Tải bản đầy đủ (.pdf) (21 trang)

Báo cáo sinh học: " Research Article Existence and Lyapunov Stability of Periodic Solutions for Generalized Higher-Order Neutral Differential Equations" potx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (548.13 KB, 21 trang )

Hindawi Publishing Corporation
Boundary Value Problems
Volume 2011, Article ID 635767, 21 pages
doi:10.1155/2011/635767
Research Article
Existence and Lyapunov Stability of
Periodic Solutions for Generalized Higher-Order
Neutral Differential Equations
Jingli Ren,
1
Wing-Sum Cheung,
2
and Zhibo Cheng
1
1
Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China
2
Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong
Correspondence should be addressed to Wing-Sum Cheung,
Received 17 May 2010; Accepted 23 June 2010
Academic Editor: Feliz Manuel Minh´os
Copyright q 2011 Jingli Ren et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
Existence and Lyapunov stability of periodic solutions for a generalized higher-order neutral
differential equation are established.
1. Introduction
In recent years, there is a good amount of work on periodic solutions for neutral differential
equations see 1–11 and the references cited therein. For example, the following neutral
differential equations
d


du

u

t

− ku

t − τ

 g
1

u

t

 g
2

u

t − τ
1

 p

t

,


x

t

 cx

t − r


 f

x


t


 g

x

t − τ

t

 p

t


,

xt − cx

t − σ

n
 f

x

t

x


t

 g


0
−r
x

t  s



s



 p

t

1.1
have been studied in 1, 3, 8, respectively, and existence criteria of periodic solutions were
established for these equations. Afterwards, along with intensive research on the p-Laplacian,
2 Boundary Value Problems
some authors 4, 11 start to consider the following p-Laplacian neutral functional differential
equations:

φ
p

x

t

− cx

t − σ




 g

t, x


t − τ

t

 p

t

,

φ
p


x

t

− cx

t − σ



 f

x



t


 g

x

t − τ

t

 e

t

,
1.2
and by using topological degree theory and some analysis skills, existence results of periodic
solutions for 1.2 have been presented.
In general, most of the existing results are concentrated on lower-order neutral
functional differential equations, while studies on higher-order neutral functional differential
equations are rather infrequent, especially on higher-order p-Laplacian neutral functional
differential equations. In this paper, we consider the following generalized higher-order
neutral functional differential equation:

ϕ
p

xt − cx


t − σ

l

n−l
 F

t, x

t

,x


t

, ,x
l−1

t


,
1.3
where ϕ
p
: R → R is given by ϕ
p
s|s|
p−2

s with p ≥ 2 being a constant, F is a continuous
function defined on R
l
and is periodic with respect to t with period T,thatis,Ft, ·, ,·
Ft  T, ·, ,·,Ft, a, 0, ,0
/
≡ 0 for all a ∈ R,andc, σ are constants.
Since the neutral operator is divided into two cases |c|
/
 1and|c|  1, it is natural
to study the neutral differential equation separately according to these two cases. The case
|c|  1 has been studied in 5. Now we consider 1.3 for the case |c|
/
 1. So throughout
this paper, we always assume that |c|
/
 1, and the paper is organized as follows. We first
transform 1.3 into a system of first-order differential equations, and then by applying
Mawhin’s continuation theory and some new inequalities, we obtain sufficient conditions
for the existence of periodic solutions for 1.3. The Lyapunov stability of periodic solutions
for the equation will then be established. Finally, an example is given to illustrate our results.
2. Preparation
First, we recall two lemmas. Let X and Y be real Banach spaces and let L : DL ⊂ X → Y be a
Fredholm operator with index zero; here DL denotes the domain of L. This means that Im L
is closed in Y and dim Ker L  dimY/ Im L < ∞. Consider supplementary subspaces X
1
,
Y
1
of X, Y, respectively, such that X  Ker L ⊕ X

1
, Y  Im L ⊕ Y
1
.LetP : X → KerL and
Q : Y → Y
1
denote the natural projections. Clearly, Ker L ∩ DL ∩ X
1
{0} and so the
restriction L
P
: L|
DL∩X
1
is invertible. Let K denote the inverse of L
P
.
Let Ω be an open bounded subset of X with DL ∩ Ω
/
 ∅. A map N :
Ω → Y is said to
be L-compact in
Ω if QNΩ is bounded and the operator KI − QN : Ω → X is compact.
Lemma 2.1 see 12. Suppose that X and Y are two Banach spaces, and suppose that L : DL ⊂
X → Y is a Fredholm operator with index zero. Let Ω ⊂ X be an open bounded set and let N :
Ω → Y
be L-compact on
Ω. Assume that the following conditions hold:
1 Lx
/

 λNx, for all x ∈ ∂Ω ∩ DL,λ∈ 0, 1,
2 Nx
/
∈ Im L, for all x ∈ ∂Ω ∩ Ker L,
Boundary Value Problems 3
3 deg{JQN,Ω ∩ Ker L, 0}
/
 0,whereJ :ImQ → Ker L is an isomorphism.
Then, the equation Lx  Nx has a solution in
Ω ∩ DL.
Lemma 2.2 see 13. If ω ∈ C
1
R, R and ω0ωT0,then

T
0
|
ω

t

|
p
dt ≤

T
π
p

p


T
0


ω


t



p
dt,
2.1
where p is a fixed real number with p>1 and
π
p
 2

p−1/p
0
ds

1 − s
p
/

p − 1


1/p



p − 1

1/p
p sin

π/p

. 2.2
For the sake of convenience, throughout this paper we denote by T a positive real number,
and for any continuous function u, we write
|
u
|
0
: max
t∈

0,T

|
u

t

|
.

2.3
Let A : C
T
→ C
T
be the operator on C
T
: {x ∈ CR, R : xt  Txt for all t ∈ R}
given by

Ax

t

: x

t

− cx

t − σ

, ∀x ∈ C
T
,t∈ R. 2.4
Lemma 2.3. The operator A has a continuous inverse A
−1
on C
T
satisfying the following:


1


A
−1
f


t















f

t





j1
c
j
f

t − jσ

, for
|
c
|
< 1, ∀f ∈ C
T
,

f

t  σ

c



j1
1
c
j1
f


t 

j  1

σ

, for
|
c
|
> 1, ∀f ∈ C
T
,
2.5

2





A
−1
f


t








f


0
|
1 −
|
c
||
, ∀f ∈ C
T
, 2.6

3


T
0




A
−1
f



t




dt ≤
1
|
1 −
|
c
||

T
0


f

t



dt, ∀f ∈ C
T
. 2.7
Remark 2.4. This lemma is basically proved in 3, 10. For the convenience of the readers, we
present a detailed proof here as follows.

Proof. We split it into the following two cases.
Case 1 |c| < 1. Define an operator B : C
T
→ C
T
by

Bx

t

: cx

t − σ

, ∀x ∈ C
T
,t∈ R. 2.8
4 Boundary Value Problems
Clearly, B
j
xtc
j
xt − jσ and A  I − B.NotealsothatB < |c| < 1. Therefore, A has a
continuous inverse A
−1
: C
T
→ C
T

with A
−1
I − B
−1



j0
B
j
; here B
0
xt : xt. Hence,

A
−1
f


t




j0

B
j
f



t

 f

t




j1
c
j
f

t − jσ

,
2.9
and so




A
−1
f

t















j0

B
j
f


t

















j0
c
j
f

t − jσ










f


0
1 −
|
c

|
,

T
0




A
−1
f


t




dt ≤


j0

T
0





B
j
f


t




dt 


j0

T
0



c
j
f

t − jσ




dt ≤

1
1 −
|
c
|

T
0


f

t



dt.
2.10
Case 2 |c| > 1. Define operators
E : C
T
−→ C
T
,

Ex

t

: x


t


1
c
x

t  σ

,
B
1
: C
T
−→ C
T
,

B
1
x

t

:
1
c
x


t  σ

.
2.11
From the definition of the linear operator B
1
, we have

B
j
1
f


t


1
c
j
f

t  jσ

,


j0

B

j
1
f


t

 f

t




j1
1
c
j
f

t  jσ

.
2.12
Since B
1
 < 1, the operator E has a bounded inverse E
−1
: C
T

→ C
T
with
E
−1


I − B
1

−1
 I 


j1
B
j
1
,
2.13
and so, for any f ∈ C
T
,

E
−1
f


t


 f

t




j1

B
j
1
f


t

.
2.14
On the other hand, from Axtxt − cxt − σ, we have

Ax

t

 x

t


− cx

t − σ

 −c

x

t − σ


1
c
x

t


. 2.15
Boundary Value Problems 5
That is,

Ax

t

 −c

Ex


t − σ

. 2.16
Now, for any f ∈ C
T
,ifxt satisfies

Ax

t

 f

t

, 2.17
then we have
−c

Ex

t − σ

 f

t

, 2.18
or


Ex

t

 −
f

t  σ

c
 f
1

t

. 2.19
So, we have
x

t



E
−1
f
1


t


 f
1

t




j1
B
j
1
f
1

t

 −
f

t  σ

c



j1
B
j

1
f

t  σ

c
.
2.20
So, A
−1
exists and satisfies

A
−1
f


t

 −
f

t  σ

c



j1
B

j
1
f

t  σ

c
 −
f

t  σ

c



j1
1
c
j1
f

t 

j  1

σ

,





A
−1
f


t












f

t  σ

c



j1

1
c
j1
f

t 

j  1

σ










f


0
|
c
|
− 1
.
2.21

This proves 1 and 2 of Lemma 2.3. Finally, 3 is easily verified.
By Hale’s terminology 14,asolutionxt of 1.3 is that xt ∈ C
1
R, R such that
Ax ∈ C
1
R, R and 1.3 is satisfied on R. In general, xt does not belong to C
1
R, R. But
we can see easily from Ax

tAx

t that a solution xt of 1.3 must belong to C
1
R, R.
Equation 1.3 is transformed into

ϕ
p

Ax
l


t


n−l
 F


t, x

t

,x


t

, ,x
l−1

t


.
2.22
Lemma 2.5 see 4. If p>1,then

T
0




A
−1
f



t




p
dt ≤
1
|
1 −
|
c
||
p

T
0


f

t



p
dt, ∀f ∈ C
T
.

2.23
6 Boundary Value Problems
Now we consider 2.22. Define the conjugate index q ∈ 1, 2 by 1/p  1/q  1.
Introducing new variables
y
1

t

 x

t

,y
2

t

 x


t

,y
3

t

 x



t

, ,y
l

t

 x
l−1

t

,
y
l1

t

 ϕ
p

Ax
l

t


,y
l2


t



ϕ
p

Ax
l

t



, ,y
n

t



ϕ
p

Ax
l

t



n−l−1
.
2.24
Using the fact that ϕ
q
◦ ϕ
p
≡ id and by Lemma 2.3, 1.3 can be rewritten as
y

1

t

 y
2

t

,
y

2

t

 y
3


t

,
.
.
.
y

l−1

t

 y
l

t

,
y

l

t

 A
−1
ϕ
q

y

l1

t


,
y

l1

t

 y
l2

t

,
.
.
.
y

n−1

t

 y
n


t

,
y

n

t

 F

t, y
1

t

,y
2

t

, ,y
l

t


.
2.25
It is clear that, if yty

1
t,y
2
t, ,y
n
t

is a T-periodic solution to 2.25, then y
1
t
must be a T-periodic solution to 1.3. Thus, the problem of finding a T-periodic solution for
1.3 reduces to finding one for 2.25.
Define the linear spaces
X  Y 

y 

y
1

·

,y
2

·

, ,y
n


·



∈ C
0

R, R
n

: y

t  T

≡ y

t


2.26
with norm y  max{y
1
, y
2
, ,y
n
}. Obviously, X and Y are Banach spaces. Define
L : D

L




y ∈ C
1

R, R
n

: y

t  T

 y

t


⊂ X −→ Y 2.27
Boundary Value Problems 7
by
Ly  y














y

1
y

2
.
.
.
y

l
.
.
.
y

n












. 2.28
Moreover, define
N : X −→ Y 2.29
by
Ny 













y
2

t

y
3


t

.
.
.
A
−1
ϕ
q

y
l1

t


y
l2

t

.
.
.
F

t, y
1

t


,y
2

t

, ,y
l

t















. 2.30
Then, 2.25 can be rewritten as the abstract equation Ly  Ny. From the definition of L,
one can easily see that Ker L  {y ∈ C
1
R, R

n
 : y is constant}R
n
and Im L  {y : y ∈
X,

T
0
ysds  0}.So,L is a Fredholm operator with index zero. Let P : X → Ker L and
Q : Y → Im Q be defined by
Py 
1
T

T
0
y

s

ds, Qy 
1
T

T
0
y

s


ds.
2.31
It is easy to see that Ker L  Im Q  R
n
. Moreover, for all y ∈ Y, if we write y

 y − Qy,
we have

T
0
y

sds  0andsoy

∈ Im L.ThisistosayY  Im Q ⊕ Im L and dimY/ Im L
dim Im Q  dim Ker L. So, L is a Fredholm operator with index zero. Let K denote the
inverse of L|
Ker p∩DL
, then we have

Ky


t




T

0
G
1

t, s

y
1

s

ds,

T
0
G
2

t, s

y
2

s

ds, ,

T
0
G

n

t, s

y
n

s

ds


,
2.32
8 Boundary Value Problems
where
G
i

t, s












s
T
, 0 ≤ s<t≤ T,
s − T
T
, 0 ≤ t ≤ s ≤ T,
i  1, 2, ,n. 2.33
From 2.30 and 2.33, it is clear that QN and KI − QN are continuous, and QN
Ω is
bounded, and so KI − QN
Ω is compact for any open bounded Ω ⊂ X. Hence, N is L-
compact on
Ω. For the function yty
1
t,y
2
t, ,y
n
t

defined as 2.24, we have the
following.
Lemma 2.6. If yt ∈ C
1
R, R
n
 and yt  Tyt,then

T

0


y

i

t



p
dt ≤
1
|
1−
|
c
p

T
π
p

pl−i

T
π
q


qn−l

T
0


y

n
t


q
dt,
2.34
where 1/p  1/q  1,p≥ 2,i 1, 2, ,l− 1.
Proof. From y
1
0y
1
T, there is a point t
1
∈ 0,T such that y

1
t
1
0. Let ω
1
ty


1
tt
1
.
Then, ω
1
0ω
1
T0. From y
2
0y
2
T, there is a point t
2
∈ 0,T such that y

2
t
2
0.
Let ω
2
ty

2
t  t
2
. Then, ω
2

0ω
2
T0. Continuing this way, we get from y
l−1
0
y
l−1
T apointt
l−1
∈ 0,T such that y

l−1
t
l−1
0. Let ω
l−1
ty

l−1
t  t
l−1
. Then, ω
l−1
0
ω
l−1
T0. From y
l
ty
l

t  T, we have

T
0
Ay

l
tdt 

T
0
Ay
l


tdt Ay
l
t|
T
0
 0,
so there is a point t
l
∈ 0,T such that Ay

l
t
l
0; hence, we have ϕ
p

Ay

l
t
l
  0. Let
ω
l
tϕ
p
Ay

l
t  t
l
  y
l1
t  t
l
. Then, ω
l
0ω
l
T0. Continuing this way, we
get from y
n−1
0y
n−1
T that there is a point t
n−1

∈ 0,T such that y

n−1
t
n−1
0. Let
ω
n−1
ty

n−1
t  t
n−1
. Then, ω
n−1
0ω
n−1
T0. By Lemma 2.2, we have

T
0


y

1
t


p

dt 

T
0
|
ω
1

t

|
p
dt


T
π
p

p

T
0


ω

1
t



p
dt


T
π
p

p

T
0


y

2
t


p
dt


T
π
p

p


T
0
|
ω
2
t
|
p
dt


T
π
p

2p

T
0


ω

2
t


p
dt

.
.
.
Boundary Value Problems 9


T
π
p

pl−1

T
0


ω

l−1

t



p
dt


T
π

p

pl−1

T
0


y

l

t



p
dt.
2.35
By Lemma 2.5 and Lemma 2.2, we have

T
0


y

l

t




p
dt 

T
0



A
−1
ϕ
q

y
l1

t





p
dt

1
|

1 −
|
c
||
p

T
0


ϕ
q

y
l1

t




p
dt

1
|
1 −
|
c
||

p

T
0


y
l1

t



pq−p
dt

1
|
1 −
|
c
||
p

T
0


y
l1

t


q
dt

1
|
1 −
|
c
||
p

T
0
|
ω
l
t
|
q
dt

1
|
1 −
|
c
||

p

T
π
q

q

T
0


ω

l

t



q
dt

1
|
1 −
|
c
||
p


T
π
q

q

T
0


y
l2

t



q
dt
.
.
.

1
|
1 −
|
c
||

p

T
π
q

qn−l

T
0


ω

n−1

t



q
dt

1
|
1 −
|
c
||
p


T
π
q

qn−l

T
0


y

n

t



q
dt.
2.36
Combining 2.35 and 2.36,weget

T
0


y


1

t



p
dt ≤
1
|
1 −
|
c
||
p

T
π
p

pl−1

T
π
q

qn−l

T
0



y

n

t



q
dt.
2.37
10 Boundary Value Problems
Similarly, we get

T
0


y

i

t



p
dt ≤

1
|
1 −
|
c
||
p

T
π
p

pl−i

T
π
q

qn−l

T
0


y

n

t




q
dt.
2.38
This completes the proof of Lemma 2.6.
Remark 2.7. In particular, if we take p  2, then q  2and
π
p
 π
q
 π
2
 2

2−1/2
0
ds

1 − s
2
/

2 − 1

1/2



2 − 1


1/2
2sin

π/2

 π.
2.39
In this case, 2.34  is transformed into

T
0


y
i

t



2
dt ≤
1
|
1−
|
c
2


T
π

2n−i

T
0


y

n

t



2
dt.
2.40
3. Main Results
For the sake of convenience, we list the following assumptions which will be used repeatedly
in the sequel.
H
1
 There exists a constant D>0 such that
z
1
F


t, z
1
,z
2
, ,z
l

> 0, ∀

t, z
1
,z
2
, ,z
l



0,T

× R
l
, with
|
z
1
|
>D.
3.1
H

2
 There exists a constant M>0 such that
|
F

t, z
1
,z
2
, ,z
l

|
≤ M, ∀

t, z
1
,z
2
, ,z
l



0,T

× R
l
.
3.2

H
3
 There exist nonnegative constants α
1

2
, ,α
l
,msuch that
|
F

t, z
1
,z
2
, ,z
l

|
≤ α
1
|
z
1
|
 α
2
|
z

2
|
 ··· α
l
|
z
l
|
 m, ∀

t, z
1
,z
2
, ,z
l



0,T

× R
l
.
3.3
H
4
 There exist nonnegative constants γ
1


2
, ,γ
n
such that
|
F

t, u
1
,u
2
, ,u
n

− F

t, v
1
,v
2
, ,v
n

|
≤ γ
1
|
u
1
− v

1
|
 γ
2
|
u
2
− v
2
|
 ··· γ
n
|
u
n
− v
n
|
3.4
for all t, u
1
,u
2
, ,u
n
, t, v
1
,v
2
, ,v

n
 ∈ 0,T × R
n
.
Theorem 3.1. If H
1
 and H
2
 hold, then 1.3 has at least one nonconstant T-periodic solution.
Boundary Value Problems 11
Proof. Consider the equation
Ly  λNy, λ ∈

0, 1

. 3.5
Let Ω
1
 {y ∈ DL : Ly  λNy, λ ∈ 0, 1}.Ifyty
1
t,y
2
t, ,y
n
t

∈ Ω
1
, then
y


1

t

 λy
2

t

,
y

2

t

 λy
3

t

,
.
.
.
y

l−1


t

 λy
l

t

,
y

l

t

 λϕ
q

y
l1

t


,
y

l1

t


 λy
l2

t

,
.
.
.
y

n−1

t

 λy
n

t

,
y

n

t

 λF

t, y

1

t

,y
2

t

, ,y
l

t


.
3.6
We first claim that there exists a constant ξ ∈ R such that


y
1

ξ



≤ D. 3.7
Integrating the last equation of 3.6 over 0,T, we have


T
0
F

t, y
1

t

,y
2

t

, ,y
l

t


dt  0.
3.8
By the continuity of F, there exists ξ ∈ 0,T such that
F

ξ, y
1

ξ


, ,y
l

ξ


 0. 3.9
From assumption H
1
,weget3.7. As a consequence, we have


y
1

t









y
1

ξ




t
ξ
y

1

s

ds





≤ D 

T
0


y

1

s




ds. 3.10
12 Boundary Value Problems
On the other hand, multiplying both sides of the last equation of 3.6 by y

n
t and integrating
over 0,T, using assumption H
2
, we have

T
0


y

n
t


2
dt  λ

T
0
F

t, y
1


t

,y
2

t

, ,y
l

t


y

n

t

dt


T
0


F

t, y
1


t

,y
2

t

, ,y
l

t






y

n

t



dt
≤ M

T

0


y

n

t



dt
≤ MT
1/2


T
0


y

n
t


2
dt

1/2

.
3.11
It is easy to see that there exists a constant M

n
> 0 independent of λ such that

T
0


y

n

t



2
dt ≤ M

n
.
3.12
From y
n−1
0y
n−1
T, there exists a point t

1
∈ 0,T such that y
n
t
1
0. By H
¨
older’s
inequality, we have


y
n

t





T
0


y

n

t




dt ≤ T
1/2


T
0


y

n
t


2
dt

1/2
≤ T
1/2
M

1/2
n
: M
n
.
3.13

From y
n−2
0y
n−2
T, there exists a point t
2
∈ 0,T such that y
n−1
t
2
0, and we have


y
n−1

t





T
0


y

n−1


t



dt 

T
0


λy
n

t



dt ≤

T
0


y
n

t




dt ≤ TM
n
: M
n−1
.
3.14
Continuing this way for y
n−2
, ,y
l1
,weget


y
l1

t



≤ TM
l2
: M
l1
. 3.15
Boundary Value Problems 13
Hence,


y

l

t





T
0


y

l

t



dt ≤

T
0



λA
−1
ϕ

q

y
l1

t





dt ≤
1
|
1 −
|
c
||

T
0


y
l1

t




q−1
dt

1
|
1 −
|
c
||
TM
q−1
l1
: M
l
,


y
l−1

t



≤ TM
l
: M
l−1
,
.

.
.


y
2

t



≤ TM
3
: M
2
.
3.16
Meanwhile, from 3.10,weget


y
1

t



≤ D 

T

0


y

1

t



dt ≤ D  TM
2
: M
1
.
3.17
Let M
0
 max{M
1
,M
2
, ,M
n
}. Then, obviously y
1
≤M
0
, y

2
≤M
0
, ,and y
n
≤M
0
.
Let Ω
2
 {y ∈ Ker L : Ny ∈ Im L}.Ify ∈ Ω
2
, then y ∈ Ker L, which means that
y  constant and QNy  0. We see that
y
2
 0,
y
3
 0,
.
.
.
y
n
 0,
F

t, y
1

, 0, ,0

 0.
3.18
So,


y
1


≤ D ≤ M
0
,y
2
 y
3
 ···  y
n
 0 ≤ M
0
. 3.19
Now take Ω{y y
1
,y
2
, ,y
n



∈ X : y
1
 <M
0
 1, y
2
 <M
0
 1, , y
n
 <
M
0
 1}. By the analysis above, it is easy to see that Ω
1
⊂ Ω, Ω
2
⊂ Ω, and conditions 1 and
2 of Lemma 2.1 are satisfied.
Next we show that condition 3 of Lemma 2.1 is also satisfied. Define an isomorphism
J :ImQ → Ker L as follows:
J

y
1
,y
2
, ,y
n



:

y
n
,y
1
, ,y
n−1


.
3.20
14 Boundary Value Problems
Let Hμ, yμy 1− μJQNy, μ, y ∈ 0, 1 × Ω. Then, for all μ, y ∈ 0, 1 × ∂Ω ∩ Ker L,
H

μ, y
















μy
1

1 − μ
T

T
0
F

t, y
1
, 0, ,0

dt
y
2
.
.
.
A
−1
ϕ
q

y
l1


.
.
.
y
n













. 3.21
From H
1
, it is obvious that yHμ, y > 0 for all μ, y ∈ 0, 1 × ∂Ω ∩ Ker L. Therefore,
deg
{
JQN,Ω ∩ Ker L, 0
}
 deg

H


0,y

, Ω ∩ Ker L, 0

 deg

H

1,y

, Ω ∩ Ker L, 0

 deg
{
I,Ω ∩ Ker L, 0
}
/
 0,
3.22
which means that condition 3 of Lemma 2.1 is also satisfied. By applying Lemma 2.1,we
conclude that equation Ly  Ny has a solution yt

y

1
t,y

2
t, ,y


n
t

on Ω;thatis,
1.3 has a T-periodic solution y

1
t with y

1
 <M
0
 1.
Finally, observe that y

1
t is not constant. For, if y

1
≡ a constant, then from 1.3 we
have Ft, a, 0, ,0 ≡ 0, which contradicts the assumption that Ft, a, 0, ,0
/
≡ 0. The proof
is complete.
Theorem 3.2. If H
1
 and H
3
 hold, then 1.3 has at least one nonconstant T-periodic solution if

one of the following conditions holds:
1 p>2,
2 p  2 and 1/|1 −|c||α
1
T  α
2
T/π
l−1
 α
3
T/π
l−2
 ··· α
l
T/πT/π
n−l
< 1.
Proof. Let Ω
1
be defined as in Theorem 3.1.Ifyty
1
t,y
2
t, ,y
n
t

∈ Ω
1
, then from

the proof of Theorem 3.1 we have
y

n

t

 λF

t, y
1

t

,y
2

t

, ,y
l

t


, 3.23


y
1



0
≤ D 

T
0


y

1

s



ds.
3.24
We claim that |y
n
|
0
is bounded.
Boundary Value Problems 15
Multiplying both sides of 3.23 by ϕ
q
y

n

t and integrating over 0,T,byusing
assumption H
3
, we have

T
0


y

n
t


q
dt  λ

T
0
F

t, y
1

t

,y
2


t

, ,y
l

t


ϕ
q

y

n

t


dt


T
0


F

t, y
1


t

,y
2

t

, ,y
l

t






ϕ
q

y

n

t




dt

≤ α
1

T
0


y
1

t





ϕ
q

y

n

t




dt  α
2


T
0


y
2

t





ϕ
q

y

n

t




dt
 ··· α
l


T
0


y
l

t





ϕ
q

y

n

t




dt  m

T
0



ϕ
q

y

n

t




dt
≤ α
1


y
1


0

T
0


ϕ
q


y

n

t




dt  α
2

T
0


y
2

t





ϕ
q

y


n

t




dt
 ··· α
l

T
0


y
l

t





ϕ
q

y


n

t




dt  m

T
0


ϕ
q

y

n

t




dt
≤ α
1

D 


T
0


y

1

t



dt


T
0


ϕ
q

y

n

t





dt  α
2

T
0


y
2

t





ϕ
q

y

n

t





dt
 ··· α
l

T
0


y
l

t





ϕ
q

y

n

t




dt  m


T
0


ϕ
q

y

n

t




dt.
3.25
Applying H
¨
older’s inequality, we have

T
0


y

n

t


q
dt ≤ α
1


D  T
1/p


T
0


y

1

t



q
dt

1/q



T
1/q


T
0


ϕ
q

y

n

t




p
dt

1/p
 α
2


T
0



y
2
t


q
dt

1/q


T
0


ϕ
q

y

n

t




p

dt

1/p
 ··· α
l


T
0


y
l

t



q
dt

1/q


T
0


ϕ
q


y

n

t




p
dt

1/p
 mT
1/q


T
0


ϕ
q

y

n

t





p
dt

1/p
≤ α
1
T · T
p−2/qp−1


T
0


y

1

t



p
dt

1/qp−1



T
0


y

n

t



q
dt

1/p
 α
2
T
p−2/qp−1


T
0


y
2


t



p
dt

1/qp−1


T
0


y

n

t



q
dt

1/p
 ···
16 Boundary Value Problems
 α

l
T
p−2/qp−1


T
0


y
l
t


p
dt

1/qp−1


T
0
|y

n
t|
q
dt

1/p



α
1
D  m

T
1/q


T
0
|y

n
t|
q
dt

1/p
 α
1
T · T
p−2/p


T
0



y

1

t



p
dt

1/p


T
0


y

n

t



q
dt

1/p

 α
2
T
p−2/p


T
0


y
2
t


p
dt

1/p


T
0


y

n

t




q
dt

1/p

··· α
l
T
p−2/p


T
0


y
l
t


p
dt

1/p


T

0


y

n

t



q
dt

1/p


α
1
D  m

T
1/q


T
0


y


n

t



q
dt

1/p
.
3.26
Applying Lemma 2.6 and 3.26, we have

T
0


y

n

t



q
dt ≤ α
1

T · T
p−2/p
1
|
1 −
|
c
||

T
π
p

l−1

T
π
q

qn−l/p


T
0


y

n


t



q
dt

2/p
 α
2
T
p−2/p
1
|
1 −
|
c
||

T
π
p

l−1

T
π
q

qn−l/p



T
0


y

n

t



q
dt

2/p

··· α
l
T
p−2/p
1
|
1 −
|
c
||


T
π
p

T
π
q

qn−l/p


T
0


y

n

t



q
dt

2/p


α

1
D  m

T
1/q


T
0


y

n

t



q
dt

1/p

1
|
1 −
|
c
||




α
1
T  α
2


T
π
p

l−1
 α
3

T
π
p

l−2
 ··· α
l

T
π
p




×T
p−2/p

T
π
q

qn−l/p
·


T
0


y

n

t



q
dt

2/p



α
1
Dm

T
1/q


T
0


y

n

t



q
dt

1/p
.
3.27
Boundary Value Problems 17
Case 1. If p  2and1/|1 −|c||α
1
T  α

2
T/π
l−1
 α
3
T/π
l−2
 ··· α
l
T/πT/π
n−l
< 1,
then it is easy to see that there exists a constant M

n
> 0 independent of λ such that

T
0


y

n

t



q

dt ≤ M

n
.
3.28
Case 2. If p>2, then it is easy to see that there exists a constant M

n
> 0 independent of λ
such that

T
0


y

n

t



q
dt ≤ M

n
.
3.29
From y

n−1
0y
n−1
T, there exists a point t
1
∈ 0,T such that y
n
t
1
0. By H
¨
older’s
inequality, we have


y
n

t





T
0


y


n

t



dt ≤ T
1/p


T
0


y

n

t



q
dt

1/q
≤ T
1/p
M


1/q
n
: M
n
.
3.30
This proves the claim, and the rest of the proof of the theorem is identical to that of
Theorem 3.1.
Remark 3.3. If 1.3 takes the form

ϕ
p

xt − cx

t − σ

l

n−l
 F

t, x

t

,x


t


, ,x
l−1

t


 e

t

,
3.31
where et ∈ CR, R,et  Tet and

T
0
etdt  0, then the results of Theorems 3.1 and
3.2 still hold.
Remark 3.4. If p  2, then 1.3 is transformed into

xt − cx

t − σ

n
 F

t, x


t

,x


t

, ,x
n−1

t


, 3.32
and the results of Theorems 3.1 and 3.2 still hold.
Next, we study the Lyapunov stability of the periodic solutions of 3.32.
Theorem 3.5. Assume that H
4
 holds. Then every T-periodic solution of 3.32 is Lyapunov stable.
Proof. Let
z
1

t

 x

t

,z

2

t

 x


t

, ,z
n

t

 x
n−1

t

.
3.33
18 Boundary Value Problems
Then, system 3.32 is transformed into
z

1

t

 z

2

t

,
z

2

t

 z
3

t

,
.
.
.
z

n

t

 A
−1
F


t, z
1

t

,z
2

t

, ,z
n

t

.
3.34
Suppose now that z

tz

1
t,z

2
t, ,z

n
t


is a T-periodic solution of 3.34.Let
ztz
1
t,z
2
t, ,z
n
t

be any arbitrary solution of 3.34. For any k  1, ,n, write
w
k
tz
k
t − z

k
t. Then, it follows from 3.34 that
w

1

t

 w
2

t

,

w

2

t

 w
3

t

,
.
.
.
w

n

t

 A
−1

F

t, z
1

t


,z
2

t

, ,z
n

t

− F

t, z

1

t

,z

2

t

, ,z

n

t



,
3.35
and so


w

1

t




|
w
2

t

|
,


w

2


t




|
w
3

t

|
,
.
.
.


w

n

t








A
−1

F

t, z
1

t

,z
2

t

, ,z
n

t

− F

t, z

1

t

,z


2

t

, ,z

n

t





.
3.36
Let u
l
k
t|w
l
k
t|,l 0, 1,k 1, 2, ,n. Then,
u

1

t

 u

2

t

,
u

2

t

 u
3

t

,
.
.
.
u

n

t






A
−1

F

t, z
1

t

,z
2

t

, ,z
n

t

− F

t, z

1

t

,z


2

t

, ,z

n

t





.
3.37
Take β  max{γ
1
/|1 −|c||,γ
2
/|1 −|c||  1, ,γ
n
/|1 −|c||  1}  1, and define a function V · by
V

t, u
1
, ,u
n


: e
−βt
n

k1
u
k

t

.
3.38
Boundary Value Problems 19
Let Uu
1
, ,u
n


n
k1
y
k
t. It is obvious that V t, u
1
, ,u
n
 > 0andV t, u
1
, ,u

n
 ≥
Uu
1
, ,u
n
 > 0. From H
4
 and Lemma 2.3,weget
˙
V

t, u
1
, ,u
n

 −βe
−βt

n

k1
u
k

t


 e

−βt

u
2

t

 ··· u
n

t

 e
−βt



A
−1

F

t, z
1

t

,z
2


t

, ,z
n

t

− F

t, z

1

t

,z

2

t

, ,z

n

t






≤−βe
−βt

n

k1
u
k

t


 e
−βt

u
2

t

 ··· u
n

t


e
−βt
|

1 −
|
c
||



F

t, z
1

t

,z
2

t

, ,z
n

t

− F

t, z

1


t

,z

2

t

, ,z

n

t




≤−βe
−βt

n

k1
u
k

t


 e

−βt

u
2

t

 ··· u
n

t


e
−βt
|
1 −
|
c
||

γ
1


z
1

t


− z

1

t



 ··· γ
n
|
z
n

t

− z

n

t

|

 −βe
−βt

n

k1

u
k

t


 e
−βt

u
2

t

 ··· u
n

t


e
−βt
|
1 −
|
c
||

γ
1

|
w
1

t

|
 ··· γ
n
|
w
n

t

|

 −βe
−βt

n

k1
u
k

t


 e

−βt

u
2

t

 ··· u
n

t


e
−βt
|
1 −
|
c
||

γ
1
u
1

t

 ··· γ
n

u
n

t




−β 
γ
1
|
1 −
|
c
||

u
1

t

e
−βt

n

k2

−β  1 

γ
k
|
1 −
|
c
||

u
k

t

e
−βt
< 0.
3.39
Hence, V is a Lyapunov function for nonautonomous 3.32see 15, page 50,andso
the T-periodic solution z

of 3.32 is Lyapunov stable.
Finally, we present an example to illustrate our result.
Example 3.6. Consider the n-order delay differential equation

ϕ
p

xt − 3x

t − σ


4

n−4

1

x

t


1
8
sin x


t


1
8
cos x


t

sin 2t 
1
8

sin x


t

.
3.40
20 Boundary Value Problems
Here p is a constant with p ≥ 2. Comparing with 1.3, we have c  3and
F

t, z
1
,z
2
,z
3
,z
4


1

z
1

1
8
sin z
2


1
8
cos z
3
sin 2t 
1
8
sin z
4
. 3.41
Observe that F has period T  π and satisfies
F

t, a, 0, 0, 0


1

a 
1
8
sin 2t
/
≡ 0, ∀a ∈ R
. 3.42
Pick D  3π. Then,
|
z
1

F

t, z
1
,z
2
,z
3
,z
4

|

|
z
1
|
·




1

z
1

1
8
sin z

2

1
8
cos z
3
sin 2t 
1
8
sin z
4





|
z
1
|
·




1

|
z
1

|





1
8
sin z
2

1
8
cos z
3
sin 2t 
1
8
sin z
4








≥ 3π ·


1 −
3
8

> 0
3.43
for all t, z
1
,z
2
,z
3
,z
4
 ∈ 0,T × R
l
with |z
1
| >D 3π. Hence, H
1
 holds. On the other hand,
since
|
F

t, z
1
,z
2
,z

3
,z
4

|

1

|
z
1
|





1
8
sin z
2

1
8
cos z
3
sin 2t 
1
8
sin z

4




<
1

|
z
1
|
 1,
3.44
assumption H
3
 holds with α
1
 1/3π, α
2
 0,α
3
 0,α
4
 0, and m  1.
Case 1. If p>2, then by 1 of Theorem 3.2, 3.40 has at least one nonconstant π-periodic
solution.
Case 2. If p  2, then
1
|

1 −
|
c
||


α
1
T  α
2


T
π

3
 α
3

T
π

2
 α
4

T
π




T
π

n−4

1
2
×

1

× π  0

× 1  0 × 1  0 × 1

× 1

1
2
×
1
3
< 1.
3.45
So by 2 of Theorem 3.2, 3.40 has at least one nonconstant π-periodic solution.
Boundary Value Problems 21
Acknowledgments
This paper is partially supported by the National Natural Science Foundation of China
10971202, and the Research Grant Council of Hong Kong SAR, China project no.

HKU7016/07P.
References
1 S. Lu and W. Ge, “On the existence of periodic solutions for neutral functional differential equation,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 54, no. 7, pp. 1285–1306, 2003.
2 S. Lu, “Existence of periodic solutions for a p-Laplacian neutral functional differential equation,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 1, pp. 231–243, 2009.
3 S. Lu, W. Ge, and Z. Zheng, “Periodic solutions to neutral differential equation with deviating
arguments,” Applied Mathematics and Computation, vol. 152, no. 1, pp. 17–27, 2004.
4 S. Peng, “Periodic solutions for p-Laplacian neutral Rayleigh equation with a deviating argument,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 5-6, pp. 1675–1685, 2008.
5 J. Ren and Z. Cheng, “Periodic solutions for generalized high-order neutral differential equation in
the critical case,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 12, pp. 6182–6193,
2009.
6 J. Shen and R. Liang, “Periodic solutions for a kind of second order neutral functional differential
equations,” Applied Mathematics and Computation, vol. 190, no. 2, pp. 1394–1401, 2007.
7 Q. Wang and B. Dai, “Three periodic solutions of nonlinear neutral functional differential equations,”
Nonlinear Analysis: Real World Applications, vol. 9, no. 3, pp. 977–984, 2008.
8 K. Wang and S. Lu, “On the existence of periodic solutions for a kind of high-order neutral functional
differential equation,” Journal of Mathematical Analysis and Applications, vol. 326, no. 2, pp. 1161–1173,
2007.
9 J. Wu and Z. Wang, “Two periodic solutions of second-order neutral functional differential
equations,” Journal of Mathematical Analysis and Applications, vol. 329, no. 1, pp. 677–689, 2007.
10 M. R. Zhang, “Periodic solutions of linear and quasilinear neutral functional-differential equations,”
Journal of Mathematical Analysis and Applications, vol. 189, no. 2, pp. 378–392, 1995.
11 Y. Zhu and S. Lu, “Periodic solutions for p-Laplacian neutral functional differential equation with
deviating arguments,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 377–385,
2007.
12 R. E. Gaines and J. L. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, Lecture Notes
in Mathematics, vol. 568, Springer, Berlin, Germany, 1977.
13 M. Zhang, “Nonuniform nonresonance at the first eigenvalue of the p-Laplacian,” Nonlinear Analysis:

Theory, Methods & Applications, vol. 29, no. 1, pp. 41–51, 1997.
14 J. K. Hale, Theory of Functional Differential Equations, Springer, New York, NY, USA, 1977.
15 P. Glendinning, Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential
Equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, UK,
1994.

×