWUPFD~}đQJVằF~LQWU}đQJ
KQKG'LSRO+HHW]OPWWURQJFFFXWUảFEằF[FĐKLXTX1Đ
~}FKQKWKQKWáFFKWKơQJ~LQWáQĐLWUzQYLVẳELQGQJFDKDLWPNLP
ORLFDWã ~LQWKQKKDL~RQGy\ GQPQKY KDL TXFX NLPORL KDL ~X
'LSRO+HHW]OPWWURQJFFQJXâQEằF[~|QJLQQKWYOSKQWạ~FXWUảF
QKQJDQWHQGy\SKằFWS
Đ
1JX\tQODQWHQWKX
&KơQWỉấL[QJOPYLáFFKãậWKX
*LVạFKQWạFĐ~GLOEQNÂQKDUWQKƠVRYLE}FVĐQJ
~}F~W
WURQJWU}đQJFDPWVĐQJWUX\QWLWKHRJĐF~ơLYLWUãFFKQWạFĐYFW|~LQ
WU}đQJ(QPWURQJPWSKQJWLKQK
+QKFKLXFDYFW|~LQWU}đQJOzQWUãFFKQWạVO
L
OYFW|~|QYÊWKHRK}QJWUãF] +QK
1XNKLX (
OF}đQJ~~LQWU}đQJFDVĐQJWLWyPFKQWạWK~LQ
WU}đQJWLSWX\QWL~LPFĐWăD~]WUzQFKQWạVO
==
jkzcos
0
z
jkzcos
0
z
e
.
sin
.
E
i
.e
E
E
'}LWFGãQJFD~LQWU}đQJWLSWX\QWUzQPôLSKQWạVSKWVLQKVằF
~LQ~QJ
G ( G ( VLQ
G
zki
e
cos
.
1K}Y\VĐQJSKQJWUX\QWLFKQWạ~FPằQJOzQFKQWạVằF~LQ~QJ
SKyQEơFĐELzQ~JLơQJQKDXPăL~LPEQJ(
VLQ
G YJĐFSKDELQ~êL
WKHRTX\OXWN]FRV
'}LWFGãQJFDVằF~LQ~QJSKyQEơWURQJFKQWạVSKWVLQKGÔQJ~LQ
'ÔQJ~LQQ\Jy\UD~LQS~XYRFKQWạ
6ằF~LQ~QJFD~XYRFKQWạO
=
2
0
0
sin
2
kl
cos
)
cos
2
kl
cos(
2
kl
sin
1
E
e
1X~XYRFKQWạ~}FPFWLWKWURQJWLV[XWKLQGÔQJ~LQ
&{QJWKằFWÂQKGÔQJ~LQ~XYRO
+
=
+
=
2
v
t
0
v
t
0
thu
sin
2
kl
cos
)
cos
2
kl
cos(
2
kl
sin
1
Z
Z
E
Z
Z
e
I
7URQJv ,
GÔQJ~LQFK\WURQJWL
z
z
i
.
E E
=
(
(
H VằF~LQ~QJ~XYR
(
F}đQJ~GLQWU}đQJWLWyPFKQWạ
= WUNKQJWL
=
WUNKQJYR
O ~GLPWQKQKFKQWạ
N KVơWUX\QVĐQJN
9\TXWUQKWKXVĐQJ~LQWáOTXWUQKFKX\QKĐDQxQJO}QJVĐQJ~LQ
WáWURQJNK{QJJLDQWKQKGÔQJFDRWQFK\WUzQJQKDQWHQ
&QJVXơWFFLWUQWLDQWHQWKX
w[F~ÊQK~}FKLXTXFDDQWHQWKXWDWPF{QJVXWWKX~}FWUzQWLPF
FẳFDQWHQ
*ăLWUNKQJWLDQWHQWKXO
=
5 L;
&{QJVXWKXÂFKGRWLWKX~}FVEQJ
)
2
.
1
(
R
I
2
1
P
t
2
thu
thu
=
7URQJ~ĐGÔQJ~LQFK\WURQJWLDQWHQWKX~}F[F~ÊQKEL
)
3
.
1
(
e
I
o
thu
+
=
,
GÔQJ~LQFK\WUzQWLDQWHQWKX
H
QJXâQVằF~LQ~QJFDDQWHQWKX
=
=
,
O
+QK
= WU¯NKQJYRF´DDQWHQWKX
7KD\YRWDF§
)
4
.
1
(
R
Z
Z
e
2
1
P
t
2
v
t
2
o
thu
+
=
7U}®QJK²SF§SK¬LK²SWU¯NKQJJLºDDQWHQYWLQJK¡DONKL
5
5 ; ;
WDVQKQ~}²F
()
)
5
.
1
(
R
8
e
R
R
2
e
2
1
P
t
2
o
t
2
t
2
o
max
thu
==
5
WKQKSKQ~LQWU¯WKXQWURQJ=
Đ
&|FWKDPVFĐDDQWHQ
+PSKQJKẽQJ
+PNK{QJFKXQKPQ\ELXWKÊJLWUÊWX\W~ơLFDF}đQJ~WU}đQJ
ằQJYLJĐF
Y
[F~ÊQKQR~Đ
I
(
+PFKXQOWắVơFDF}đQJ~WU}đQJWLPW~LPEWNẵYLF}đQJ~
WU}đQJWLPW~LPFĐJLWUÊPD[+PQ\FKFĐWÂQKFKWW}|QJ~ơL
()
()
()
)
6
.
1
(
,
E
,
F
max
=
ậUậQJFểDEếSKẽQJ
w~QKJLPằF~UQJKSFDEảSK}ĐQJQJ}đLWD~}DUDFFNKLQLP
~UQJEảSK}QJ~REQJJĐF
JĐFQ\FKRELWPằF~WSWUXQJQxQJO}QJ
WKXJăQWLPWK}QJQR~Đ
wUQJPằFKQKDOJĐFJLLKQELYFW|PWLGRPRGXO
F}đQJ~WU}đQJEQJPRGXOF}đQJ~WU}đQJFẳF~L
wUQJPằFKQKEOJĐFJLLKQELYFW|PWL~ĐPRGXO
F}đQJ~WU}đQJEQJPRGXOF}đQJ~WU}đQJFẳF~L
w UQJPằF KQK F OJĐFJLL KQ ELYF W| P WL ~Đ
PRGXOF}đQJ~WU}đQJEQJPRGXOF}đQJ~WU}đQJFẳF~L
DEF
+QK
+LáXVXơWFểDDQWHQ
+LXVXWFDDQWHQOWVơJLDF{QJVXWEằF[YLF{QJVXWWRQEP
DQWHQQKQ~}FWáP\SKW~}DWL
0
P
P
=
03
3
3
3
F{QJVXWEằF[FDDQWHQ
3
F{QJVXWYRDQWHQ
3
F{QJVXWWêQKDRWUzQDQWHQ
3
, 5
, 5
)
7
.
1
(
1
R
R
R
th
+
=
5
O~LQWUEằF[
5
O~LQWU~FWU}QJFKRVẳWêQKDRWURQJDQWHQ
9LVĐQJQJQYVĐQJFẳFQJQQJ}đLWDWK}đQJGQJFS~âQJWUãFKRF
ơQJGQVĐQJ~WUX\Q~}DQxQJO}QJWáP\SKWVĐQJWLDQWHQ&S~âQJWUãF
KRFơQJGQVĐQJFĐVẳWêQKDRUWQKƠGR~Đ~W~}FKLXVXWFDR
wơL YL VĐQJGLYVĐQJ WUXQJ WKQJ}đL WD WK}đQJGQJGy\VRQJKQK
KRFFSVRQJKQKFĐVẳWêQKDRQKLXK|QGR~ĐKLXVXWWKSK|Q
+áVấQKKẽQJ
w ~QK JL WÂQK K}QJ FD DQWHQ QJ}đL WD GQJ NKL QLP K Vơ ~ÊQK
K}QJ+VơQ\~FWU}QJFKRNKQxQJWSWUXQJQxQJO}QJ~LQWU}đQJYPW
KXQJQR~Đ
+Vơ~ÊQKK}QJOWVơJLDEQKSK}|QJF}đQJ~WU}đQJPWK}QJ
EWNẵYLEQKSK}|QJF}đQJ~WU}đQJWUXQJEQKYLWWFPăLSK}|QJ
()
)
8
.
1
(
E
,
E
D
2
tb
2
=
(
OF}đQJ~WU}đQJK}QJEWNẵ
(
OF}đQJ~WU}đQJWRELDQWHQY{K}QJFĐWêQKDR
+áVấWQJFKFểDDQWHQ
+VơWxQJÂFKOWVơJLDEQKSK}|QJF}đQJ~WU}đQJSK}|QJEWNẵ
FDDQWHQFĐK}QJFĐWêQKDRYLEQKSK}|QJF}đQJ~WU}đQJWRELDQWHQY{
K}QJNK{QJWêQKDR
()
)
9
.
1
(
E
,
E
G
2
o
2
=
(OF}®QJ~WU}®QJY{K}±QJNK{QJWªQKDR
+QK
&KLXGyLKLXGªQJF§DDQWHQ
w£QKQJK¡DOFKLXGLF´DDQWHQFKQW¹W}¯QJW}²QJF§V¼SKyQG¤QJ~X
QKDXWUzQP¨L~LPF´DFKQW¹YG¤QJ~§EQJG¤QJ¯~LPFS~LQWUzQFKQW¹
WK¼FYFK¶QJF§F}®QJ~WU}®QJ¯SK}|QJE»F[PD[OQK}QKDX
;F~£QKFKLXGLKLXG·QJF´DDQWHQ
+QK
&§K}±QJF§
WªQKDR
(
θ
ϕ
(
(
9{K}±QJ
NK{QJWªQKDR
9{K}±QJF§
WªQKDR
6 h
×
O
O
,
6
6 6 hOKDLF{QJVXWE»F[EQJQKDX
*LV¹F§FKQW¹~¬L[»QJWK¼FFKLXGLO~}²FFSG¤QJWKHR TX\OXW
KQKVLQV§QJFK\ELzQ~WL~LPFS~LQO,
wLQW¢FK6F´DY³QJSKyQE¬
G¤QJF´DDQWHQF§FKQW¹WK¼FO6
KD\F{QJVXWE»F[
7DF§PWFKQW¹W}¯QJW}²QJ~}²FFSG¤QJNK{QJ~ªLYG¤QJ~§EQJ,
F§~LQW¢FKSKyQE¬G¤QJO6
6
6 NKL~§FKLXFDRKLXG·QJF´DDQWHQWK¼FVO
()
dz
.
z
l
k
sin
I
2
S
l
0
m
i
−=
∫
7L~LPFS~LQOE·QJG¤QJ,
,
()
)
10
.
1
(
z
l
k
cos
k
1
kl
sin
I
2
S
l
0
o
i
−=
7URQJv,
G¤QJ~LQ¯~LPFS~LQ
,
ELzQ~G¤QJ~LQ
] ~LPNKRVW
O FKLXGLPWQKQKFKQW¹
N KV¬WUX\QV§QJN
π
λ
Y±L
()
z
lkII
mz
−=
sin
k
l
I
I
k
l
II
m
m
sin
sin
0
0
=⇒
=
WKD\] OY] YRWDF§
()
)
11
.
1
(
kl
cos
1
kl
sin
I
S
0
i
−
π
λ
=
h
d
i
lIS
0
'
=
P 6
6
()
h
d
lIkl
kl
I
0
0
cos
1
sin
=−⇒
π
λ
()
)
12
.
1
(
sin
cos
1
kl
kl
l
hd
−
=⇒
π
λ
7URQJ~§O
OFKLXGLKLXG·QJF´DDQWHQF§FKQW¹~¬L[»QJ
$QWHQFKQWơxL[đQJ
QKQJKắDFKơQWỉấL[QJ
&KQWạ~ơL[ằQJOPWFXWUảFJâPKDL~RQYWGQFĐKQKGQJW\
KQKWUãFKĐSHOLSVRLWFĐNÂFKWK}FJLơQJQKDX~WWKQJKQJWURQJNK{QJJLDQ
YJLDQơLYLQJXâQFDRWQ
3KQEấGQJLáQWUQFKơQWỉấL[QJ
*LVạFKQWạFĐ GQJQK}KQKDYLEQNÂQKDUWQKƠFKQWạOP
EQJGy\GQ~LQKQKWUãUWPQK3K}|QJSKSJQ~ảQJ~[F~ÊQKSKyQEơ
GÔQJ~LQWUzQFKQWạ~ơL[ằQJY~}đQJGy\VRQJKQKKPFK~XFXơLNK{QJ
WêQKDR~}FJăLOSK}|QJSKSOWKX\W~}đQJGy\
7KWY\Wá~}đQJGy\VRQJKQKKQKDFĐWKELQGQJ~QKQ~}F
FKQWạ~ơL[ằQJKQKEEQJFFKPUQJ~XFXơLFD~}đQJGy\~QNKLJĐF
PJLDKDLQKQKEQJ
YLFPUQJQ\VOPPWWÂQKNKSNÂQFD~}đQJGy\
VRQJKQKYWR~LXNLQ~KWKơQJFĐWKEằF[VĐQJ~LQWá
D
a
O O
D
a
O
E
O
a
F
+QK
a
a
O
=
=
+QK
*LVạNKLELQGQJ~}đQJGy\VRQJKQKWKQKFKQWạ~ơL[ằQJWKTX\
OXWSKyQEơGÔQJ~LQWUzQKDLQKQKYQNK{QJWKD\~êLQJKĂDOYQFĐGQJVĐQJ
~ằQJ
()
)
13
.
1
(
z
2
l
sin
I
z
I
b
=
7URQJ~Đ ,
OELzQ~GÔQJ~LQ~LPEãQJVĐQJ~ằQJ
OO~GLPWQKQKFKQWạ
7X\ QKLzQQKQJ VX\OXQ Y Vẳ W}|QJWẳ QzXWUzQ FKFĐWÂQK FKW JQ
~ảQJYNKLFKDLKWKơQJ~}đQJGy\VRQJKQKYFKQWạ~XOFFKWKơQJ
GDR~QJYLWK{QJVơSKyQEơQK}QJJLDFKảQJFĐQKQJ~LPNKFQKDX
&FWK{QJVơSKyQEơFD~}đQJGy\VRQJKQKNK{QJELQ~êLGăFWKHR
~}đQJGy\FÔQWK{QJVơSKyQEơFDFKQWạWKELQ~êLằQJYLFFYÊWUÂNKF
QKDXWUzQFKQWạKQKE
w}đQJGy\ VRQJKQKWKẳFWO KWKơQJ ~WUX\Q GQQxQJO}QJ FKằ
NK{QJSKLOKWKơQJEằF[FÔQFKQWạOKWKơQJEằF[
7URQJ~}đQJGy\VRQJKQKKPFK~XFXơLGÔQJ~LQFKELQ~êL
WKHR TX\ OXW VĐQJ ~ằQJ WKXQ Wả\ NKL ~}đQJ Gy\ OP Wá YW GQ O W}QJ
NK{QJWêQKDRFÔQ~ơLYLFKQWạQJD\FNKL~}FFXWRWáYWGQOW}QJ
FàQJOX{QFĐPWPWQxQJO}QJGREằF[PWPWKXÂFK'R~ĐQĐLPW
FFKFKÂQK[FWKSKyQEơGÔQJ~LQWUzQFKQWạVNK{QJWKHRTX\OXWVĐQJ
~ằQJKQKVLQ7X\QKLzQ~ơLYLFFFKQWạUWPQK~}đQJNÂQKD
NKL WÂQKWU}đQJ NKX[DGẳDWKHRJLWKLWSKyQEơGÔQJ~LQKQKVLQFàQJ
QKQ ~}FNWTXNK SKKSYLWKẳF QJKLP9Y\ WURQJ SKQOQFF
WÂQKWRQNWKXWFĐWKFKRSKSSGãQJJLWKLWSKyQEơGÔQJ~LQVĐQJ
~ằQJKQKVLQ
7U}đQJKSFKQWạ~WWURQJNK{QJJLDQWẳGR:
WDFĐ
)
14
.
1
(
e
sin
2
kl
cos
)
cos
2
kl
cos(
I
60
i
jkR
0
=
)
15
.
1
(
e
sin
2
kl
cos
)
cos
2
kl
cos(
2
kl
I
60
i
jkR
b
=
7URQJv,OGÔQJ~LQ~XYRFKQWạ
()
=
2
kl
sin
I
z
I
b
%LWTX\OXWSKyQEơFDGÔQJ~LQWUzQFKQWạV[F~ÊQK~}FTX\OXWSKyQ
EơJQ~ảQJFD~LQWÂFKEQJFFKSGãQJSK}|QJWUQKERWRQ~LQWÂFK
*LWKLWGÔQJ~LQWUzQFKQWạFKFĐWKQKSKQGăF,
~LQWÂFKQPWUzQ
EPWGy\YFĐPW~GL 4
7DFĐSK}|QJWUQKER WRQ~LQWÂFK~}FYLW
G}LGQJ
)
16
.
1
(
0
Q
i
d
dI
z
z
z
=+
,
D- OELzQ~GÔQJWLWăD~]FDFKQWạ
-
OPW~GÔQJ~LQPW
4
O~LQWÂFKPWWUzQPWG|QYÊFKLXGLFKQWạ
*LLSK}|QJWUQK~ơLYL4
WURQJ~ĐWKD\, ELSK}|QJWUQKWDFĐ
0
z
)
z
2
l
(
k
cos
i
kI
Q
0
z
)
z
2
l
(
k
cos
i
kI
Q
b
1
z
b
1
z
<+
=
>
=
3KyQEơ~LQWÂFKWUzQFKQWạ~ơL[ằQJ~}FELXGLQWUzQKQKEQJFF
QWUđL
a
DO
DO
DO
+QK
1KQ[W
'ÔQJSKRF~LQWÂFKWUzQFKQWạSKyQEơWKHRTX\OXWVĐQJFK\O
VĐQJGăFWKHRWáQJQKQKFDFKQWạELzQ~NK{QJ~êLQK}QJSKDELQ~êLWKHRYÊ
WUÂ
PôL~LPWUzQFKQWạGÔQJYSOFKSKDQKDX
%LzQ~GÔQJYSWL~LPFSQJXâQSKãWKXFYRWắVơO
&FK~XGy\
OX{QFĐEãQJGÔQJYQảW~LQS
7QKSKQJKẽQJFểDFKơQWỉấL[QJ
D;WWQKSKonQJKoQJWURQJPzWSKwQJNLQKWX\Q(
*LVạWDQJKLzQFằXPWFKQWạ~ơL[ằQJ~WWKQJ~ằQJFĐFKLXGLO
.KRVWPW~LP0NK[DFKQWạ
/\KDLSKQWạY{FQJQKƠG]
YG] FFKJơFWăD~O]FRLKDLSKQWạO
GLSRO~LQ
9NKRQJFFKWáGLSRO~LQ~Q~LP0NK[DQzQFRL5
5 5
w}đQJ~LFDFF~RQQ\FKzQKOFKQKDXO
5
5 5
5 5 5
0
5 ]FRV
ẻ5
5 ]FRV
5
5 ]FRV
7DFĐG]
EằF[WL0F}đQJ~WU}đQJOG(
a
G
G
]
0
O
O
5
5
5
+QK
)
18
.
1
(
e
sin
dz
I
60
j
dE
1
jkR
1
1
θ
λ
π
=
7}|QJW¼G]
E»F[W±L0F}®QJ~WU}®QJOG(
)
19
.
1
(
e
sin
dz
I
60
j
dE
2
jkR
2
2
θ
λ
π
=
95
5 ¯G}±LPXQzQ~W5
≈
5
≈
5
7DF§
)
cos
z
R
(
jk
1
0
e
sin
dz
I
60
j
dE
θ−
θ
λ
π
=
)
cos
z
R
(
jk
1
2
0
e
sin
dz
I
60
j
dE
θ+
θ
λ
π
=
9±LG¤QJ~LQSKyQE¬WKHRTX\OXWKQKVLQ
)
z
2
l
(
k
sin
I
I
m
−=
&}®QJ~WU}®QJWªQJO
2
1
dE
dEdE
+=
)
20
.
1
(
)
e
e
(
e
sin
)
z
2
l
(
k
sin
dz
I
60
j
dE
cos
jkz
cos
jkz
jkR
m
0
θ−θ
+θ−
λ
π
=
)
cos
kz
cos(
2
sin
)
z
2
l
(
k
sin
dz
I
60
j
dE
m
θθ−
λ
π
=⇒
&}®QJ~WU}®QJWL0O
)
21
.
1
(
e
sin
kl
cos
)
cos
kl
cos(
kI
60
j
E
dz
)
cos
kz
cos(
)
z
2
l
(
k
sin
e
sin
I
120
j
dE
E
0
0
jkR
m
M
1
0
jkR
m
1
0
M
θ
−θ
=
θ−θ
λ
π
==
∫∫
%LzQ~F}®QJ~WU}®QJWL0O
)
22
.
1
(
sin
kl
cos
)
cos
kl
cos(
kI
60
E
m
M
θ
−θ
=
+PSK}|QJK}±QJF´DFKQW¹~¬L[»QJ
)
23
.
1
(
sin
kl
cos
)
cos
kl
cos(
)
(
f
θ
−θ
=θ
wâWKÊK}QJFDFKQWạ~ơL[ằQJWURQJPWSKQJNLQKWX\Q(
1KQ[W
9LPWJLWUÊFDWắVơO
~XNK{QJFĐEằF[GăFWKHRFKQWạ
9LO
WKFKQWạEằF[FẳF~LYKDLSKÂD
wâWKÊK}QJ
FDFKQWạFĐGQJKQKVơYFKFĐKDLEảSK}QJFKÂQK
9LO!
EW~X[XWKLQEảSSKãOFQJWxQJWKEảSSKãFQJOQ
EảSFKÂQKFQJJLPFKR~QNKLO
WKEảSFKÂQKPW~LFKFÔQEảSSKãOảFQ\
DQWHQEằF[FẳF~LYSKÂD
E;WWQKSKonQJKoQJWURQJPzWSKwQJYWX\Q+
7URQJPWSKQJYĂWX\QWK~UQJEảSK}QJ
FRQVW
ẻI
FRQVWQzQ~âWKÊK}QJOPW~}đQJWUÔQWằFOWURQJPWSKQJYĂ
WX\QFKQWạ~ơL[ằQJEằF[Y{K}QJ
&FWKQJVấFểDFKơQWỉấL[QJ
D7UNKtQJVQJFDFK~QWÔ
7}|QJWẳQK}~}đQJGy\VRQJKQK~ơLYLFKQWạ~ơL[ằQJFàQJFĐWK~}D
YR NKLQLP WU NKQJ VĐQJ7KHR OWKX\W ~}đQJ Gy\WK WU NKQJ VĐQJFD
~}đQJGy\VRQJKQKNK{QJWêQKDREQJ
)
24
.
1
(
C
L
1
1
d
=
+QK
7URQJ~Đ / O~LQFPSKyQEơFD~}đQJGy\
&
O~LQGXQJSKyQEơFD~}đQJGy\
0WNKFWDFĐ
d
C
LC
C
v
CL
à
àà
=====
1
1
1
1
1
1
4
4
1
1
1
1
YOYQWơFWUX\QWUzQ~}đQJGy\
1X~}đQJGy\~}F~WWURQJNK{QJJLDQWẳGRWK
à
à
7UNKQJ
VĐQJFD~}đQJGy\FĐWK~}FELXWKÊTXDWK{QJVơFDP{LWU}đQJYPWWURQJ
KDLWK{QJVơ/
KRF& FD~}đQJGy\
)
25
.
1
(
C
1
0
0
d
à
=
wơLYL~}đQJGy\VRQJKQK&
O~LO}QJNK{QJELQ~êLWKHRFKLXGL
FDGy\Y~}F[F~ÊQKELNÂFKWK}FFD~}đQJGy\
)
26
.
1
(
a
D
lg
276
d
=
'NKRQJFFKJLDKDLGy\GQ
DEQNÂQKGy\GQ
&ÔQ~ơLYLFKQWạ~ơL[ằQJKRFFFORLDQWHQGy\NKFWK~LQGXQJSKyQ
Eơ&
~y\NK{QJSKLOKQJVơPWKD\~êLGăFWKHRFKLXGLFDGy\~}FWÂQK
WKHRF{QJWKằF
)
27
.
1
(
)
1
a
l
(ln
120
=
OFKLXGLGy\
DEQNÂQKGy\GQ
E&mQJVX~WYqpLQWUEƯF[uFDFK~QWÔpL[ƯQJ
wÊQKQJKĂD~LQWUEằF[FDFKQWạO~LO}QJELXWKÊTXDQKJLD
F{QJVXWEằF[YEQKSK}|QJGÔQJ~LQWUzQFKQWạ
)
28
.
1
(
I
P
2
R
2
I
R
P
2
m
2
m
=
=
7URQJ~Đ 5
O~LQWUEằF[
3
OF{QJVXWEằF[
,OELzQ~GÔQJ~LQWUzQFKQWạ
7X\QKLzQWURQJWU}đQJKSQ\GÔQJ~LQFĐELzQ~SKyQEơNK{QJ~XGăF
WKHRFKQWạ9Y\NKLELXWKÊF{QJVXWEằF[WKHRELzQ~GÔQJ~LQWLYÊWUÂ
QR~ĐFDFKQWạWKW}|QJằQJVFĐFFJLWUÊFD~LQWUEằF[ằQJYLGÔQJ
~LQ~LP~Đ
1KQ[W
9L O
ẻ5
JăLOFKQWạQạDVĐQJ
O
ẻ5
JăLOFKQWạFVĐQJ
O
WKNKLOWxQJVWxQJVơSKQWạFĐGÔQJ~LQ~âQJSKDGR
~ĐWxQJF{QJVXWY~LQWUEằF[
O
!WKWUzQFKQWạV[XWKLQKDLSKQGÔQJ~LQQJ}FSKD
OPJLPF{QJVXWY~LQWUEằF[FDFKQWạ
F+VpQKKoQJFDFK~QWÔpL[ƯQJ
+Vơ~ÊQKK}QJFDFKQWạ~ơL[ằQJK}QJ
QR~Đ~}F[F~ÊQKEL
F{QJWKằF
)
29
.
1
(
WP
R
2
)
(
E
)
(
D
2
2
0
=
7URQJ~Đ '
OKVơ~ÊQKK}QJFDFKQWạ
3
OF{QJVXWEằF[
5ONKRQJFFKWáFKQWạ~Q~LPNKRVW
:OWUNKQJVĐQJFDP{LWU}đQJ
(
O~LQWU}đQJEằF[~}FWÂQKWKHRF{QJWKằF
=
i
R
e
sin
2
kl
cos
)
cos
2
kl
cos(
jWI
jkR
b
1KQ[W
9L O
ẻ'
O
ẻ'
O
WxQJ~QẻKVơ~ÊQKK}QJWxQJ~Q
O
!ẻKVơ~ÊQKK}QJVJLP~L
G7UNKtQJYqRFDFK~QWÔpL[ƯQJ
wÊQKQJKĂD7UNKQJYRFDFKQWạ~ơL[ằQJEQJFKVơ~LQS~X
YRFDFKQWạ8
YGÔQJ~LQ~XYR,
)
30
.
1
(
jX
R
I
U
Z
v
v
0
0
v
+==
7URQJ~Đ 5
5
5
5
~LQWUWKXQFDDQWHQ
5
~LQWUEằF[WL~XYRFKQWạ
5
~LQWUWêQKDRFDDQWHQ
w[F~ÊQKFKÂQK[FWUNKQJYRFQELW~LQSYGÔQJ~LQ~XYR
QJKĂDOFQELWSKyQEơGÔQJ~LQGăFWKHRFKQWạ
7URQJWÂQKWRQNWKXW~[F~ÊQKWUNKQJYRFĐWKSGãQJJLWKLW
JQ~ảQJ~SKyQEơGÔQJ~LQKQKVLQ
wLQSYR8
WL~XYRKDLQKQKFKQWạ~}F[F~ÊQKWKHRF{QJWKằF
)
31
.
1
(
2
kl
cos
jI
U
a
0
0
=
7DFĐWUNKQJYRFDFKQWạ
)
32
.
1
(
2
kl
g
cot
j
I
U
Z
a
0
0
0
==
7URQJ~Đ
2
kl
sin
II
b
0
=
a
a
8
5
5
;
8
,
+QK
7á F{QJ WKằF WD WK\ WU NKQJ YR FD FKQ Wạ O ~L O}QJ WKXQ
NKQJwĐOYNKLWÂQKWRQ~SGãQJOWKX\W~}đQJGy\NK{QJWêQKDRQJKĂDO
NK{QJ[W~QSKQF{QJEằF[FDFKQWạ
&ÔQ~ơLYLFKQWạ~ơL[ằQJFĐWêQKDRWK~LQWUWêQKDRWK}đQJFĐJLWUÊ
QKƠQzQSKQF{QJVXWWKẳF~}DYRDQWHQKXQK}~}FFKX\QWKQKF{QJVXW
EằF[
3
3
)
33
.
1
(
2
kl
sin
R
R
I
I
R
R
I
2
1
R
I
2
1
2
2
0
2
m
0
2
m
0
2
0
==
5
~LQWUEằF[FKXQJFDFKQWạ
&{QJWKằFWÂQKWUNKQJYRFDFKQWạO
)
34
.
1
(
2
kl
g
cot
j
2
kl
sin
R
Z
a
2
v
=
Đ
$QWHQFKQWơNKuQJxL[đQJ
QKQJKắDFKơQWỉNKQJấL[QJ
&KQWạNK{QJ~ơL[ằQJOFKQWạPKDLQKQKFDQĐFĐNÂFKWK}FKQKKăF
NKFQKDX
&KQWạNK{QJ~ơL[ằQJ~}FằQJGãQJUQJULWWFFFGLVĐQJWáVĐQJ
FẳFQJQ~QVĐQJGLYFẳFGL7X\QKLzQPôLGLVĐQJNKFQKDXFKQWạFàQJ
FĐQKQJ~F~LPNWFXULzQJSKãWKXFYRE}ĐFVĐQJY~F~LPWUX\QODQ
FDGLVĐQJ\
$QWHQFâQ
DiQKQJKD
$QWHQFQOFKQWạFKFĐPWQKQK~XG}LQơLYLP\SKWP\WKX
FÔQ~XNLDFDP\SKWP\WKX~}FQơL[XơQJ~W
E7QKSKonQJKoQJ
O
O
9FKQWạNK{QJ~ơL[ằQJ~WWKQJ~ằQJVWQJD\WUzQPW~WGQ~LQO
W}QJQzQWDWKD\QKK}QJFDPW~WEQJPWFKQWạQK'R~ĐFKQWạWKẳF
Y QK WR WKQK PW FKQ Wạ ~ơL [ằQJ ~W WURQJ NK{QJ JLDQ Wẳ GR 9 Y\ WÂQK
K}QJFDFKQWạNK{QJ~ơL[ằQJ~WWKQJ~ằQJWUzQPW~WVJLơQJQK}WÂQK
SK}|QJK}QJFDFKQWạ~WWURQJNK{QJJLDQWẳGR~[W
Đ
+PSK}|QJK}QJFDPWSKQJNLQKWX\Q(
)
35
.
1
(
cos
kl
cos
)
sin
kl
cos(
)
(
f
=
9L
O~GLFKQWạ
N+VơWUX\QVĐQJ
&KQWạWKẳF
+QK
&KQWạWKẳF