Tải bản đầy đủ (.pdf) (11 trang)

Báo cáo hóa học: " Research Article Fixed Points and Stability in Neutral Stochastic Differential Equations with Variable Delays" pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (512.57 KB, 11 trang )

Hindawi Publishing Corporation
Fixed Point Theory and Applications
Volume 2008, Article ID 407352, 11 pages
doi:10.1155/2008/407352
Research Article
Fixed Points and Stability in Neutral Stochastic
Differential Equations with Variable Delays
Meng Wu,
1
Nan-jing Huang,
1
and Chang-Wen Zhao
2
1
Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China
2
College of Business and Management, Sichuan University, Chengdu, Sichuan 610064, China
Correspondence should be addressed to Nan-jing Huang,
Received 4 April 2008; Accepted 9 June 2008
Recommended by Tomas Dom
´
ınguez Benavides
We consider the mean square asymptotic stability of a generalized linear neutral stochastic
differential equation with variable delays by using the fixed point theory. An asymptotic mean
square stability theorem with a necessary and sufficient condition is proved, which improves and
generalizes some results due to Burton, Zhang and Luo. Two examples are also given to illustrate
our results.
Copyright q 2008 Meng Wu et a l. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
1. Introduction


Liapunov’s direct method has been successfully used to investigate stability properties of a
wide variety of differential equations. However, there are many difficulties encountered in
the study of stability by means of Liapunov’s direct method. Recently, Burton 1–4,Jung5,
Luo 6,andZhang7 studied the stability by using the fixed point theory which solved the
difficulties encountered in the study of stability by means of Liapunov’s direct method.
Up till now, the fixed point theory is almost used to deal with the stability for
deterministic differential equations, not for stochastic differential equations. Very recently, Luo
6 studied the mean square asymptotic stability for a class of linear scalar neutral stochastic
differential equations. For more details of the stability concerned with the stochastic differential
equations, we refer to 8, 9 and the references therein.
Motivated by previous papers, in this paper, we consider the mean square asymptotic
stability of a generalized linear neutral stochastic differential equation with variable delays by
using the fixed point theory. An asymptotic mean square stability theorem with a necessary
2 Fixed Point Theory and Applications
and sufficient condition is proved. Two examples is also given to illustrate our results. The
results presented in this paper improve and generalize the main results in 1, 6, 7.
2. Main results
Let Ω, F, {F
t
}
t≥0
,P be a complete filtered probability space and let Wt denote a one-
dimensional standard Brownian motion defined on Ω, F, {F
t
}
t≥0
,P such that {F
t
}
t≥0

is the
natural filtration of Wt.Letat,bt,
bt,ct,et,qt ∈ CR

,R, and τt,δt ∈ CR

,R


with t − τt →∞and t − δt →∞as t →∞.HereCS
1
,S
2
 denotes the set of all continuous
functions φ : S
1
→S
2
with the supremum norm ·.
In 2003, Burton 1 studied the equation
x

t−btx

t − τt

2.1
and proved the following theorem.
Theorem A Burton 1. Suppose that τtr and there exists a constant α<1 such that


t
t−r


bs  r


ds 

t
0


bs  r


e


t
s
burdu

s
s−r


bu  r



du ds ≤ α 2.2
for all t ≥ 0 and


0
bsds  ∞. Then, for every continuous initial function φ : −r, 0 →R,the
solution xtxt, 0,φ of 2.1 is bounded and tends to zero as t →∞.
Recently, Zhang 7 studied the generalization of 2.1 as follows:
x

t−
n

j1
b
j
tx

t − τ
j
t

2.3
and obtained the following theorem.
Theorem B Zhang 7. Suppose that τ
j
is differential, the inverse function g
j
t of t − τ
j

t exists,
and there exists a constant α ∈ 0, 1 such that for t ≥ 0, lim inf
t→∞

t
0
Qsds > −∞ and
n

j1


t
t−τ
j
t


b
j

g
j
s



ds 

t

0
e


t
s
Qudu


b
j
s




τ

j
s


ds


t
0
e



t
s
Qudu


Qs



s
s−τ
j
s


b
j

g
j
v



dv ds

≤ α,
2.4
where Qt


n
j1
b
j
g
j
t. Then the zero solution of 2.3 is asymptotically stable if and only if

t
0
Qsds →∞,ast →∞.
Very recently, Luo 6 considered the following neutral stochastic differential equation:
d

xt − qtx

t − τt



atxtbtx

t − τt

dt 

ctxtetx

t − δt


dWt
2.5
and obtained the following theorem.
Meng Wu et al. 3
Theorem C Luo 6. Let τt be derivable. Assume that there exists a constant α ∈ 0, 1 and a
continuous function ht : 0, ∞ →
R such that for t ≥ 0, lim inf
t→∞

t
0
hsds > −∞ and


qt




t
t−τt


ashs


ds

t
0

e


t
s
hudu



a

s−τs

h

s−τs

1−τ

s

bs−qshs


ds


t
0
e



t
s
hudu


hs



s
s−τs


auhu


du ds 


t
0
e
−2

t
s
hudu




cs





es



2
ds

1/2
≤ α.
2.6
Then the zero solution of 2.5 is mean square asymptotically stable if and only if

t
0
hsds →∞, as
t →∞.
Now, we consider the generalization of 2.5:
d

xt −
n


j1
q
j
tx

t − τ
j
t



n

j1
b
j
tx

t − τ
j
t

dt 
n

j1
c
j
tx


t − δ
j
t

dWt, 2.7
with the initial condition
xsφs for s ∈

mt
0
,t
0

, 2.8
where φ ∈ Cmt
0
,t
0
,R, b
j
t,c
j
t,q
j
t ∈ CR

,R, τ
j
t,δ
j

t ∈ CR

,R

, t − τ
j
t →∞,
and t − δ
j
t →∞as t →∞and for each t
0
≥ 0,
m
j
t
0
min

inf

s − τ
j
s,s≥ t
0

, inf

s − δ
j
s,s≥ t

0

,
m

t
0

 min

m
j

t
0

, 1 ≤ j ≤ n

.
2.9
Note that 2.7 becomes 2.5 for n  2, τ
1
t0,τ
2
tτt, b
1
tat,b
2
tbt, q
1

t
0,q
2
tqt, δ
1
t0,δ
2
tδt, c
1
tct, and c
2
tet. Thus, we know that 2.7
includes 2.1, 2.3,and2.5 as special cases.
Our aim here is to generalize Theorems B and C to 2.7.
Theorem 2.1. Suppose that τ
j
is differential, and there exist continuous functions h
j
t : 0, ∞ →R
for j  1 ···n and a constant α ∈ 0, 1 such that for t ≥ 0
i lim inf
t→∞

t
0
Hsds > −∞,
ii
n

j1



q
j
t



n

j1

t
t−τ
j
t


h
j
s


ds 
n

j1

t
0

e


t
s
Hudu



h
j

s − τ
j
s

1 − τ

j
s

 b
j
s−q
j
sHs


ds


n

j1

t
0
e


t
s
Hudu


Hs



s
s−τ
j
s


h
j
u


du ds  2




t
0
e
−2

t
s
Hudu

n

j1


c
j
s



2
ds


1/2
≤ α<1,
2.10

where Ht

n
j1
h
j
t.
4 Fixed Point Theory and Applications
Then the zero solution of 2.7 is mean square asymptotically stable if and only if

t
0
Hsds −→ ∞ as t −→ ∞. 2.11
Proof. For each t
0
,denotebyS the Banach space of all F-adapted processes ψt, ω : mt
0
, ∞×
Ω →
R which are almost surely continuous in t with norm
ψ
S


E

sup
s≥mt
0




ψs, ω


2

1/2
. 2.12
Moreover, we set ψt, ωφt for t ∈ mt
0
,t
0
 and E|ψt, ω|
2
→0, as t →∞.
At first, we suppose that 2.11 holds. Define an operator P : S →S by Pxtφt for
t ∈ mt
0
,t
0
 and for t ≥ t
0
,
Pxt

φt
0
 −
n


j1
q
j
t
0
φ

t
0
− τ
j
t
0



n

j1

t
0
t
0
−τ
j
t
0


h
j
sφsds

e


t
t
0
Hudu

n

j1
q
j
tx

t − τ
j
t


n

j1

t
t−τ

j
t
h
j
sxsds


t
t
0
e


t
s
Hudu
n

j1

h
j

s − τ
j
s

1 − τ

j

s

 b
j
s − q
j
sHs

x

s − τ
j
s

ds


t
t
0
e


t
s
Hudu
Hs

n


j1

s
s−τ
j
s
h
j
uxudu

ds


t
t
0
e


t
s
Hudu

n

j1
c
j
sx


s − δ
j
s


dWs :
5

i1
I
i
t.
2.13
Now, we show the mean square continuity of P on t
0
, ∞.Letx ∈ S, T
1
> 0, and let |r|
be sufficiently small. Then
E


Px

T
1
 r

− Px


T
1



2
≤ 5
5

i1
E


I
i

T
1
 r

− I
i

T
1



2
. 2.14

It is easy to verify that
E


I
i

T
1
 r

− I
i

T
1



2
−→ 0, as r −→ 0,i 1, 2, 3, 4. 2.15
Meng Wu et al. 5
It follows from the last term I
5
in 2.13 that
E


I
5


T
1
 r

− I
5

T
1



2
 E






T
1
t
0
e


T
1

s
Hudu

e


T
1
r
T
1
Hudu
− 1

n

j1
c
j
sx

s − δ
j
s

dWs


T
1

r
T
1
e


T
1
r
s
Hudu
n

j1
c
j
sx

s − δ
j
s

dWs





2
≤ 2E


T
1
t
0
e
−2

T
1
s
Hudu

e


T
1
r
T
1
Hudu
− 1

2

n

j1



c
j
s


·


x

s − δ
j
s




2
ds
 2E

T
1
r
T
1
e
−2


T
1
r
s
Hudu

n

j1


c
j
s


·


x

s − δ
j
s




2
ds −→ 0, as r −→ 0.

2.16
Therefore, P is mean square continuous on t
0
, ∞.
Next, we verify that Px ∈ S. Since E|xt|→0, t −δ
j
t →∞as t →∞,foreach>0, there
exists a T
1
>t
0
such that s ≥ T
1
implies E|xs|
2
<and E|xs − δ
j
s|
2
<. Thus, for t ≥ T
1
,
the last term I
5
in 2.13 satisfies
E


I
5

t


2
≤ E

T
1
t
0
e
−2

t
s
Hudu

n

j1
c
j
sx

s − δ
j
s


2

ds  E

t
T
1
e
−2

t
s
Hudu

n

j1
c
j
sx

s − δ
j
s


2
ds
≤ E

sup
s≥mt

0



xs


2


T
1
t
0
e
−2

t
s
Hudu

n

j1


c
j
s




2
ds  

t
T
1
e
−2

t
s
Hudu

n

j1


c
j
s



2
ds.
2.17
By condition ii and 2.11, there exists T

2
>T
1
such that t ≥ T
2
implies
E|I
5
t|
2
< α. 2.18
Thus, E|I
5
t|
2
→0, as t →∞. Similarly, we can show that E|I
i
t|
2
→0, i  1, 2, 3, 4, as t →∞.
Thus, E|Pxt|
2
→0ast →∞. This yields Px ∈ S.
Now we show that P : S →S is a contraction mapping. From ii, we can choose ε>0
such that α
2
 ε<1. Thus, for each t
0
≥ 0, we can find a constant L>0 such that


1 
1
L


n

j1


q
j
t



n

j1

t
t
0
e


t
s
Hudu



Hs



s
s−τ
j
s


h
j
u


du ds

n

j1

t
t−τ
j
t


h
j

s


ds
n

j1

t
t
0
e


t
s
Hudu


h
j
s−τ
j
s1−τ

j
s b
j
s−q
j

sHs


ds

2
 41  L

t
t
0
e
−2

t
s
Hudu

n

j1


c
j
s



2

ds ≤ α
2
 ε<1.
2.19
6 Fixed Point Theory and Applications
For any x, y ∈ S, it follows from 2.13, conditions i and ii, and Doob’s L
p
-inequality see
10 that
e sup
s≥mt
0



pxs − pys


2
 e sup
s≥t
0




n

j1
q

j
s

x

s − τ
j
s

− y

s − τ
j
s


n

j1

s
s−τ
j
s
h
j
v

xv − yv


dv


s
t
0
e


s
v
hudu
n

j1

h
j

v − τ
j
v

1 − τ

j
v

 b
j

v − q
j
vhv

×

x

v − τ
j
v

− y

v − τ
j
v

dv


s
t
0
e


s
v
hudu

hv

n

j1

v
v−τ
j
v
h
j
u

xu − yu

du

dv


s
t
0
e


s
v
hudu


n

j1
c
j
v

x

v − δ
j
v

− y

v − δ
j
v


dwv




2


1 

1
l

e sup
s≥t
0

n

j1


q
j
s


·


x

s − τ
j
s

− y

s − τ
j

s




n

j1

s
s−τ
j
s


h
j
v


·


xv − yv


dv


s

t
0
e


s
v
hudu
n

j1


h
j

v − τ
j
v

1 − τ

j
v

 b
j
v − q
j
vhv



·


x

v − τ
j
v

− y

v − τ
j
v



dv


s
t
0
e


s
v

hudu
hv

n

j1

v
v−τ
j
v


h
j
u


·


xu − yu


du

dv

2
 41  l sup

s≥t
0

e

s
t
0
e


s
v
hudu

n

j1


c
j
v


·


x


v − δ
j
v

− y

v − δ
j
v




2
dv

≤ e sup
s≥mt
0



xs − ys


2
·sup
s≥t
0


1 
1
l

n

j1


q
j
s



n

j1

s
t
0
e


s
v
hudu



hv



v
v−τ
j
v


h
j
u


du ds

n

j1

s
s−τ
j
s


h
j
v



dv

n

j1

s
t
0
e


s
v
hudu
×



h
j

v − τ
j
v

1 − τ


j
v

 b
j
v − q
j
vhv


dv

2
 41  l

s
t
0
e
−2

s
v
hudu

n

j1



c
j
v



2
dv



α
2
 ε

e sup
s≥mt
0



xs − ys


2
.
2.20
Meng Wu et al. 7
Therefore, P is contraction mapping with contraction constant α
2

 ε. By the contraction
mapping principle, P has a fixed point x ∈ S, which is a solution of 2.7 with xsφs
on mt
0
,t
0
 and E|xt|
2
→0ast →∞.
To obtain the mean square asymptotic stability, we need to show that the zero solution
of 2.7 is mean square stable. Let >0 be given and choose δ>0andδ<satisfying the
following condition:
4δK
2
1  Le
2

t
0
0
Hudu


α
2
 ε

<, 2.21
where K  sup
t≥0

{e


t
0
Hsds
}.Ifxtxt, t
0
,φ is a solution of 2.7 with φ
2
<δ,then
xtPxt defined in 2.13. We assume that E|xt|
2
<for all t ≥ t
0
. Notice that E|xt|
2

φ
2
<for t ∈ mt
0
,t
0
.Ifthereexistst

>t
0
such that E|xt


|
2
  and E|xt|
2
<for
t ∈ mt
0
,t

,then2.13 and 2.19 imply that
E


x

t




2
≤ 1  Lφ
2

1 
n

j1



q
j

t
0




n

j1

t
0
t
0
−τ
j
t
0



h
j
s


ds


2
e
−2

t

t
0
Hudu
 

1 
1
L


n

j1


q
j

t






n

j1

t

t

−τ
j
t




h
j
s


ds


t

t
0
e



t

s
Hudu

n

j1

s
s−τ
j
s


h
j
u


du



Hs


ds



t

t
0
e


t

s
Hudu
n

j1


h
j

s − τ
j
s

1 − τ

j
s

 b

j
s − q
j
sHs


ds

2
 

t

t
0
e
−2

t

s
Hudu

n

j1


c
j

s



2
ds
≤ 1  Lδ

1 
n

j1


q
j

t
0




n

j1

t
0
t

0
−τ
j
t
0



h
j
s


ds

2
e
−2

t

t
0
Hudu


α
2
 ε


<,
2.22
which contradicts the definition of t

. Thus, the zero solution of 2.7 is stable. It follows that
the zero solution of 2.7 is mean square asymptotically stable if 2.11 holds.
Conversely, we suppose that 2.11 fails. From i, there exists a sequence {t
n
} with
t
n
→∞as n →∞such that lim
n→∞

t
n
0
Hudu  β,whereβ ∈ R. Then, we can choose a constant
J>0 satisfying

t
n
0
Hudu ∈ −J, J for all n ≥ 1. Denote
ωs
n

j1




h
j

s − τ
j
s

1 − τ

j
s

 b
j
s − q
j
sHs





Hs



s
s−τ
j

s


h
j
u


du 2.23
for all s ≥ 0. From ii,wehave

t
n
0
e


t
n
s
Hudu
ωsds ≤ α, 2.24
8 Fixed Point Theory and Applications
which implies

t
n
0
e


s
0
Hudu
ωsds ≤ αe

t
n
0
Hudu
≤ e
J
. 2.25
Therefore, the sequence {

t
n
0
e

s
0
Hudu
ωsds} has a convergent subsequence. Without loss of
generality, we can assume that
lim
n→∞

t
n
0

e

s
0
Hudu
ωsds  γ 2.26
for some γ>0. Let k be an integer such that

t
n
t
k
e

s
0
Hudu
ωsds <
δ
0
8K
2.27
for all n ≥ k,whereδ
0
> 0satisfies8δ
0
K
2
e
2J

α
2
 ε < 1.
Now we consider the solution xtxt, t
k
,φ of 2.7 with φt
k

2
 δ
0
and φs
2
<
δ
0
for s<t
k
. By the similar method in 2.22,wehaveE|xt|
2
< 1fort ≥ t
k
. We may choose φ
so that
Gt
k
 : φt
k
 −
n


j1
q
j
t
k
φ

t
k
− τ
j
t
k



n

j1

t
k
t
k
−τ
j
t
k


h
j
sφsds ≥
1
2
δ
0
. 2.28
It follows from 2.13 and 2.28 with xtPxt that for n ≥ k,
E





xt
n
 −
n

j1
q
j
t
n
x

t
n
− τ

j

t
n


n

j1

t
n
t
n
−τ
j
t
n

h
j
sxsds





2
≥ G
2

t
k
e
−2

t
n
t
k
Hudu
− 2Gt
k
e


t
n
t
k
Hudu

t
n
t
k
e


t
n

s
Hudu
ωsds

δ
0
2
e
−2

t
n
t
k
Hudu

δ
0
2
− 2K

t
n
t
k
e

s
0
Hudu

ωsds


δ
2
0
8
e
−2J
> 0.
2.29
If the zero solution of 2.7 is mean square asymptotic stable, then E|xt|
2

E|xt, t
k
,φ|
2
→0ast →0. Since t
n
− τ
j
t
n
 →∞, t
n
− δ
j
t
n

 →∞ as n →∞ and condition ii
and 2.11 hold,
E





xt
n
 −
n

j1
q
j
t
n
x

t
n
− τ
j

t
n


n


j1

t
n
t
n
−τ
j
t
n

h
j
sxsds





2
−→ 0, as n −→ ∞, 2.30
which contradicts 2.29. Therefore, 2.11 is necessary for Theorem 2.1. This completes the
proof.
Remark 2.2. Theorem 2.1 still holds if condition ii is satisfied for t ≥ t
a
for some t
a
∈ R


.
Meng Wu et al. 9
Remark 2.3. Theorem 2.1 improves Theorem C under different conditions.
Corollary 2.4. Suppose that τ
j
is differential, the inverse function g
j
t of t − τ
j
t exists, and there
exists a constant α ∈ 0, 1 such that for t ≥ 0, lim inf
t→∞

t
0
Qsds > −∞ and
n

j1


q
j
t



n

j1


t
t−τ
j
t


b
j

g
j
s



ds 
n

j1

t
0
e


t
s
Qudu



b
j
sτ

j
s − q
j
sQs


ds

n

j1

t
0
e


t
s
Qudu


Qs




s
s−τ
j
s


b
j

g
j
u



du ds2



t
0
e
−2

t
s
Qudu

n


j1


c
j
s



2
ds


1/2
≤ α<1,
2.31
where Qt

n
j1
− b
j
g
j
t. Then the zero solution of 2.7 is mean square asymptotically stable if
and only if

t
0

Qsds →∞as t →∞.
Remark 2.5. When h
j
t−b
j
g
j
t for j  1 ···n, Theorem 2.1 reduces to Corollary 2.4.Onthe
other hand, we choose q
j
t ≡ c
j
t ≡ 0andb
j
≡−b
j
for j  1 ···n,thenCorollary 2.4 reduces
to Theorem B.
3. Two examples
In this section, we give two examples to illustrate applications of Theorem 2.1 and
Corollary 2.4.
Example 3.1. Consider the following linear neutral stochastic delay differential equation:
d

xt−
xt − t/2
1000





xt−t/2
1616t

3sin t4
4848t
x

t −
t
4

dt


xt
24

3  4t

xt−sin t
12

34t

dWt.
3.1
Then the zero solution of 3.1 is mean square asymptotically stable.
Proof. Choosing h
1

t1/8  16t and h
2
t7/48  64t in Theorem 2.1,wehave
Ht
1
8  16t

7
48  64t
,
11
48  64t
≤ Ht ≤
13
48  64t
,
2

j1

t
t−τ
j
t


h
j
s



ds 

t
t/2
1
8  16s
ds 

t
3t/4
7
48  64s
ds −→ 0.07479, as t −→ ∞,
2

j1

t
0
e


t
s
Hudu


Hs




s
s−τ
j
s


h
j
u


du ds ≤

t
0
e


t
s
11/4864udu
13
48  64s
·0.07479 ds ≤ 0.08839,
2




t
0
e
−2

t
s
Hudu

2

j1


c
j
s



2
ds


1/2
≤ 2


t
0

e


t
s
11/2432udu
1
824  32s
ds

1/2
≤ 0.21320,
2

j1

t
0
e


t
s
Hudu


h
j
s − τ
j

s1 − τ

j
s  b
j
s − q
j
sHs


ds


t
0
e


t
s
11/4864udu

0.013
48  64s

17
144  192s

ds ≤
0.013

11

17
33
 0.51634.
3.2
10 Fixed Point Theory and Applications
It easy to check that


0
Hsds  ∞.Letα  0.001  0.07479  0.08839  0.21320  0.51634.
Then, α  0.89372 < 1andthezerosolutionof3.1 is mean square asymptotically stable by
Theorem 2.1.
Example 3.2. Consider the following delay differential equation:
x

t−
1
6  4t
x

t −
t
3


1
12  4t
x


t −
2
3
t

. 3.3
Then the zero solution of 3.3 is asymptotically stable.
Proof. Choosing h
1
th
2
t1/4  4t in Theorem 2.1,wehaveHt1/2  2t and
2

j1

t
t−τ
j
t


h
j
s


ds 


t
2/3t
1
4  4s
ds 

t
t/3
1
4  4s
ds −→
1
2
ln 3 −
1
4
ln 2  0.37602, as t −→ ∞,
2

j1

t
0
e


t
s
Hudu



Hs



s
s−τ
j
s


h
j
u


du ds ≤

t
0
e


t
s
1/22udu
1
2  2s
·0.37602 ds ≤ 0.37602.
3.4

Notice that q
j
tc
j
t ≡ 0and
2

j1



h
j

s − τ
j
s

1 − τ

j
s

 b
j
s − q
j
sHs








3
12  8s
·
2
3

1
6  4s









3
12  4s
·
1
3

1
12  4s





 0.
3.5
It is easy to see that all the conditions of Theorem 2.1 hold for α  0.376020.37602  0.75204 <
1. Thus, Theorem 2.1 implies that the zero solution of 3.3 is asymptotically stable.
However, Theorem B cannot be used to verify that the zero solution of 3.3 is
asymptotically stable. In fact,
b
1
t1/6  4t, b
2
t1/12  4t, b
1
g
1
t  1/6  6t,
b
2
g
2
t  1/12  12t,and|Qt|  1/4  4t.Ast →∞,
2

j1

t
t−τ

j
t


b
j

g
j
s



ds ≤

t
2/3t
1
6  6s
ds 

t
t/3
1
12  12s
ds −→
1
4
ln 3 −
1

6
ln 2  0.15913.
3.6
Notice that
2

j1


b
j
sτ

j
s − q
j
sQs



1
18  12s

1
18  6s

1
4  4s
. 3.7
It follows from 3.7 that

2

j1

t
0
e


t
s
Qudu


b
j
sτ

j
s − q
j
sQs


ds ≤

t
0
e



t
s
1/44udu
1
4  4s
ds ≤ 1. 3.8
Meng Wu et al. 11
From 3.6,weobtain
2

j1

t
0
e


t
s
Qudu


Qs



s
s−τ
j

s


b
j

g
j
u



du ds ≤

t
0
e


t
s
1/44udu
1
4  4s
·0.15913 ds ≤ 0.15913.
3.9
Combining 3.6, 3.8,and3.9, we see that the condition 2.4 of Theorem B does not hold
with α  1.31825.
Acknowledgement
This work was supported by the National Natural Science Foundation of China 10671135

and Specialized Research Fund for the Doctoral Program of Higher Education 20060610005.
References
1 T. A. Burton, “Stability by fixed point theory or Liapunov theory: a comparison,” Fixed Point Theory,
vol. 4, no. 1, pp. 15–32, 2003.
2 T. A. Burton, “Liapunov functionals, fixed points, and stability by Krasnoselskii’s theorem,” Nonlinear
Studies, vol. 9, no. 2, pp. 181–190, 2002.
3 T. A. Burton, “Fixed points and stability of a nonconvolution equation,” Proceedings of the American
Mathematical Society, vol. 132, no. 12, pp. 3679–3687, 2004.
4 T. A. Burton and T. Furumochi, “Fixed points and problems in stability theory for ordinary and
functional differential equations,” Dynamic Systems and Applications, vol. 10, no. 1, pp. 89–116, 2001.
5 S M. Jung, “A fixed point approach to the stability of a Volterra integral equation,” Fixed Point Theory
and Applications, vol. 2007, Article ID 57064, 9 pages, 2007.
6 J. Luo, “Fixed points and stability of neutral stochastic delay differential equations,” Journal of
Mathematical Analysis and Applications, vol. 334, no. 1, pp. 431–440, 2007.
7 B. Zhang, “Fixed points and stability in differential equations with variable delays,” Nonlinear
Analysis, vol. 63, no. 5–7, pp. e233–e242, 2005.
8 V. B. Kolmanovskii and L. E. Shaikhet, “Matrix Riccati equations and stability of stochastic linear
systems with nonincreasing delays,” Functional Differential Equations, vol. 4, no. 3-4, pp. 279–293, 1997.
9 K. Liu, Stability of Infinite Dimensional Stochastic Differential Equation with Applications, vol. 135 of
Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC,
Boca Raton, Fla, USA, 2006.
10 I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, vol. 113 of Graduate Texts in
Mathematics, Springer, New York, NY, USA, 2nd edition, 1991.

×