Tải bản đầy đủ (.pdf) (12 trang)

Báo cáo hóa học: "Research Article On the Generalized Favard-Kantorovich and Favard-Durrmeyer Operators in Exponential Function Spaces" ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (529.56 KB, 12 trang )

Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2007, Article ID 75142, 12 pages
doi:10.1155/2007/75142
Research Article
On the Generalized Favard-Kantorovich and Favard-Durrmeyer
Operators in Exponential Function Spaces
Grzegorz Nowak and Aneta Sikorska-Nowak
Received 18 January 2007; Revised 12 June 2007; Accepted 14 November 2007
Recommended by Ulrich Abel
We consider the Kantorovich- and the Durrmeyer-type modifications of the generalized
Favard operators and we prove an inverse approximation theorem for functions f such
that w
σ
f ∈ L
p
(R), where 1 ≤ p ≤∞and w
σ
(x) =ex p(−σx
2
), σ>0.
Copyright © 2007 G. Nowak and A. Sikorska-Nowak. This is an open access article dis-
tributed under the Creative Commons Attribution License, which per mits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.
1. Preliminaries
Let
L
p,σ
(R) =


f :


w
σ
f


p
< ∞

for 1 ≤ p ≤∞ (1.1)
be the weighted function space, where w
σ
(x) =ex p(−σx
2
), σ>0,
g
p
=



−∞


g(x)


p

dx

1/p
if 1 ≤ p<∞,
g

= essup
x∈R


g(x)


.
(1.2)
We define the generalized Favard operators F
n
for functions f : R→R by
F
n
f (x) =


k=−∞
f (k/n)p
n,k
(x; γ)(x ∈R, n ∈ N), (1.3)
2 Journal of Inequalities and Applications
where N
={1,2, },

p
n,k
(x; γ) =
1

n


exp


1

2
n

k
n
−x

2

(1.4)
and γ
= (γ
n
)

n=1
is a positive sequence convergent to zero (see [1]). In the case where

γ
2
n
= ϑ/(2n) with a positive constant ϑ, F
n
become the known Favard operators intro-
duced by Favard [2]. Some approximation properties of the classical Favard operators for
continuous functions f on R are presented in [3, 4]. Some approximation properties of
their generalization can be found, for example, in [1, 5]. Denote by F

n
the Kantorovich-
type modification of operators F
n
,definedby
F

n
f (x) = n


k=−∞
p
n,k
(x; γ)

(k+1)/n
k/n
f (t)dt (x ∈R, n ∈ N), (1.5)
and by


F
n
the Durrmeyer-type modification of operators F
n

F
n
f (x) = n


k=−∞
p
n,k
(x; γ)


−∞
p
n,k
(t;γ) f (t)dt (x ∈R, n ∈ N), (1.6)
where f
∈ L
p,σ
(R). Some estimates concerning the rates of pointwise convergence of the
operators F

n
f and


F
n
f can be found in [6, 7].
Recently, several autors investigated the conditions under which global smoothness of
a function f , as measured by its modulus of continuity ω( f ;
◦), is retained by the elements
of approximating sequences (L
n
f ) (see, e.g., [8, 9]). For example, Kratz and Stadtm
¨
uller
considered in [10]awideclassofdiscreteoperatorsL
n
and derived estimates of the form
ω

L
n
f ;t


Kω( f ;t)(t>0), (1.7)
with a positive constant K independent of f ,n,andt. For bounded functions f
∈ C(R)
and operators F
n
satisfying
γ
2
1


1
2
π
−2
log2, n
2
γ
2
n

1
2
π
−2
logn if n ≥2, (1.8)
they obtained the inequality
ω(F
n
f ;t) ≤ 140ω( f ;t)+16π·tf  (t>0), (1.9)
where
f =sup{|f (x)| : x ∈ R}.
Forbounded functions f
∈ C
m
(R) ={f : w
m
f 

< ∞}, w

m
(x) = (1 + x
2m
)
−1
, m ∈ N
and for operators F
n
satisfying nγ
2
n
≥ c>0foralln ∈ N, Pych-Taberska [5]obtainedthe
inequality
ω
2

F
n
f ;t

m
≤ K

(1 +t
2
0

2
( f ;t)
m

+ t
2
f 
m

(0 <t≤ t
0
) (1.10)
for all n
∈ N, n ≥n
c
where n
c
∈ N and K is a constant.
G. Nowak and A. Sikorska-Nowak 3
In this paper, we obtained an analogous inequality for the rth weighted modulus of
smoothness of the function
f
∈ L
p,σ
(R),σ>0,1 ≤ p ≤∞,
ω
r
( f ;t)
σ,p
= sup
0<h≤t


w

σ
Δ
r
h
f 
p
(r ∈ N),
(1.11)
where
Δ
r
h
f (x) =
r

i=0

r
i

(−1)
i
f

x + h

r/2 −i

. (1.12)
Namely, suppose that (γ

n
) is a positive null sequence satisfying nγ
r/2+1
n

c max
n∈N

r/2−1
n
} > 0foralln ∈ N and σ
1
>σ>0. Then there exist positive constants,
K,K
1
, such that for all n ≥K
1
and for arbitrary positive number t
0
ω
r

L
n
f ,t

σ
1
,p
≤ K


(1 +t
2
0

r
( f ,t)
σ,p
+ t
r


w
σ
f


p


0 <t≤ t
0

, (1.13)
where L
n
denotes the Favard-Kantorovich operator or the Favard-Durrmeyer operator.
Throughout the paper, the sy mbols K(σ,σ
1
, ), K

j
(σ,σ
1
, )(j = 1,2, )willmean
some positive constants, not necessarily the same at each occurrence, depending only on
the parameters indicated in parentheses.
2. Preliminary results
Let γ
= (γ
n
)

n=1
be a positive sequence and let nγ
2
n
≥ c for all n ∈N, with a positive abso-
lute constant c.Asisknown[5], for v
∈ N
0
={0}∪N, n ∈ N, x ∈ R,


k=−∞




k
n

−x




v
p
n,k
(x; γ) ≤ 15A
c

2
e

v/2

(2v)!γ
v
n
, (2.1)
where A
c
= max {1,(2cπ
2
)
−1
}. A simple calculation and the known Schwarz inequality
lead to



−∞




k
n
−t




v
p
n,k
(t;γ)dt ≤

(2v)!!
γ
v
n
n

k ∈ Z =

0,±1,±2,

. (2.2)
Let us choose n
∈ N, j ∈ N

0
and let us write
G

n, j
f (x) = n


k=−∞
p
n,k
(x; γ)

k
n
−x

j

(k+1)/n
k/n
f (t)dt,
(2.3)

G
n, j
f (x) = n


k=−∞

p
n,k
(x; γ)

k
n
−x

j


−∞
p
n,k
(t;γ) f (t)dt, (2.4)
where f
∈ L
p,σ
(R), 1 ≤ p ≤∞, σ>0. Obviously, G

n,0
f (x) = F

n
f (x)and

G
n,0
f (x) =


F
n
f (x).
4 Journal of Inequalities and Applications
Lemma 2.1. Let γ
= (γ
n
)

n=1
beapositivesequenceconvergentto0andletnγ
2
n
≥ c for all
n
∈ N, with a positive absolute constant c.Thenforj ∈N
0
, f ∈ L
p,σ
(R), σ>0, 1 ≤ p ≤∞,
and σ
1
>σ,


w
σ
1
G


n, j
f


p
≤ 15A
c
exp

σ
1

σ + σ
1

σ
1
−σ



2 j

!2
j/2
γ
j
n



w
σ
f


p
(2.5)
for all n
∈ N such that γ
2
n
≤ (σ
1
−σ)/(4σ(σ + σ
1
)),


w
σ
1

G
n, j
f


p
≤ 30A
c


(2 j)!2
j/2
γ
j
n


w
σ
f


p
(2.6)
for all n
∈ N such that γ
n
≤ max{(σ
1
−σ)/(2

σ(σ + σ
1
));(

σ
1
−σ)/(


2(σ + σ
1
))}.
Proof. In view of definition (2.3),
exp


σ
1
x
2

|
G

n, j
f (x)|≤n


k=−∞
exp


σ
1
x
2

p
n,k

(x; γ)




k
n
−x




j
× exp

σ(|k|+1

2
/n
2


(k+1)/n
k/n
exp


σt
2


|
f (t)|dt.
(2.7)
Using the inequality
(u +v)
2

σ + σ
1

u
2
+
σ + σ
1
σ
1
−σ
v
2
(u ∈ R, v ∈ R), (2.8)
we can easily observe, that
p
n,k
(x; γ)exp


σ
1
x

2

exp

σ

k +1
n

2



2exp

σ
1
(σ + σ
1
)
σ
1
−σ

p
n,k

x;




,
p
n,k
(x; γ)exp


σ
1
x
2

exp

σ

k
n

2



2p
n,k

x;




,
(2.9)
for n
∈ N such that γ
2
n
≤ (σ
1
−σ)/(4σ(σ + σ
1
)) (see [9]), where the symbol

2γ means
the sequence (


n
)

n=1
. Therefore,
exp(
−σ
1
x
2
)


G


n, j
f (x)



exp

σ
1

σ + σ
1

σ
1
−σ


2n


k=−∞
p
n,k

x;




×




k
n
−x




j

(k+1)/n
k/n
exp


σt
2

|
f (t)|dt.
(2.10)
From (2.2), we have


w
σ

1
G

n, j
f


1
≤ exp

σ
1

σ + σ
1

σ
1
−σ



2 j

!!(

2)
j+1
γ
j

n


w
σ
f


1
. (2.11)
G. Nowak and A. Sikorska-Nowak 5
Instead, for p
=∞,from(2.1) it follows that


w
σ
1
G

n, j
f





2exp

σ

1

σ + σ
1

σ
1
−σ



w
σ
f



essup
x∈R



k=−∞
p
n,k

x;








k
n
−x




j


15

2A
c
exp

σ
1

σ + σ
1

σ
1
−σ



2
j

2 j


j
n
w
σ
f 

.
(2.12)
Finally, by Riesz-Thorin theorem, we have (2.5).
In view of definition (2.4) and the inequality
p
n,k
(x; γ)p
n,k
(t;γ)exp(−σ
1
x
2
)exp(σt
2
) ≤ 2p
n,k
(x;


2γ)p
n,k
(t;

2γ), (2.13)
for n
∈ N such that γ
n
≤ max{(σ
1
−σ)/(2

σ(σ + σ
1
));

σ
1
−σ/(

2(σ + σ
1
))} (see [6]),
we have
exp


σ
1

x
2




G
n, j
f (x)



2n


k=−∞
p
n,k

x;







k
n
−x





j


−∞
exp


σt
2

p
n,k


2t;γ



f (t)


dt.
(2.14)
Applying (2.1)and(2.2), we get
w
σ

1

G
n, j
f 
1
≤ 30A
c

(2 j)!!γ
j
n
2
j/2
w
σ
f 
1
,
w
σ
1

G
n, j
f 

≤ 30A
c


(2 j)!γ
j
n
2
j/2
w
σ
f 

.
(2.15)
Finally, by Riesz-Thorin theorem, we have (2.6).
Further , for δ>0, x ∈ R,andr ∈N we define Stieklov function of f
f
(δ,2r)
(x) =
1
δ
2r
2

2r
r


δ/2
−δ/2
···

δ/2

−δ/2
r

i=1

2r
r
−i

(−1)
i−1
f

x + i

t
1
+ ···+ t
2r

dt
1
···dt
2r
.
(2.16)

Lemma 2.2. For all r = 1,2, , 0 <δ≤1, σ
1
>σ>0, 1 ≤ p ≤∞,andx ∈ R,



w
σ
1
f
(r)
(δ,2r)


p
≤ K

r,σ,σ
1

1
δ
r
ω
r
( f ;δ)
σ,p
, (2.17)


w
σ
1


f
(δ,2r)
− f



p
≤ K

r,σ,σ
1

ω
r
( f ;δ)
σ,p
. (2.18)
Proof. It is easy to see by induction that
f
(r)
(δ,2r)
(x) =
2

2r
r

r

i=1

(−1)
i−1

2r
r
−i

1
(iδ)
2r
×

iδ/2
−iδ/2
···

iδ/2
−iδ/2
Δ
r

f

x + u
1
+ ···+ u
r

du
1

···du
r
.
(2.19)
6 Journal of Inequalities and Applications
Let σ
2
= (2σ
1
+ σ)/3. In view of the inequality
exp


σ
1
x
2
+ σ
2
(x + u)
2


exp

σ
2
σ
1
σ

1
−σ
2
u
2

, (2.20)
where 0 <δ
≤ 1andu = u
1
+ ···+ u
r
,(u ≤r
2
/2), we have


w
σ
1
f
(r)
(δ,2r)


p

2

2r

r

exp

σ
1
σ
2
σ
1
−σ
2
r
4
4

r

i=1

2r
r
−i

1
(iδ)
r
w
σ
2

Δ
r

f 
p
. (2.21)
Applying the Minkowski inequality and the fact that for 0
≤ l
i
≤ i −1(0≤i ≤ r), 0 <h≤
1,
exp


σ
2
x
2
+ σ

x + h

l
1
+ ···+ l
r

r(i −1)
2


2


exp

σσ
2
σ
2
−σ

r(i −1)
2

2

,
(2.22)
we obtain


w
σ
2
Δ
r

f



p
=sup
|h|≤δ



−∞




exp


σ
2
x
2

i−1

l
1
=0
···
i−1

l
r
=0

Δ
r
h
f

x+h

l
1
+ ···+ l
r

r(i −1)
2





p
dx

1/p
≤ exp

σσ
2
σ
2
−σ

r
2
(i −1)
2
4

i
r
ω
r
( f ;δ)
σ,p
.
(2.23)
So (2.17) is evident. It is easy to see that
f
(δ,2r)
(x) − f (x) =
(−1)
r−1
δ
2r
1

2r
r


δ/2
−δ/2

···

δ/2
−δ/2
Δ
2r
t
1
+···+t
2r
f (x)dt
1
···dt
2r
. (2.24)
By Minkowski inequality, for 1
≤ p ≤∞,wehave(2.18). 
Lemma 2.3. Suppose that γ = (γ
n
)

n=1
is a positive sequence convergent to 0 and that

r/2+1
n
≥ cK(r),wherer ∈ N, r ≥ 2, K(r) = max
n∈N

r/2−1

n
}, c is a positive absolute con-
stant and let a
r
= 1 for even r and a
r
= 2 for odd r.Thenfor f ∈L
p,σ
(R), σ>0, 1 ≤ p ≤∞
and σ
1
>σ,wehave


w
σ
1

F

n
f

(r)
−(n/a
r
)
r
F


n
Δ
r
a
r
/n
f



p
≤ K(σ,σ
1
,c,r)


w
σ
f


p
(2.25)
for all n
∈ N such that γ
2
n
≤ (σ
1
−σ)/(4σ(σ + σ

1
)) and nγ
n
> 4a
2
r
r
2
,and


w
σ
1


F
n
f

(r)
−(n/a
r
)
r

F
n
Δ
r

a
r
/n
f



p
≤ K(σ,σ
1
,c,r)


w
σ
f


p
(2.26)
for all n
∈ N such that γ
n
≤ max{(σ
1
− σ)/(2

σ(σ + σ
1
));


σ
1
−σ/(

2(σ + σ
1
))} and

n
>r
2
/4.
G. Nowak and A. Sikorska-Nowak 7
Proof. We consider an even r.Letr
= 2r
1
, r
1
∈ N, x ∈ R.Then
n
r
F

n

Δ
r
1/n
f (x)


=
n
2r
1
+1


k=−∞
p
n,k
(x; γ)
2r
1

i=0

2r
1
i

(−1)
i

(k+r
1
−i+1)/n
(k+r
1
−i)/n

f (t)dt
= n
2r
1
+1
r
1
−1

i=0

2r
1
i

(−1)
i
×


k=−∞

p
n,k−(r
1
−i)
(x; γ)+p
n,k+(r
1
−i)

(x; γ)


(k+1)/n
k/n
f (t)dt
+ n
2r
1
+1


k=−∞


2r
1
r
1


(−1)
r
1
p
n,k
(x; γ)

(k+1)/n
k/n

f (t)dt.
(2.27)
It is easy to see that
p
n,k−(r
1
−i)
(x; γ)+p
n,k+(r
1
−i)
(x; γ)
=p
n,k
(x; γ)

exp

r
1
−i

2
n

k
n
−x



(r
1
−i)
2
2n
2
γ
2
n

+exp


r
1
−i

2
n

k
n
−x


(r
1
−i)
2
2n

2
γ
2
n

=
p
n,k
(x; γ)


l=1
(−1)
l
l!
[l/2]

j=0

l
2 j

2
2j+1−l

k
n
−x

2j

n
2j−2l
γ
−2l
n
(r
1
−i)
2l−2 j
+2p
n,k
(x; γ).
(2.28)
Consequently, using definition (2.3), we get
n
r
F

n

Δ
r
1/n
f (x)

=
2r
1

l=1

[l/2]

j=0
n
2(r
1
+j−l)
γ
−2l
n
(−1)
l
2
2j+1−l

2 j

!

l −2 j

!
×
r
1
−1

i=0

2r

1
i

(−1)
i

r
1
−i

2l−2 j
G

n,2j
f (x)
+


l=2r
1
+1
[l/2]

j=0
n
2(r
1
+j−l)
γ
−2l

n
(−1)
l
2
2j+1−l

2 j

!

l −2 j

!
×
r
1
−1

i=0

2r
1
i

(−1)
i

r
1
−i


2l−2 j
G

n,2j
f (x)
= S
n,1
f (x)+S
n,2
f (x).
(2.29)
8 Journal of Inequalities and Applications
In view of (2.5) and using Stirling formula, we obtain


w
σ
1
S
n,2
f


p
≤ K
1

σ,σ
1

,c



w
σ
f


p
4
r
1
n
2r
1


l=2r
1
+1
r
2l
1
n
2l
γ
2l
n
2

l
[l/2]

j=0

(4 j

!2
j

2 j

!

l −2 j

!
n
2j
γ
2j
n
4
j
r
−2j
1
≤ K
2


σ,σ
1
,c,r



w
σ
f


p
n
2r
1


l=2r
1
+1

r
2
1
/2)
l
(n
2
γ
2

n
)
l
[l/2]

j=0

n
2
γ
2
n

j
64
j
≤ K
3

σ,σ
1
,c,r



w
σ
f



p


16r
2
1

2r
1
+1
n
2
γ
2r
1
+2
n
+ n
2r
1


l=2r
1
+2

16r
2
1


n

l

.
(2.30)
Assuming (16r
2
1
)/(nγ
n
) < 1 and using the condition nγ
r
1
+1
n
≥ cK(r), we get
w
σ
1
S
n,2
f 
p
≤ K
4
(σ,σ
1
,c,r)w
σ

f 
p
. (2.31)
Now observe that
r
1
−1

i=0

2r
1
i

(−1)
i

r
1
−i

2s
=



0if0<s<r
1
,
(2r

1
)!/2ifs = r
1
.
(2.32)
The equality follows simply from properties of finite differences since the left-hand side
of the equation is a half of the finite difference of the polynomial (r
1
−x)
2s
. Therefore,
S
n,1
f (x) =
2r
1

l=r
1
(−1)
l
2
2j+1−l
l!n
2l−2 j−2r
1
γ
2l
n


l
2 j

r
1
−1

i=0

2r
1
i

(−1)
i

r
1
−i

2l−2 j
G

n,2j
f (x)
=
r
1

l=0

l
−1

j=0
(−1)
r
1
+l
2
2j+1−l−r
1
(r
1
+ l)!n
2l−2 j
γ
2l+2r
1
n

r
1
+ l
2 j

r
1
−1

i=0


2r
1
i

(−1)
i

r
1
−i

2r
1
+2l−2 j
G

n,2j
f (x)
+
r
1

l=0
(−1)
2r
1
−l
γ
4r

1
−2l
n

2r
1

!
2
l
l!

2r
1
−2l

!
G

n,2j
f (x).
(2.33)
It is easy to see, by the method of induction, that
p
(v)
n,k
(x; γ) = p
n,k
(x; γ)
[v/2]


i=0
v!(−1)
i
(v −2i)!(2i)!!
1
γ
2v−2i
n

k
n
−x

v−2i
, v ∈ N. (2.34)
Therefore,
S
n,1
f (x) =
r
1

l=0
l
−1

j=0
(−1)
r

1
+l
2
2j+1−l−r
1

r
1
+ l

!n
2l−2 j
γ
2l+2r
1
n

r
1
+ l
2 j

r
1
−1

i=0

2r
1

i

(−1)
i

r
1
−i

2r
1
+2l−2 j
G

n,2j
f (x)
+

F

n
f (x)

(2r
1
)
.
(2.35)
G. Nowak and A. Sikorska-Nowak 9
Consequently, from (2.29)



(F

n
f )
(2r
1
)
(x) −n
2r
1
F

n
Δ
2r
1
1/n
f (x)



K
5
(r)
r
1
−1


j=0
r
1

l=j+1
n
2j
(nγ
n
)
2l
γ
2r
1
n


G

n,2j
f (x)


+


S
n,2
f (x)



.
(2.36)
The condition nγ
r
1
+1
n
≥ cK(r) and the boundedness of the sequence (γ
n
)leadto



F

n
f

(2r
1
)
(x) −n
2r
1
F

n
Δ
2r

1
1/n
f (x)



K
6
(r,c)
r
1
−1

j=0
γ
−2j
n


G

n,2j
f (x)|+


S
n,2
f (x)



. (2.37)
Collecting the results we get estimate (2.25)forevenr, immediately.
Now, we will prove inequality (2.25)foroddr.Namely,letr
= 2r
2
+1,r
2
∈ N, x ∈R.
Then
n
r
F

n

Δ
r
2/n
f (x)

=
n
2r
2
+2
r
2

i=0



k=−∞

2r
2
+1
i

(−1)
i
×

p
n,k−(2r
2
+1−2i)
(x; γ) − p
n,k+(2r
2
+1−2i)
(x; γ)


(k+1)/n
k/n
f (t)dt.
(2.38)
It is easy to see that
p
n,k−(2r

2
+1−2i)
(x; γ) − p
n,k+(2r
2
+1−2i)
(x; γ)
= p
n,k
(x; γ)


l=1
(−1)
l+1
l!
[(l−1)/2]

j=0

l
2 j +1

2
2j+2−l

k
n
−x


2j+1
n
2j+1−2l
γ
2l
n

2r
2
+1−2i

2j−2l+1
.
(2.39)
Consequently,
n
r
F

n

r
2/n
f (x)) =
2r
2
+1

l=1
n

2r
2
+2
[(l
−1)/2]

j=0
n
2j−2l
γ
−2l
n
(−1)
l+1
2
2j+2−l
(2 j +1)!(l −2 j −1)!
×
r
2

i=0

2r
2
+1
i

(−1)
i

(2r
2
+1−2i)
2l−2 j−1
G

n,2j+1
f (x)
+


l=2r
2
+2
n
2r
2
+2
[(l
−1)/2]

j=0
n
2j−2l
γ
−2l
n
(−1)
l+1
2

2j+2−l
(2 j +1)!(l −2 j −1)!
×
r
2

i=0

2r
2
+1
i

(−1)
i
(2r
2
+1−2i)
2l−2 j−1
G

n,2j+1
f (x)
= S

n,1
f (x)+S

n,2
f (x).

(2.40)
Some simple calculation, Stirling formula and (2.5)give


w
σ
1
S

n,2
f


p
≤ K
7
(σ,σ
1
,c,r)


w
σ
f


p
(2.41)
10 Journal of Inequalities and Applications
for n

∈ N such that (16r
2
)/(nγ
n
) < 1.Next,inviewof(2.25) and the equality
r
2

i=0

2r
2
+1
i

(−1)
i

r
2
−i+1/2

2s−1
=



0if0<s<r
2
+1,


2r
2
+1

!/2ifs = r
2
+1
(2.42)
we obtain
S

n,1
f (x) =
r
2

l=0
l
−1

j=0
(−1)
r
2
+l
2
2j+1−l−r
2
(2 j +1)!


l + r
2
−2j

!
n
2j−2l
γ
−2l−2r
2
−2
n
×
r
2

i=0

2r
2
+1
i

(−1)
i

2r
2
+1−2i


2r
2
+2l−2 j+1
×G

n,2j+1
f (x)+2
2r
2
+1
(F

n
f )
(2r
2
+1)
(x) .
(2.43)
Using (2.40) and the condition nγ
r
2
+3/2
n
≥ cK(r), we have


(F


n
f )
(2r
2
+1)
(x) −(n/2)
2r
2
+1
F

n
Δ
2r
2
+1
2/n
f (x)



K
8
(r,c)
r
2
−1

j=0
1

γ
2j+1
n


G

n,2j+1
f (x)


+


S

n,2
f (x)


.
(2.44)
Applying (2.5), we get (2.25)foroddr. Therefore, inequality (2.25)isproved.
Now we will prove (2.26). Let r
= 2r
1
, r
1
∈ N. A simple calculation and the equality
p

n,k
(t −(r
1
−i)/n;γ) = p
n,k+r
1
−i
(t;γ)give
n
r

F
n

Δ
r
1/n
f (x)

=
n
2r
1
+1
r
1
−1

i=0



k=−∞

2r
1
i

(−1)
i

p
n,k−(r
1
−i)
(x; γ)+p
n,k+(r
1
−i)
(x; γ)

×


−∞
p
n,k
(t;γ) f (t)dt + n
2r
1
+1



k=−∞

2r
1
r
1

(−1)
i
p
n,k
(x; γ)
×


−∞
p
n,k
(t;γ) f (t)dt.
(2.45)
The estimate (2.26) follows now the same way as ( 2.25).

3. Main result
Theorem 3.1. Suppose that r
∈ N, (γ
n
) is a positive null sequence satisfying nγ
r/2+1

n

cK(r) for all n ∈ N with some c>0 where K(r) = max
n∈N

r/2−1
n
}. Then there exists a
constant K>0, such that for all f
∈ L
p,σ
(R), σ
1
>σ>0, 1 ≤ p ≤∞,andforanarbitrary
positive number t
0
,
ω
r

F

n
f ,t

σ
1
,p
≤ K


σ,σ
1
,r,c

1+t
2
0

ω
r
( f ,t)
σ,p
+ t
r


w
σ
f


p

0 <t≤ t
0

(3.1)
for all n ∈ N such that γ
2
n

≤ (σ
1
−σ)/(4σ(σ + σ
1
)) and nγ
n
> 16r
2
,and
ω
r


F
n
f ,t

σ
1
,p
≤ K

σ,σ
1
,r,c

1+t
2
0


ω
r
( f ,t)
σ,p
+ t
r


w
σ
f


p

0 <t≤ t
0

(3.2)
G. Nowak and A. Sikorska-Nowak 11
for all n
∈ N such that γ
n
≤ max{(σ
1
− σ)/(2

σ(σ + σ
1
));


σ
1
−σ/(

2(σ + σ
1
))} and

n
>r
2
/4.
Proof. Let σ
2
= (3σ
1
+ σ)/4. In view of the inequality
exp


σ
1
x
2
+ σ
2
(x + u)
2



exp

σ
2
σ
1
σ
1
−σ
2
u
2

(u ∈ R) (3.3)
and the generalized Minkowski inequalit y it is easy to see that for 0 <h
≤ 1


w
σ
1
Δ
r
h
f


p
=






w
σ
1

h/2
−h/2
···

h/2
−h/2
f
(r)


+ s
1
+ ···+ s
r

exp

σ
2



+ s
1
+ ···+ s
r

2

×
exp


σ
2


+ s
1
+ ···+ s
r

2

ds
1
···ds
r






p
≤ exp

r
2
4
σ
2
σ
1
σ
1
−σ
2

h
r


w
σ
2
f
(r)


p
,
(3.4)



w
σ
1
Δ
r
h
f


p
≤ 2
r
exp

r
2
4
σ
2
σ
1
σ
1
−σ
2




w
σ
2
f


p
.
(3.5)
Applying these inequalities, we get


w
σ
1
Δ
r
h
f


p



w
σ
1
Δ
r

h

f − f
(δ,2r)



p
+


w
σ
1
Δ
r
h
f
(δ,2r)


p
≤ 2
r
exp

r
2
4
σ

2
σ
1
σ
1
−σ
2




w
σ
2
( f − f
(δ,2r)
)


p
+ h
r


w
σ
2
f
(r)
(δ,2r)



p

,
(3.6)
where f
(δ,2r)
(x)(δ>0, x ∈ R, r ∈N)isdefinedby(2.16).
Hence, applying this inequality for F

n
f we have
ω
r

F

n
f ,t

σ
1
,p
≤ 2
r
exp

r
2

4
σ
2
σ
1
σ
1
−σ
2




w
σ
2
F

n

f − f
(δ,2r)



p
+ t
r



w
σ
2

F

n
f
(δ,2r)

(r)


p

.
(3.7)
Hence,
w
σ
2
(F

n
f
(δ,2r)
)
(r)

p

can be estimated by (2.5)forj = 0, (2.25), and (3.4). Let
σ
3
= (2σ
1
+ σ)/3, then


w
σ
2

F

n
f
(δ,2r)

(r)


p



w
σ
2

F


n
f
(δ,2r)

(r)


n/a
r
)F

n
Δ
r
a
r
/n
f
(δ,2r)



p
+ n
r


w
σ

2
F

n
Δ
r
a
r
/n
f
(δ,2r)


p
≤ K

σ
2

3
,r,c




w
σ
3
f
(δ,2r)



p
+


w
σ
3
f
(r)
(δ,2r)


p

.
(3.8)
Using (2.5)forj
= 0and(3.7)wehave
ω
r

F

n
f ,t

σ
1

,p
≤ K

σ,σ
1
,r,c



w
σ
3
( f − f
(δ,2r)
)


p
+ t
r


w
σ
3
f
(r)
(δ,2r)



p
+ t
r


w
σ
3
f
(δ,2r)


p

.
(3.9)
12 Journal of Inequalities and Applications
Consequently by (2.17), (2.18) and assuming now 0 <t
≤ t
0
,wehave
ω
r

F

n
f ,t

σ

1
,p
≤ K

σ,σ
1
,r,c

1+t
r
0

ω
r
( f ;t)
σ,p
+ t
r


w
σ
f 
p

. (3.10)
Onthesamewaywecanprove(3.2)for

F
n

f , using (2.6)and(2.26). 
References
[1] W. Gawronski and U. Stadtm
¨
uller, “Approximation of continuous functions by generalized
Favard operators,” Journal of Approximation Theory, vol. 34, no. 4, pp. 384–396, 1982.
[2] J. Favard, “Sur les multiplicateurs d’interpolation,” Journal de Math
´
ematiques Pures et Appliqu
´
ees,
vol. 23, pp. 219–247, 1944.
[3] M. Becker, P. L. Butzer, and R. J. Nessel, “Saturation for Favard oper ators in weighted function
spaces,” Studia Mathematica, vol. 59, no. 2, pp. 139–153, 1976.
[4] M. Becker, “Inverse theorems for Favard operators in polynomial weight spaces,” Commenta-
tiones Mathematicae, vol. 22, no. 2, pp. 165–173, 1980/81.
[5] P. Pych-Taberska, “On the generalized Favard operators,” Functiones et Approximatio Commen-
tarii Mathematici, vol. 26, pp. 265–273, 1998.
[6] P. Pych-Taberska and G. Nowak, “Approximation properties of the generalized Favard-
Kantorovich operators,” Commentationes Mathematicae, vol. 39, pp. 139–152, 1999.
[7] G. Nowak and P. Pych-Taberska, “Some pr operties of the generalized Favard-Durrmeyer opera-
tors,” Functiones et Approximatio Commentarii Mathematici, vol. 29, pp. 103–112, 2001.
[8] G. A. Anastassiou, C. Cottin, and H. H. Gonska, “Global smoothness of approximating func-
tions,” Analysis, vol. 11, no. 1, pp. 43–57, 1991.
[9] G. Nowak, “Direct theorems for gener alized Favard-Kantorovich and Favard-Durrmeyer oper-
ators in exponential function spaces,” to appear in Ukrainian Mathematical Journal.
[10] W. Kratz and U. Stadtm
¨
uller, “On the uniform modulus of continuity of certain discrete approx-
imation operators,” Journal of Approximation Theory, vol. 54, no. 3, pp. 326–337, 1988.

Grzegorz Nowak: Higher School of Marketing and Management, Ostroroga 9a,
64-100 Leszno, Poland
Email address:
Aneta Sikorska-Nowak: Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Umultowska 87, 61-614 Pozna
´
n, Poland
Email address:

×