Tải bản đầy đủ (.pdf) (19 trang)

Báo cáo hóa học: " Research Article Existence and Stability of Antiperiodic Solution for a Class of Generalized Neural Networks with Impulses and Arbitrary Delays on Time Scales" ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (563.87 KB, 19 trang )

Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2010, Article ID 132790, 19 pages
doi:10.1155/2010/132790
Research Article
Existence and Stability of Antiperiodic Solution for
a Class of Generalized Neural Networks with
Impulses and Arbitrary Delays on Time Scales
Yongkun Li, Erliang Xu, and Tianwei Zhang
Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China
Correspondence should be addressed to Tianwei Zhang,
Received 14 June 2010; Accepted 16 August 2010
Academic Editor: Kok Lay Teo
Copyright q 2010 Yongkun Li et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
By using coincidence degree theory and Lyapunov functions, we study the existence and global
exponential stability of antiperiodic solutions for a class of generalized neural networks with
impulses and arbitrary delays on time scales. Some completely new sufficient conditions are
established. Finally, an example is given to illustrate our results. These results are of great
significance in designs and applications of globally stable anti-periodic Cohen-Grossberg neural
networks with delays and impulses .
1. Introduction
In this paper, we consider the following generalized neural networks with impulses and
arbitrary delays on time scales:
x
Δ

t

 A



t, x

t

B

t, x

t

 F

t, x
t

,t∈ T,t
/
 t
k
,
Δx

t
k

 x

t


k

− x

t

k

 I
k

x

t
k

,t t
k
,k∈ N,
1.1
where T is an ω/2-periodic time scale and if t ∈ T,θ∈ E, then t  θ ∈ T,Eis a subset
of R

−∞, 0, At, xt  diaga
1
t, x
1
t,a
2
t, x

2
t, ,a
n
t, x
n
t,Bt, xt 
b
1
t, x
1
t,b
2
t, x
2
t, ,b
n
t, x
n
t
T
,Ft, x
t
f
1
t, x
t
, ,f
n
t, x
t


T
,f
i
t, x
t

f
i
t, x
1t
,x
2t
, ,x
nt
,x
it
θx
i
t  θ,t∈ T,θ ∈ E, i  1, 2, ,n, and xt

k
,xt

k

represent the right and left limits of xt
k
 in the sense of time scales, {t
l

} is a sequence of real
numbers such that 0 <t
1
<t
2
< ···<t
n
→∞as l →∞. There exists a positive integer q such
that t
lq
 t
l
 ω/2,I
kq
u−I
k
−u,l∈ Z,u∈ R. Without loss of generality, we also
2 Journal of Inequalities and Applications
assume that 0,ω/2
T
∩{t
l
: l ∈ N}  {t
1
,t
2
, ,t
q
}. For each interval I of R, we denote that
I

T
 I ∩ T, especially, we denote that T

 T ∩ 0, ∞.
System 1.1 includes many neural continuous and discrete time networks 1–9. For
examples, the high-order Hopfield neural networks with impulses and delays see 8:
x

i

t

 −a
i

x
i

t



b
i

x
i

t



n

j1
a
ij

t

g
j

x
j

t



n

j1
b
ij

t

g
j


x
j

t − τ
j

t



n

j1
n

l1
b
ijl

t

g
j

x
j

t − τ
j


t


g
l

x
l

t − τ
l

t

 I
i

t



,t
/
 t
k
,
1.2
Δx
i


t
k

 x
i

t

k

− x
i

t

k

 e
ik

x
i

t
k

,i 1, 2, ,n, k  1, 2, , 1.3
the Cohen-Grossberg neural networks with bounded and unbounded delays see 9:
x


i

t

 −a
i

x
i

t



b
i

x
i

t


n

j1
c
ij

t


f
j

x
j

t



n

j1
c
ij

t

g
j

x
j

t − τ
ij

t




n

j1
d
ij

t

h
j



0
K
ij

u

x
j

t − u

du

 I
i


t



,t
/
 t
k
,
1.4
Δx
i

t
k

 x
i

t

k

− x
i

t

k


 l
ik

x
i

t
k

,i 1, 2, ,n, k  1, 2, , 1.5
and so on.
Arising from problems in applied sciences, it is well known that anti-periodic
problems of nonlinear differential equations have been extensively studied by many authors
during the past twenty years; see 10–21 and references cited t herein. For example, anti-
periodic trigonometric polynomials are important in the study of interpolation problems
22, 23, and anti-periodic wavelets are discussed in 24.
Recently, several authors 25–30 have investigated the anti-periodic problems of
neural networks without impulse by similar analytic skills. However, to the best of our
knowledge, there are few papers published on the existence of anti-periodic solutions to
neural networks with impulse.
The main purpose of this paper is to study the existence and global exponential
stability of anti-periodic solutions of system 1.1 by using the method of coincidence degree
theory and Lyapunov functions.
The initial conditions associated with system 1.1 are of the form
x
0
 φ, that is,x
i


θ

 φ
i

θ

,θ∈ E, i  1, 2, ,n. 1.6
Throughout this paper, we assume that
H
1
 a
i
t, u ∈ CT × R, R

,a
i
t  ω/2, −ua
i
t, u, and there exist positive constants
a
m
i
,a
M
i
such that 0 <a
m
i
<a

i
t, u <a
M
i
for all t ∈ T,u∈ R,i 1, 2, ,n;
Journal of Inequalities and Applications 3
H
2
 b
i
t, u ∈ CT × R, R,b
i
t  ω/2, −u−b
i
t, u. There exist positive constants μ
i
and L
b
i
such that
∂b
i

t, u

∂u
≥ μ
i
,
|

b
i

t, u

− b
i

t, v

|
≤ L
b
i
|
u − v
|
,b
i

t, 0

 0
, 1.7
for all t ∈ T,u,v ∈ R,i 1, 2, ,n;
H
3
 f
i
∈ CT × R

n
, R,f
i
t  ω/2, −u−f
i
t, u,fori  1, 2, ,n. There exist positive
constants c
i
such that


f
i

t, x
1t
, ,x
nt

− f
i

t, y
1t
, ,y
nt



≤ c

i
n

j1


x
jt
− y
jt


, 1.8
for all t, x
1t
, ,x
nt
, t, y
1t
, ,y
nt
 ∈ T × R
n
and f
i
t, 0, ,00,i 1, 2, ,n;
H
4
 I
ik

∈ CR, R and there exist positive constants L
I
ik
such that
|
I
ik

u

− I
ik

v

|
≤ L
I
ik
|
u − v
|
,
1.9
for all u, v ∈ R,k∈ N,i 1, 2, ,n.
For convenience, we introduce the following notation:
h
M
 max
t∈0,ω

T
|
h

t

|
,h
m
 min
t∈0,ω
T
|
h

t

|
, h
2



ω
0
|
h

t


|
2
Δt

1/2
,
1.10
where h is an ω-periodic function.
The organization of this paper is as follows. In Section 2, we introduce some definitions
and lemmas. In Section 3, by using the method of coincidence degree theory, we obtain the
existence of the anti-periodic solutions of system 1.1.InSection 4, we give the criteria of
global exponential stability of the anti-periodic solutions of system 1.1.InSection 5,an
example is also provided to illustrate the effectiveness of the main results in Sections 3 and 4.
The conclusions are drawn in Section 6 .
2. Preliminaries
In this section, we will first recall some basic definitions and lemmas which can be found in
books 31, 32.
Definition 2.1 see 31. A time scale T is an arbitrary nonempty closed subset of real numbers
R. The forward and backward jump operators σ, ρ : T → T and the graininess μ : T → R

are defined, respectively, by
σ

t

: inf
{
s ∈ T : s>t
}



t

: sup
{
s ∈ T : s<t
}


t

 σ

t

− t. 2.1
4 Journal of Inequalities and Applications
Definition 2.2 see 31.Afunctionf : T → R is called right-dense continuous provided it
is continuous at right-dense point of T and left-side limit exists finite at left-dense point of
T. The set of all right-dense continuous functions on T will be denoted by C
rd
 C
rd
T
C
rd
T, R.Iff is continuous at each right-dense and left-dense point, then f is said to be a
continuous function on T, the set of continuous function will be denoted by CT.
Definition 2.3 see 31. For x : T → R, one defines the delta derivative of xt,x
Δ

t to be
the number if it exists with the property that for a given ε>0, there exists a neighborhood
U of t such that




x

σ

t

− x

t

− x
Δ

t

σ

t

− s





≤ ε
|
σ

t

− s
|
, 2.2
for all s ∈ U.
Definition 2.4 see 31.IfF
Δ
tft, then one defines the delta integral by

t
a
f

s

Δs  F

t

− F

a

.

2.3
Definition 2.5 see 33. For each t ∈ T,letN be a neighborhood of t. Then, one defines the
generalized derivative or dini derivative, D

u
Δ
t to mean that, given ε>0, there exists a
right neighborhood Nε ⊂ N of t such that
u

σ

t

− u

s

μ

t, s

<D

u
Δ

t

 ε,

2.4
for each s ∈ Nε, s>t, where μt, sσt − s.
In case t is right-scattered and ut is continuous at t, this reduces to
D

u
Δ

t


u

σ

t

− u

t

σ

t

− t
.
2.5
Similar to 34, we will give the definition of anti-periodic function on a time scale as
following.

Definition 2.6. Let T
/
 R be a periodic time scale with period p. One says that the function
f : T → R is ω/2-anti-periodic if there exists a natural number n such that ω/2  np,
ft  ω/2−ft for all t ∈ T and ω is the smallest number such that ft  ω/2−ft.
If T  R, one says that f is ω/2-anti-periodic if ω/2 is the smallest positive number
such that ft  ω/2−ft for all t ∈ T.
Definition 2.7 see 31.Afunctionp : T → R is called regressive if 1  μtpt
/
 0 for all
t ∈ T
k
, where μtσt − t is the graininess function. If p is regressive and right-dense
continuous function, then the generalized exponential function e
p
is defined by
e
p

t, s

 exp


t
s
ξ
μτ

p


τ


Δτ

, 2.6
Journal of Inequalities and Applications 5
for s, t ∈ T, with the cylinder transformation
ξ
h

z







Log

1  hz

h
, if h
/
 0,
z, if h  0.
2.7

Let p, q : T → R be two regressive functions, we define
p ⊕ q : p  q  μpq, p : −
p
1  μp
,pq  p ⊕

q

.
2.8
Then the generalized exponential function has the following properties.
Lemma 2.8 see 31, 32. Assume that p, q : T → R are two regressive functions, then
i e
0
t, s ≡ 1 and e
p
t, t ≡ 1;
ii e
p
σt,s1  μtpte
p
t, s;
iii e
p
t, σs  e
p
t, s/1  μsps;
iv 1/e
p
t, se

p
t, s;
v e
p
t, s1/e
p
s, te
p
s, t;
vi e
p
t, se
p
s, re
p
t, r;
vii e
Δ
p
·,spe
p
·,s.
Lemma 2.9 see 31. Assume that f, g : T → R are delta differentiable at t ∈ T
k
.Then

fg

Δ


t

 f
Δ

t

g

t

 f

σ

t

g
Δ

t

 f

t

g
Δ

t


 f
Δ

t

g

σ

t

.
2.9
The following lemmas can be found in 35, 36, respectively.
Lemma 2.10. Let t
1
,t
2
∈ 0,w
T
.Ifx : T → R is ω-periodic, then
x

t

≤ x

t
1




ω
0



x
Δ

s




Δs, x

t

≥ x

t
2



ω
0




x
Δ

s




Δs.
2.10
Lemma 2.11. Let a, b ∈ T. For rd-continuous functions f, g : a, b → R, one has

b
a


f

t

g

t



Δt ≤



b
a


f

t



2
Δt

1/2


b
a


g

t



2
Δt


1/2
.
2.11
Definition 2.12. The anti-periodic solution x

tx

1
t,x

2
t, ,x

n
t
T
of system 1.1 is
said to be globally exponentially stable if there exist positive constants  and M  M ≥ 1,
6 Journal of Inequalities and Applications
for any solution xtx
1
t,x
2
t, ,x
n
t
T
of system 1.1 with the initial value φt
φ
1

t,φ
2
t, ,φ
n
t
T
∈ CE
T
, R
n
, such that
n

i1


x
i

t

− x

i

t



≤ M




e


t, α



φ − x



,
2.12
where


φ − x




n

i1
sup
s∈E
T



φ
i

s

− x

i

s



,α∈ E
T
.
2.13
The following continuation theorem of coincidence degree theory is crucial in the
arguments of our main results.
Lemma 2.13 see 37. Let X, X be two Banach spaces, Ω ⊂ X be open bounded and symmetric
with 0 ∈ Ω. Suppose that L : DL ⊂ X → Y is a linear Fredholm operator of index zero with
DL ∩
Ω
/
 ∅ and N : Ω → Y is L-compact. Further, one also assumes that
H Lx − Nx
/
 λ−Lx − N−x for all x ∈ DL ∩ ∂Ω,λ∈ 0, 1.

Then the equation Lx  Nx has at least one solution on DL ∩
Ω.
3. Existence of Antiperiodic Solutions
In this section, by using Lemma 2.13, we will study the existence of at least one anti-periodic
solution of 1.1.
Theorem 3.1. Assume that H
1
–H
4
 hold. Suppose further that
H
5
 E e
ij

n×n
is a nonsingular M matrix, where, for i, j  1, 2, ,n,
e
ij










ωa

m
i
− ω
2
a
m
i
a
M
i
L
b
i
− ωa
m
i
2q

k1
L
I
ik

1
μ
i
2q

k1
L

I
ik


1
μ
i
 ωa
m
i

a
M
i
ωc
i
,i j,


1
μ
i
 ωa
m
i

a
M
i
ωc

i
,i
/
 j.
3.1
Then system 1.1 has at least one ω/2-anti-periodic solution.
Proof. Let C
k
0,ω; t
1
, ,t
q
,t
q1
, ,t
2q

T
 {x : 0,ω
T
→ R
nm
|x
k
t is a piecewise
continuous map with first-class discontinuity points in 0,ω
T
∩{t
k
}, and at each discontinuity

point it is continuous on the left}. Take
X 

x ∈ C

0,ω; t
1
, ,t
q
,t
q1
, ,t
2q

T
: x

t 
ω
2

 −x

t

, ∀t ∈

0,
ω
2


T

,
Y  X × R
n×q
3.2
Journal of Inequalities and Applications 7
are two Banach spaces with the norms

x

X 
n

i1
|
x
i
|
0
,

z

Y 

x

X 



y


,
3.3
respectively, where |x
i
|
0
 max
t∈0,ω
T
|x
i
t|, i  1, ,n, ·is any norm of R
n×q
.
Set
L :Dom L ∩ X −→ Y,x−→

x
Δ
, Δx

t
1

, ,Δx


t
q


, 3.4
where
Dom L 

x ∈ C
1

0,ω; t
1
, ,t
2q

T
: x

t 
ω
2

 −x

t

, ∀t ∈


0,
ω
2

T

,
N : X −→ Y,
Nx 










A
1

t

.
.
.
A
n


t






,





I
11

x
1

t
1

.
.
.
I
n1

x
n


t
1






, ,





I
1q

x
1

t
q

.
.
.
I
nq


x
n

t
q











,
3.5
where
A
i

t

a
i

t, x
i


t


b
i

t, x
i

t

 f
i

t, x
t


,i 1, 2, ,n.
3.6
It is easy to see that
Ker L 
{
0
}
, Im L 

z 

f, C

1
, ,C
q

∈ Y :

ω
0
f

s

Δs  0

 Y.
3.7
Thus, dim KerL  0  codim ImL,andL is a linear Fredholm mapping of index zero.
Define the projectors P : X → Ker L and Q : Y → Y by
Px 

ω
0
x

s

Δs  0
, 3.8
Qz  Q


f, C
1
, ,C
q



1
ω

ω
0
f

s

Δs, 0, ,0

,
3.9
8 Journal of Inequalities and Applications
respectively. It is not difficult to show that P and Q are continuous projectors such that
Im P  Ker L, Im L  Ker Q  Im

I − Q

. 3.10
Further, let L
−1
P

 L
|Dom L∩Ker P
and the generalized inverse K
P
 L
−1
P
is given by
K
P
z 

t
0
f

s

Δs 

t>t
k
C
k

1
2

ω/2
0

f

s

Δs −
1
2
q

k1
C
k
,
3.11
in which C
qi
 −C
i
for all 1 ≤ i ≤ q.
Similar to the proof of Theorem 3.1in38,itisnotdifficult to show that QN
Ω,
K
P
I − QNΩ are relatively compact for any open bounded set Ω ⊂ X. Therefore, N is
L-compact on
Ω for any open bounded set Ω ⊂ X.
Corresponding to the operator equation Lx − Nx  λ−Lx − N−x,λ ∈ 0, 1,we
have
x
Δ


t


1
1  λ
G

t, x


λ
1  λ
G

t, −x

,t∈ T

,t
/
 t
k
,
Δx

t
k



1
1  λ
I
k

x

t
k


λ
1  λ
I
k

−x

t
k

,t t
k
,k∈ N,
3.12
or
x
Δ
i


t


1
1  λ
G
i

t, x


λ
1  λ
G
i

t, −x

,t∈ T

,t
/
 t
k
,
Δx
i

t
k



1
1  λ
I
ik

x
i

t
k


λ
1  λ
I
ik

−x
i

t
k

,t t
k
,i 1, 2, ,n, k ∈ N,
3.13
where

G
i

t, x

 a
i

t, x
i

t


b
i

t, x
i

t

 f
i

t, x
t


,

G
i

t, −x

 a
i

t, −x
i

t


b
i

t, −x
i

t

 f
i

t, −x
t


,i 1, 2, ,n.

3.14
Journal of Inequalities and Applications 9
Set t
0
 t

0
 0,t
2q1
 ω,inviewof3.13, H
1
–H
4
 and Lemma 2.11,weobtainthat

ω
0



x
Δ
i

t




Δt 

2q1

k1

t
k
t

k−1



x
Δ
i

t




Δt 
2q

k1
|
Δx
i

t

k

|


ω
0




1
1  λ
G
i

t, x


λ
1  λ
G
i

t, −x






Δt

2q

k1




1
1  λ
I
ik

x
i

t
k


λ
1  λ
I
ik

−x
i

t

k







1
1  λ

λ
1  λ


ω
0
max
{|
G
i

t, x

|
,
|
G
i


t, −x

|}
Δt


1
1  λ

λ
1  λ

2q

k1
max
{|
I
ik

x
i

t
k

|
,
|
I

ik

−x
i

t
k

|}


ω
0
max



a
i

t, x
i

t


b
i

t, x

i

t

 f
i

t, x
t




,


a
i

t, −x
i

t


b
i

t, −x
i


t

 f
i

t, −x
t





Δt

2q

k1
max
{|
I
ik

x
i

t
k

|

,
|
I
ik

−x
i

t
k

|}
≤ a
M
i


ω
0
max
{|
b
i

t, x
i

t

− b

i

t, 0

|
,
|
b
i

t, −x
i

t

− b
i

t, 0

|}
Δt


ω
0
max




f
i

t, x
1t
, ,x
nt

− f
i

t, 0, ,0



,


f
i

t, −x
1t
, ,−x
nt

− f
i

t, 0, ,0





Δt


2q

k1
max
{|
I
ik

x
i

t
k

− I
ik

0

|
,
|
I

ik

−x
i

t
k

− I
ik

0

|}

2q

k1
|
I
ik

0

|
≤ a
M
i



L
b
i

ω
0
|
x
i

t

|
Δt 

ω
0
c
i
n

j1


x
jt


Δt




2q

k1
L
I
ik
|
x
i
|
0

2q

k1
|
I
ik

0

|
≤ a
M
i
L
b
i


ω

x
i

2
 a
M
i
c
i
n

j1


x
j


2

ω 
2q

k1
L
I
ik

|
x
i
|
0

2q

k1
|
I
ik

0

|
,
3.15
where i  1, 2, ,n. Integrating 3.13 from0toω, we have from H
1
–H
4
 that





ω
0


a
i

t, x
i

t

b
i

t, x
i

t

1  λ

λa
i

t, −x
i

t

b
i


t, −x
i

t

1  λ

Δt




10 Journal of Inequalities and Applications






ω
0

a
i

t, x
i

t


b
i

t, x
i

t

1  λ

λa
i

t, x
i

t

b
i

t, x
i

t

1  λ

Δt











ω
0
a
i

t, x
i

t

b
i

t, x
i

t

Δt










1
1  λ

ω
0
a
i

t, x
i

t

f
i

t, x
t

Δt −
λ
1  λ


ω
0
a
i

t, −x
i

t

f
i

t, −x
t

Δt

1
1  λ
2q

k1
I
ik

x
i

t

k


λ
1  λ
2q

k1
I
ik

−x
i

t
k






≤ a
M
i

ω
0
max




f
i

t, x
1t
, ,x
nt




f
i

t, 0, ,0



,


f
i

t, −x
1t
, ,−x
nt





f
i

t, 0, ,0




Δt

2q

k1
max
{|
I
ik

x
i

t
k

− I
ik


0

|
,
|
I
ik

−x
i

t
k

− I
ik

0

|}

2q

k1
|
I
ik

0


|
≤ a
M
i
c
i
n

j1


x
j


2

ω 
2q

k1
L
I
ik
|x
i
|
0


2q

k1
|
I
ik

0

|
,i 1, 2, ,n,
3.16
by H
2
,weobtainthat





ω
0
a
i

t, x
i

t


x
i

t

Δt





1
μ
i
a
M
i
c
i
n

j1


x
j


2


ω 
1
μ
i
2q

k1
L
I
ik
|x
i
|
0

1
μ
i
2q

k1
|
I
ik

0

|
,
3.17

where i  1, 2, ,n.FromLemma 2.10, for any t
i
1
,t
i
2
∈ 0,ω
T
,i 1, 2, ,n, we have

ω
0
a
i

t, x
i

t

x
i

t

Δt ≤

ω
0
a

i

t, x
i

t

x
i

t
i
1

Δt 

ω
0
a
i

t, x
i

t



ω
0




x
Δ
i

t




Δt

Δt,
3.18

ω
0
a
i

t, x
i

t

x
i


t

Δt ≥

ω
0
a
i

t, x
i

t

x
i

t
i
2

Δt −

ω
0
a
i

t, x
i


t



ω
0



x
Δ
i

t




Δt

Δt.
3.19
Dividing by

ω
0
a
i
t, x

i
tΔt on the both sides of 3.18 and 3.19, respectively, we obtain that
x
i

t
i
1


1

ω
0
a
i

t, x
i

t

Δt

ω
0
a
i

t, x

i

t

x
i

t

Δt −

ω
0



x
Δ
i

t




Δt, i  1, 2, ,n,
x
i

t

i
2


1

ω
0
a
i

t, x
i

t

Δt

ω
0
a
i

t, x
i

t

x
i


t

Δt 

ω
0



x
Δ
i

t




Δt, i  1, 2, ,n.
3.20
Journal of Inequalities and Applications 11
Let
t
i
,t
i
∈ 0,ω
T
, such that x

i
t
i
 max
t∈0,ω
T
x
i
t,x
i
t
i
min
t∈0,ω
T
x
i
t, by the arbitrariness
of t
i
1
,t
i
2
in view of 3.15, 3.17, 3.20, we have
x
i

t
i

1


1

ω
0
a
i

t, x
i

t

Δt

ω
0
a
i

t, x
i

t

x
i


t

Δt −

ω
0



x
Δ
i

t




Δt
≥−
1

ω
0
a
i

t, x
i


t

Δt





ω
0
a
i

t, x
i

t

x
i

t

Δt







ω
0



x
Δ
i

t




Δt
≥−
1
ωa
m
i


1
μ
i
a
M
i
n


j1
c
i


x
j


2

ω 
1
μ
i
2q

k1
L
I
ik
|
x
i
|
0

1
μ
i

2q

k1
|
I
ik

0

|





a
M
i
L
b
i

ω


x
j


2

 a
M
i
c
i
n

j1


x
j


2

ω 
2q

k1
L
I
ik
|
x
i
|
0

2q


k1
|
I
ik

0

|


,
x
i

t
i
2


1

ω
0
a
i

t, x
i


t

Δt

ω
0
a
i

t, x
i

t

x
i

t

Δt 

ω
0



x
Δ
i


t




Δt

1

ω
0
a
i

t, x
i

t

Δt





ω
0
a
i


t, x
i

t

x
i

t

Δt






ω
0



x
Δ
i

t





Δt

1
ωa
m
i


1
μ
i
a
M
i
c
i
n

j1


x
j


2

ω 
1

μ
i
2q

k1
L
I
ik
|
x
i
|
0

1
μ
i
2q

k1
|
I
ik

0

|






a
M
i
L
b
i

ω


x
j


2
 a
M
i
c
i
n

j1


x
j



2

ω 
2q

k1
L
I
ik
|
x
i
|
0

2q

k1
|
I
ik

0

|


3.21
where i  1, 2, ,n. Thus, we have from 3.21 that

|
x
i
|
0
 max
t∈0,ω
T
|
x
i

t

|

1
ωa
m
i


1
μ
i
a
M
i
c
i

n

j1


x
j


2

ω 
1
μ
i
2q

k1
L
I
ik
|
x
i
|
0

1
μ
i

2q

k1
|
I
ik

0

|





a
M
i
L
b
i

ω

x
i

2
 a
M

i
c
i
n

j1


x
j


2

ω 
2q

k1
L
I
ik
|
x
i
|
0

2q

k1

|
I
ik

0

|


,
3.22
where i  1, 2, ,n. In addition, we have that

x
i

2



ω
0
|
x
i

s

|
Δs


1/2


ω max
t∈0,ω
T
|
x
i

t

|


ω
|
x
i
|
0
,i 1, 2, ,n.
3.23
12 Journal of Inequalities and Applications
By 3.22,weobtainthat,
ωa
m
i
|

x
i
|
0



1
μ
i
a
M
i
c
i
n

j1


x
j


2

ω 
1
μ
i

2q

k1
L
I
ik
|
x
i
|
0

1
μ
i
2q

k1
|
I
ik

0

|


 ωa
m
i



a
M
i
L
b
i

ω

x
i

2
 a
M
i
c
i
n

j1


x
j


2


ω 
2q

k1
L
I
ik
|
x
i
|
0

2q

k1
|
I
ik

0

|





1

μ
i
a
M
i
ωc
i
n

j1


x
j


0

1
μ
i
2q

k1
L
I
ik
|
x
i

|
0

1
μ
i
2q

k1
|
I
ik

0

|


 ωa
m
i


a
M
i
L
b
i
ω

|
x
i
|
0
 a
M
i
ωc
i
n

j1


x
j


0

2q

k1
L
I
ik
|
x
i

|
0

2q

k1
|
I
ik

0

|


,
3.24
where i  1, 2, ,n.Thatis,

ωa
m
i
− ω
2
a
m
i
a
M
i

L
b
i
− ωa
m
i
2q

k1
L
I
ik

1
μ
i
2q

k1
L
I
ik

|x
i
|
0


1

μ
i
 ωa
m
i

a
M
i
ωc
i



x
j


0

1
μ
i
2q

k1
|
I
ik


0

|
 ωa
m
i
2q

k1
|
I
ik

0

|
 D
i
,i 1, 2, ,n.
3.25
Denote that,
|
x
|
0


|
x
1

|
0
,
|
x
2
|
0
, ,
|
x
n
|
0

T
,DD
1
,D
2
, ,D
n

T
.
3.26
Then 3.25 can be rewritten in the matrix form
E
|
x

|
0
≤ D. 3.27
From the conditions of Theorem 3.1, E is a nonsingular M matrix, therefore,
|
x
|
0
≤ E
−1
D  M
1
,M
2
, ,M
n

T
.
3.28
Let
M 
n

i1
M
i
 1

Clearly,Mis independent of λ


.
3.29
Take
Ω
{
x ∈ X :

x

X
<M
}
. 3.30
Journal of Inequalities and Applications 13
It is clear that Ω satisfies all the requirements in Lemma 2.13 and conditionH is satisfied. In
view of all the discussions above, we conclude from Lemma 2.13 that system 1.1 has at least
one ω/2-anti-periodic solution. This completes t he proof.
4. Global Exponential Stability of Antiperiodic Solution
Suppose that x

tx

1
t,x

2
t, ,x

n

t
T
is an ω/2-anti-periodic solution of system 1.1.
In this section, we will construct some suitable Lyapunov functions to study the global
exponential stability of this anti-periodic solution.
Theorem 4.1. Assume that H
1
–H
5
 hold. Suppose further that
H
6
 there exist positive constants L
a
i
such that
|
a
i

t, u

− a
i

t, v

|
≤ L
a

i
|
u − v
|
, ∀u, v ∈ R,i 1, 2, ,n; 4.1
H
7
 for all u, v ∈ R,i 1, 2, ,n, there exist positive constants L
ab
i
such that

a
i

t, u

b
i

t, u

− a
i

t, v

b
i


t, v

u − v

≤ 0,i 1, 2, ,n,
|
a
i

t, u

b
i

t, u

− a
i

t, v

b
i

t, v

|
≥ L
ab
i

|
u − v
|
,i 1, 2, ,n;
4.2
H
8
 there are ω-periodic functions r
i
t such that r
i
tsup
u∈R
|f
i
t, u|,i 1, 2, ,n;
H
9
 there exists a positive constant  such that
Ψ
i

, t



 

1  μ


t



−L
ab
i
 L
a
i
r
M
i


n

j1

1  μ

t − θ


e


t − θ, t

a

M
i
c
i
> 0,i 1, 2, ,n;
4.3
H
10
 impulsive operator I
ik
x
i
t
k
 satisfy
I
ik

x
i

t
k

 −γ
ik

x
i


t
k

, 0 <γ
ik
< 2,i 1, ,n, k ∈ N. 4.4
Then the ω/2-anti-periodic solution of system 1.1 is globally exponentially stable.
Proof. According to Theorem 3.1, w e know that system 1.1 has an ω/2-anti-periodic
solution x

tx

1
t,x

2
t, ,x

n
t
T
with initial value x

s,s ∈ E
T
, suppose that
14 Journal of Inequalities and Applications
xtx
1
t,x

2
t, ,x
n
t
T
is an arbitrary solution of system 1.1 with initial value
φs,s ∈ E
T
. Then it follows from system 1.1 that

x
i

t

− x

i

t


Δ
 a
i

t, x
i

t


b
i

t, x
i

t

− a
i

t, x

i

t


b
i

t, x

i

t


 a

i

t, x
i

t

f
i

t, x
t

− a
i

t, x

i

t


f
i

t, x

t


,t∈ T

,t
/
 t
k
,
Δ

x
i

t
k

− x

i

t
k


 −γ
ik

x
i

t

k

− x

i

t
k


,t t
k
,k∈ N,i 1, 2, ,n.
4.5
In view of system 4.5,fort ∈ T

,t
/
 t
k
,k ∈ N,i 1, 2, ,n, we have
x
i
t − x

i
t
Δ
 a
i


t, x
i

t

b
i

t, x
i

t

− a
i

t, x

i

t


b
i

t, x

i


t


 a
i

t, x
i

t

f
i

t, x
t

− a
i

t, x

i

t


f
i


t, x

t



a
i

t, x
i

t

b
i

t, x
i

t

− a
i

t, x

i


t


b
i

t, x

i

t




a
i

t, x
i

t

− a
i

t, x

i


t


f
i

t, x
t

 a
i

t, x

i

t


f
i

t, x
t

− f
i

t, x


t


.
4.6
Hence, we can obtain from H
6
–H
9
 that
D



x
i

t

− x

i

t



Δ
≤−L
ab

i


x
i

t

− x

i

t



 L
a
i
r
M
i


x
i

t

− x


i

t



 a
M
i
n

j1
c
i



x
j

t  θ

− x

j

t  θ







−L
ab
i
 L
a
i
r
M
i



x
i

t

− x

i

t



 a

M
i
c
i
n

j1



x
j

t  θ

− x

j

t  θ




,
4.7
for i  1, 2, ,n, and we have from H
10
 that



x
i

t

k

− x

i

t

k






1 − γ
ik




x
i


t
k

− x

i

t
k



,i 1, 2, ,n, k ∈ N. 4.8
For any α ∈ E, we construct the Lyapunov functional
V

t

 V
1

t

 V
2

t

,
V

1

t


n

i1
e


t, α



x
i

t

− x

i

t



,
V

2

t


n

i1
n

j1

t
tθ

1  μ

s − θ


e


s − θ, α

a
M
i
c
i




x
j

s

− x

j

s




Δs.
4.9
Journal of Inequalities and Applications 15
For t ∈ T

,t
/
 t
k
,k ∈ N, calculating the delta derivative D

V t
Δ

of V t along solutions of
system 4.5, we can get
D

V
1
t
Δ

n

i1
e


t, α



x
i

t

− x

i

t





n

i1
e


σ

t



D



x
i

t

− x

i

t




Δ

n

i1



e


t, α



x
i

t

− x

i

t




 e


σ

t



×



−L
ab
i
 L
a
i
r
M
i



x
i

t


− x

i

t



 a
M
i
c
i
n

j1



x
j

t  θ

− x

j

t  θ











n

i1

 

1  μ

t



−L
ab
i
 L
a
i
r
M
i


e


t, α



x
i

t

− x

i

t





1  μ

t


e



t, α

c
i
n

i1
n

j1
a
M
i



x
j

t  θ

− x

j

t  θ





,
4.10
D

V
2
t
Δ

n

i1
n

j1

1  μ

t − θ


e


t − θ, α

a
M
i

c
i



x
j

t

− x

j

t





n

i1
n

j1

1  μ

t



e


t, α

a
M
i
c
i



x
j

t  θ

− x

j

t  θ




.

4.11
By assumption H
8
, it concludes that
D

V t
Δ
 D

V
1
t
Δ
 D

V
2
t
Δ

n

i1

 

1  μ

t




−L
ab
i
 L
a
i
r
M
i

e


t, α



x
i

t

− x

i

t





n

i1
n

j1

1  μ

t − θ


e


t − θ, α

a
M
i
c
i



x

j

t

− x

j

t





n

i1

 

1  μ

t



−L
ab
i
 L

a
i
r
M
i


n

j1

1  μ

t − θ


e


t − θ, t

a
M
i
c
i

e



t, α



x
i

t

− x

i

t



≤ 0,t∈ T

,t
/
 t
k
,k∈ N.
4.12
16 Journal of Inequalities and Applications
Also,
V

t


k

 V
1

t

k

 V
2

t

k


n

i1
e


t

k





x
i

t

k

− x

i

t

k




n

i1
n

j1

t

k
t


k
θ

1  μ

s − θ


e


s − θ, α

a
M
i
c
i



x
j

s

− x

j


s




Δs

n

i1
e


t
k




x
i

t
k

− x

i


t
k




n

i1
n

j1

t
k
t
k
θ

1  μ

s − θ


e


s − θ, α

a

M
i
c
i



x
j

s

− x

j

s




Δs
 V

t
k

,k∈ N.
4.13
It follows that V t ≤ V 0 for all t ∈ T


.
On the other hand, we have
V

0

 V
1

0

 V
2

0


n

i1
e


0,α



x
i


0

− x

i

0




n

i1
n

j1

0
θ

1  μ

s − θ


e



s − θ, α

a
M
i
c
i



x
j

s

− x

j

s




Δs

n

i1




e


0,α


n

j1

0
θ

1  μ

s − θ


e


s − θ, α

a
M
i
c
i

Δs



sup
s∈E
T


x
i

s

− x

i

s



≤ M



n

i1
sup

s∈E
T


φ
i

s

− x

i

s



,
4.14
where
M



 max
1≤i≤n



sup

α∈E
T


e


0,α


n

j1

0
θ

1  μ

s − θ


e


s − θ, α

a
M
i

c
ij
Δs





. 4.15
It is obvious that
n

i1
e


0,α



x
i

t

− x

i

t




≤ V

t

≤ V

0

≤ M



sup
s∈E
T
n

i1


φ
i

s

− x


i

s



.
4.16
Journal of Inequalities and Applications 17
So we can finally get
n

i1


x
i

t

− x

i

t



≤ M




e


0,α

sup
s∈E
T
n

i1


φ
i

s

− x

i

s



 M




e


0,α



φ − x



.
4.17
Since M ≥ 1, from Definition 2.12,theω/2-anti-periodic solution of system 1.1 is
globally exponential stable. This completes the proof.
5. An Example
Example 5.1. Consider the following impulsive generalized neural networks:
x
Δ

t

 A

t, x

t


B

t, x

t

 F

t, x
t

,t∈ T,t
/
 t
k,
Δx

t
k

 x

t

k

− x

t


k

 I
k

x

t
k

,t t
k
,k∈ Z,
5.1
where
A

t, u

 diag

10 
2
π
arctan
|
u
|
, 11 
2

π
arctan
|
u
|

,
B

t, u


1
100

u
u

,F

t, x
t









2

j1
c
i

t

g
j

x
jt

2

j1
c
i

t

g
j

x
jt








,

g
j

2×1

1
1000

sin u
sin u

,

c
i

2×1

1
1000

sin t
cos t


,

I
k

2×2

1
500

−u − u
−u − u

,
ω  2π, 0, 2π
T

{
t
k
: k ∈ N
}

{
t
1
,t
2
}
,

5.2
when T  R,system5.1 has at least one exponentially stable π-anti-periodic solution.
Proof. By calculation, we have a
m
1
 10,a
M
1
 11,a
m
2
 11,a
m
2
 12,L
a
1
 L
a
2
 2/π, L
b
1
 L
b
2

1/100,c
M
1

 1/1000,c
M
2
 1/1000,L
I
11
 L
I
21
 L
I
12
 L
I
22
 1/500, and μ
1
 μ
2
 1/100.
It is obvious that H
1
–H
4
, H
6
–H
8
, and H
10

 are satisfied. Furthermore, we can easily
calculate that
E ≈

7.52 −12.74
−11.25 3.61

5.3
is a nonsingular M matrix, thus H
5
 is satisfied.
When T  R,μt0. Take   0.01,θ  −1, we have that
Ψ
1

, t

≈−0.04 < 0, Ψ
2

, t

≈−0.03 < 0. 5.4
18 Journal of Inequalities and Applications
Hence H
10
 holds. By Theorems 3.1 and 4.1,system5.1 has at least one exponentially stable
π-anti-periodic solution. This completes the proof.
6. Conclusions
Using the time scales calculus theory, the coincidence degree theory, and the Lyapunov

functional method, we obtain sufficient conditions for the existence and global exponential
stability of anti-periodic solutions for a class of generalized neural networks with impulses
and arbitrary delays. This class of generalized neural networks include many continuous
or discrete time neural networks such as, Hopfield type neural networks, cellular neural
networks, Cohen-Grossberg neural networks, and so on. To the best of our knowledge, the
known results about the existence of anti-periodic solutions for neural networks are all done
by a similar analytic method, and only good for neural networks without impulse. Our results
obtained in this paper are completely new even if the time scale T  R or Z and are of great
significance in designs and applications of globally stable anti-periodic Cohen-Grossberg
neural networks with delays and impulses .
Acknowledgment
This work is supported by the National Natural Sciences Foundation of China under Grant
10971183.
References
1 X. Li, “Existence and global exponential stability of periodic solution for impulsive Cohen-
Grossberg-type BAM neural networks with continuously distributed delays,” Applied Mathematics
and Computation, vol. 215, no. 1, pp. 292–307, 2009.
2 C. Bai, “Global exponential stability and existence of periodic solution of Cohen-Grossberg type
neural networks with delays and impulses,” Nonlinear Analysis, vol. 9, no. 3, pp. 747–761, 2008.
3 Z. Chen, D. Zhao, and X. Fu, “Discrete analogue of high-order periodic Cohen-Grossberg neural
networks with delay,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 210–217, 2009.
4 Y. K. Li, “Global stability and existence of periodic solutions of discrete delayed cellular neural
networks,” Physics Letters. A, vol. 333, no. 1-2, pp. 51–61, 2004.
5 Y. K. Li and Z. Xing, “Existence and global exponential stability of periodic solution of CNNs with
impulses,” Chaos, Solitons and Fractals, vol. 33, no. 5, pp. 1686–1693, 2007.
6 Y. K. Li and L. Lu, “Global exponential stability and existence of periodic solution of Hopfield-type
neural networks with impulses,” Physics Letters. A, vol. 333, no. 1-2, pp. 62–71, 2004.
7 Z. Zhang and D. Zhou, “Global robust exponential stability for second-order Cohen-Grossberg neural
networks with multiple delays,” Neurocomputing, vol. 73, no. 1-3, pp. 213–218, 2009.
8 J. Zhang and Z. Gui, “Existence and stability of periodic solutions of high-order Hopfield neural

networks with impulses and delays,” Journal of Computational and Applied Mathematics, vol. 224, no. 2,
pp. 602–613, 2009.
9 K. Li, “Stability analysis for impulsive Cohen-Grossberg neural networks with time-varying delays
and distributed delays,” Nonlinear Analysis, vol. 10, no. 5, pp. 2784–2798, 2009.
10 H. Okochi, “On the existence of periodic solutions to nonlinear abstract parabolic equations,” Journal
of the Mathematical Society of Japan, vol. 40, no. 3, pp. 541–553, 1988.
11 H. Okochi, “On the existence of anti-periodic solutions to nonlinear parabolic equations in
noncylindrical domains,” Nonlinear Analysis, vol. 14, no. 9, pp. 771–783, 1990.
12 Y. Q. Chen, “On Massera’s theorem for anti-periodic solution,” Advances in Mathematical Sciences and
Applications, vol. 9, no. 1, pp. 125–128, 1999.
Journal of Inequalities and Applications 19
13 Y. Yin, “Monotone iterative technique and quasilinearization for some anti-periodic problems,”
Nonlinear World, vol. 3, no. 2, pp. 253–266, 1996.
14 Y. Yin, “Remarks on first order differential equations with anti-periodic boundary conditions,”
Nonlinear Times and Digest, vol. 2, no. 1, pp. 83–94, 1995.
15 A. R. Aftabizadeh, S. Aizicovici, and N. H. Pavel, “On a class of second-order anti-periodic boundary
value problems,” Journal of Mathematical Analysis and Applications, vol. 171, no. 2, pp. 301–320, 1992.
16 S. Aizicovici, M. McKibben, and S. Reich, “Anti-periodic solutions to nonmonotone evolution
equations with discontinuous nonlinearities,” Nonlinear Analysis, vol. 43, pp. 233–251, 2001.
17 Y. Chen, J. J. Nieto, and D. O’Regan, “Anti-periodic solutions for fully nonlinear first-order differential
equations,” Mathematical and Computer Modelling, vol. 46, no. 9-10, pp. 1183–1190, 2007.
18 T. Y. Chen, W. B. Liu, J. J. Zhang, and M. Y. Zhang, “Existence of anti-periodic solutions for Li
´
enard
equations,” Journal of Mathematical Study, vol. 40, no. 2, pp. 187–195, 2007 Chinese.
19 B. Liu, “Anti-periodic solutions for forced Rayleigh-type equations,” Nonlinear Analysis, vol. 10, no. 5,
pp. 2850–2856, 2009.
20 W. Wang and J. Shen, “Existence of solutions for anti-periodic boundary value problems,” Nonlinear
Analysis, vol. 70, no. 2, pp. 598–605, 2009.
21 Y. Li and L. Huang, “Anti-periodic solutions for a class of Li

´
enard-type systems with continuously
distributed delays,” Nonlinear Analysis, vol. 10, no. 4, pp. 2127–2132, 2009.
22 F J. Delvos and L. Knoche, “Lacunary interpolation by antiperiodic trigonometric polynomials,” BIT,
vol. 39, no. 3, pp. 439–450, 1999.
23 J. Y. Du, H. L. Han, and G. X. Jin, “On trigonometric and paratrigonometric Hermite interpolation,”
Journal of Approximation Theory, vol. 131, no. 1, pp. 74–99, 2004.
24 H. L. Chen, “Antiperiodic wavelets,” Journal of Computational Mathematics, vol. 14, no. 1, pp. 32–39,
1996.
25 G. Peng and L. Huang, “Anti-periodic solutions for shunting inhibitory cellular neural networks with
continuously distributed delays,” Nonlinear Analysis, vol. 10, no. 4, pp. 2434–2440, 2009.

26 C. Ou, “Anti-periodic solutions for high-order Hopfield neural networks,” Computers & Mathematics
with Applications, vol. 56, no. 7, pp. 1838–1844, 2008.
27 S. Aizicovici, M. McKibben, and S. Reich, “Anti-periodic solutions to nonmonotone evolution
equations with discontinuous nonlinearities,” Nonlinear Analysis, vol. 43, pp. 233–251, 2001.
28 J. Y. Shao, “Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying
delays,” Physics Letters, Section A, vol. 372, no. 30, pp. 5011–5016, 2008.
29 Y. K. Li and L. Yang, “Anti-periodic solutions for Cohen-Grossberg neural networks with bounded
and unbounded delays,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 7,
pp. 3134–3140, 2009.
30 S. Gong, “Anti-periodic solutions for a class of Cohen-Grossberg neural networks,” Computers &
Mathematics with Applications, vol. 58, no. 2, pp. 341–347, 2009.
31 M. Bohner and A. Peterson, Dynamic Equations on Time Scales,Birkh
¨
auser, Boston, Mass, USA, 2001.
32 M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales,Birkh
¨
auser, Boston, Mass,
USA, 2003.

33 V. Lakshmikantham and A. S. Vatsala, “Hybrid systems on time scales,” Journal of Computational and
Applied Mathematics, vol. 141, no. 1-2, pp. 227–235, 2002.
34 E. R. Kaufmann and Y. N. Raffoul, “Periodic solutions for a neutral nonlinear dynamical equation on
a time scale,” Journal of Mathematical Analysis and Applications, vol. 319, no. 1, pp. 315–325, 2006.
35 R. Agarwal, M. Bohner, and A. Peterson, “Inequalities on time scales: a survey,” Mathematical
Inequalities & Applications, vol. 4, no. 4, pp. 535–557, 2001.
36 M. Bohner, M. Fan, and J. Zhang, “Existence of periodic solutions in predator-prey and competition
dynamic systems,” Nonlinear Analysis, vol. 7, no. 5, pp. 1193–1204, 2006.
37 D. Oregan, Y. J. Cho, and Y. Q. Chen, Topological Degree Theory and Application, Taylor & Francis,
London, UK, 2006.
38 Y. K. Li, X. R. Chen, and L. Zhao, “Stability and existence of periodic solutions to delayed Cohen-
Grossberg BAM neural networks with impulses on time scales,” Neurocomputing, vol. 72, no. 7–9, pp.
1621–1630, 2009.

×