Tải bản đầy đủ (.doc) (24 trang)

CHUYÊN ĐỀ LUYỆN THI ĐẠI HỌC MÔN VẬT LÝ 12 HAY VÀ KHÓ.doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (504.2 KB, 24 trang )


trong các đề thi tuyển sinh
Đại học & Cao đẳng
(Theo chương trình giảm tải mới nhất
của Bộ giáo dục & đào tạo)
- Mùa thi 2014 -
Bài toán 1. Một số khái niệm hay
1

a. Đồ thị một số hàm trong dao động điều hòa:

 !"
#$%# !&'
Lưu ý()*&#&!&+,  !&'-./0.
b. Độ lệch pha
Trong các hàm điều hòa hình sin, nếu B là đạo hàm của A thì B nhanh
pha hơn A một góc /212(
3"4 !5#6/
3"4 !5#6/
3"78#"94 !5#
Lưu ý("#&!2:;<#+#2&!#=
c. Cách chứng minh một vật dao động điều hòa
Bước 1(>?#&;;<#@A#=
Bước 2(-=""48"B#?#C=DEF
Bước 3(-=""48"B#?#C=G=#5&!
2H#B#I"1#J.KG
Bước 4(LM&;=/NOKG. . PP
QPP.K
/

Bước 5(R==&!&+,#GS


m
T 2
k
= π

d. Quãng đường đi được
3 !#GS.T0
3U#GS./0
3?#?;G?##VM4&I7C"<?W9
QU#GSX=YD&%H;<&V)&!&Z#+
8#
e. Chiều chuyển động của CLLX lúc t = 0:
3[\(=#2&!#+@ 
3]\(=#2&!#+4
g. Vận tốc trung bình và tốc độ trung bình
+ Vận tốc trung bình
2 1
tb
x x
v
t

=


+ Tốc độ trung bình
tb
s
v
t

=
Bài toán 2. Thời gian ngắn nhất để vật đi từ x
1
đến x
2
2
+ x
1
đến x
2
(giả sử
21
 >
):

ω
ϕϕ
ω
ϕ
12

=

=∆

với








=
=
0

0

2
2
1
1
cos
cos
ϕ
ϕ

( )
πϕϕ
≤≤
21
,0
.
+ x
1
đến x
2
(giả sử
1 2

 <
):

ω
ϕϕ
ω
ϕ
12

=

=∆

với







=
=
0

0

2
2
1

1
cos
cos
ϕ
ϕ

( )
1 2
, 0
π ϕ ϕ
− ≤ ≤

Bài toán 3. Tính quãng đường vật đi được trong thời gian t
Phương pháp chung tìm quãng đường đi trong khoảng thời gian nào đó
ta cần xác định:
- Vị trí vật lúc t = 0 và chiều chuyển động của vật lúc đó;
- Chia thời gian ∆t thành các khoảng nhỏ: nT; nT/2; nT/4; nT/8; nT/6;
T/12 … với n là số nguyên;
- Tìm quãng đường s
1
; s
2
; s
3
; … tương úng với các quãng thời gian nêu
trên và cộng lại
x
-A

A

2
0(VTCB)
A
2

A 2
2


A 3
2
+A
T/4 T/12 T/6

T/8 T/8

T/6 T/12
* Công thức giải nhanh tìm quãng đường đi (dùng máy tính)
x
1
(bất kì) x
0

+A
t
1
=
1
x
1

arsin
A
=
ω
t
1
=
1
x
1
arcos
A
=
ω

 Tính quãng đường dài nhất và ngắn nhất vật đi được trong khoảng thời
gian t với
2
0


≤≤
3
Nguyờn tc:
+ Vt i c quóng ng -A - x
0
O x
0
+A
di nht khi li im u v im

cui cú giỏ tr i nhau s
max

^_&`:
max
2 sin
2

Q 0

=

+ Vt i c quóng ng -A - x
0
O x
0
+A
ngn nht khi li im u v im
cui cú giỏ tr bng nhau
s
min Smin
^_&a`:
min
2 1 cos
2

Q 0


=




Bi toỏn 4. Ghép lò xo; ct lũ xo v ghộp vt
+ Ghép nối tiếp:

GGGG
1

111
21
+++=






+=
+=
2
2
2
1
2
2
2
2
1
111

bbb

+ Ghép song song:

GGGG
+++=

21






+=
+=
2
2
2
1
2
2
2
2
1
111

bbb
- Gi T
1

v T
2
l chu k khi treo m
1
v m
2
ln lt vo lũ xo k thỡ:
+ Khi treo vt
21
+=
thỡ:
2
2
2
1

+=
+ Khi treo vt
21
=
thỡ:
2
2
2
1

=

( )
21

>
Ct lũ xo
- Cắt lò xo có độ cứng k, chiều dài
0

thành nhiều đoạn có
chiều dài

,,,
21
có độ cứng tơng
ứng

GGG ,,,
21
liên hệ nhau theo hệ thức:


GGGG
====

22110
.
- Nu cắt lũ xo thành n đoạn bằng nhau (cỏc lũ xo cú cùng độ cứng k):
4

GG
=
'
hay:






=
=
bb



'
'
Bài toán 5. Lò xo bị nén và dãn
Bài toán 6. Vận tốc - lực căng dây của con lắc đơn
+ Khi con lắc ở vị trí li độ góc
α
vận tốc và lực căng tương ứng của vật:

( )
( )
0
0
2 cos cos
3cos 2cos
#
 
 
α α
α α


= −


= −


Khi
0
α
nhỏ:
( )
2 2
0
2 2
0
3
1
2
#
 
 
α α
α α

= −



 

= + −

 ÷

 

+ Khi vật ở biên:
0
0
cos
#

 
α
=


=

; khi
0
α
nhỏ:
2
0
0
1
2
#


 
α
=


 

= −
 ÷

 

+ Khi vật qua VTCB:
( )
( )
0
0
2 1 cos
3 2cos
#
 
 
α
α

= −


= −



; khi
0
α
nhỏ:
( )
0
2
0
1
#
 
 
α
α

=


= +


Bài toán 7. Chu kỳ của con lắc đơn phụ thuộc 5 yếu tố
a. Công thức cơ bản
5
∆
0
x
A
-A

∆
dãn
0
x
A
-A
Khi A ≤

l
Khi A >

l
A≤∆
,
c
;_
$&
,;
d
(0[

9

$&
,;
_
* Gọi chu kỳ ban đầu của con lắc là
0

(chu kỳ chạy đúng), Chu kỳ sau

khi thay đổi là T (chu kỳ chạy sai).

0

−=∆
: độ biến thiên chu kỳ.
+
0∆ >
đồng hồ chạy chậm lại;
+
0
∆ <
đồng hồ chạy nhanh lên.
* Thời gian nhanh chậm trong thời gian
0
86400

=


θ
b. Các trường hợp
Với
0
0 0 0
2 2 2 2
∆ ∆ ∆ ∆
= + + − +
# 
 

   
 e e  
α
Ghi chú:
3?#?;#5∆&+fsau – trướcg
3N#;+% #GSGc&Z
0
T
T

.\
Bài toán 8. Con lắc đơn chịu tác dụng thêm một lực phụ không đổi

* Khi con lắc đơn chịu thêm lực phụ
F
r
thì tổng lực lên vật bây giờ là

'= +h h J
uur ur ur
Nếu
F h
ur
r
Z Z
thì P’ = P + F ⇒ g’ = g +
F
m



F h
ur
r
Z [
thì P’ = P – F ⇒ g’ = g -
F
m

F

h
ur
r
thì P’ =
2 2
P F
+
⇒ g’ =
2 2
F
g ( )
m
+
Chu kỳ dao động trong trường hợp này sẽ là:




=


π
2
,

'
là gia tốc trọng trường hiệu dụng
* Lực phụ
F
r
gặp trong nhiều bài toán là:
6
L
i
&!
7∆9
L
C
#
79
j


@
79
L
&

79
L
#+


79
q > 0:
F E↑↑
ur ur
q < 0:
F E↑↓
ur ur

Độ lớn F =
q E

%##2&!#i#a#&4
G%8C# c
E2<#=# #k c

Bài toán 9. Sơ đồ biến đổi động năng – thế năng
cos
-A

A
2
0

A
2

A 2
2



A 3
2
+A
T/4 T/12 T/6

Với T/8 T/8

T/6 T/12
Bài toán 10. Tổng hợp dao động điều hòa
a. N
l

/
 .
l
3
/
:
( )
cos 0 
ω ϕ
⇒ = +
7
W
đ
= 3 W
t
W
đmax


W
t
= 0
W
t
= 3 W
đ
W
đ
= W
t
W
đ
= 0
W
tmax
W = W
tmax
= W
đmax
= ½ kA
2
F
ur

Lực điện trường
F qE
=
ur ur


Lực quán tính
F ma
=−
ur r
Lực đẩy archimede
F Vg
= − ρ
ur r
Nhanh dần
F v↑↓
ur r
Chậm dần
F v↑↑
ur r
Độ lớn F =
m a

F
ur
luôn hướng lên
thẳng đứng;
Độ lớn F = ρVg

Với
( )






+
+
=
−++=
2211
2211
2121
2
2
2
1
coscos
sinsin
tan
cos2
ϕϕ
ϕϕ
ϕ
ϕϕ
00
00
00000
b. N
l
.
l
3
/
 

/
( )







=
−−+=
11
11
2
11
2
1
22
2
coscos
sinsin
tan
cos2
ϕϕ
ϕϕ
ϕ
ϕϕ
00
00
00000

(với
21
ϕϕϕ
≤≤
)
c. Giải bằng giản đồ véctơ: Biện luận biên độ tổng hợp A
max
, A
min
theo A
1
;
A
2
;
1 2
;
ϕ ϕ

Phương pháp chung
- F#&VCB&8##?#d#4
000

,,
21
    KLBC#V#??"1&; ?#

#
F


0

sinsinsin
==
&2&+Gi#V 
Km"1#?#iH#8 ?#"4"?"&%&2
n&2<?G)n
Bài toán 11. Dao động tắt dần có ma sát
-  Z)_& S mà vật đi được cho đến khi dừng lại:

QJG0

=
2
2
1

- o!n C&!l#GS:
2
4

J
0

ω
∆ = =
G
J

4

,

J
là lực cản
Nếu F
c
là lực ma sát thì :
G
N
0
µ
4
=∆
- Q%&!B#i&8#:

J
0G
0
0
N
4
.
'
11
=

=
Nếu F
c
là lực ma sát thì:

N
G0
N
µ
4
'
1
=
- pq#; ?&Gp ∆t = N’. T
- E;<#=#5=%##B#&:
F
c
= F
hp
=> μ.m.g = K.x
0
=>
0
mg
x
k
µ
=
- E=%##B#&G&!&&8#;<
\
:
8

0 0
v (A x ).= − ω

(Vị trí cân bằng lần đầu tiên)

Bài toán 12. Dao động hệ vật dưới lò xo

+ Vật m
1
chuyển động vận tốc v va chạm và dính vào m
2
đang gắn vào lò xo,
ta dùng ĐLBT động lượng tìm v
hệ
=
1
1 2
m v
m m+
và tùy đề bài ta xử lý như các bài
tập dao động khác.
+ Vật m
1
được đặt trên m
2
dao động điều hòa theo phương
thẳng đứng. Để m
1
luôn nằm yên trên m
2
trong quá trình dao động
thì: A ≤
G



)(
21
2
+
=
ω
(hình 1)
+ Vật m
1
và m
2
được gắn vào 2 đầu của lò xo đặt thẳng đứng,
m
1
dao động điều hòa. Để m
2
đứng yên trên mặt sàn trong quá
trình dao động thì: A ≤
G


)(
21
2
+
=
ω
(hình 2) rl

+ Vật m
1
đặt trên m
2
dao động điều hòa theo phương ngang. Hệ số ma sát
giữa m
1
và m
2
là µ, bỏ qua ma sát giữa m
2
với mặt sàn. Để m
1
không trượt trên m
2
trong quá trình dao động thì: (hình 3)
A ≤
G


)(
21
2
+
=
µ
ω
µ
rW
r/

Bài toán 13. Độ lệch pha của 2 điểm trên phương truyền sóng cách
nhau một đoạn d

λ
πϕ

2
=∆
Nếu

πϕ
2G
=∆
hay
λ
G
=

2 điểm đó dao động cùng pha

( )
πϕ
12
+=∆
G
hay
( )
2
12
λ

+=
G

2 điểm đó dao động ngược pha

( )
2k 1
2
π
∆φ = +
hay
( )
d 2k 1
4
λ
= +

2 điểm đó dao động vuông pha
- Độ lệch pha của cùng một điểm tại các thời điểm khác nhau:

( )
12

−=∆
ωϕ
9

/

l

Bài toán 14. Phương trình sóng cơ
a. Phương trình sóng tại 2 nguồn

1 1
Acos(2 ) b
π ϕ
= +

2 2
Acos(2 ) b
π ϕ
= +

b. Phương trình sóng tại M:
Tại gốc
)cos(
0
ϕω
+= 0
thì tại M:
)
2
cos(
λ
π
ϕω

0
s
−+=

x > 0 nếu M trước nguồn; x<0 nếu M sau nguồn
c. Phương trình sóng tổng hợp tại M:

M 1M 2M
u u u= +

2 1 1 2 1 2
2 cos[ ] cos 2
2 2
M
d d d d
u A ft
ϕ ϕ
φ
π π π
λ λ
   
− + +

= + − +
   
   
Biên độ dao động tại M:

]
2
cos[2
12
ϕ
λ

π



=

00
s
với ∆ϕ = ϕ
2
- ϕ
1
d. Phương trình sóng dừng tại M:

'
s s s
  = +

2 os(2 ) os(2 ) 2 sin(2 ) os(2 )
2 2 2
s
 
 0# # b 0 # b
π π π
π π π π
λ λ
= + − = +


Bài toán 15. Tìm số điểm dao động cực đại, cực tiểu giữa hai nguồn

a. Điểm M trong miền giao thoa nằm trên cực đại hay cực tiểu GT
Ta tìm d
M
= d
2M
– d
1M

+ Nếu d
M
= kλ ⟹ M trên đường cực đại thứ k và A=A
max
= 2A
+ Nếu d
M
= (k + ½)λ ⟹ M trên đường cực tiểu thứ k - 1 và A = 0
b. Tìm số điểm dao động cực đại, cực tiểu trong miền giao thoa sóng cơ:
Nếu hai nguồn cùng pha, số điểm
* Cực đại:
1 1 1 1
Q Q G Q Q
λ
− < <
(không kể cả S
1
, S
2
)
* Cực tiểu:
1 1 1 1

1
( )
2
Q Q G Q Q
λ
− < + <

Chú ý: + lấy k nguyên
+ Trên đoạn S
1
S
2
hai điểm cực đại giao thoa liền kề cách nhau ½ λ
+ Nếu hai nguồn ngược pha, kết quả cực đại và cực tiểu sẽ trái ngược với
cùng pha.
10
+ Nếu hai nguồn vuông pha, số cực đại = cực tiểu
1 1 1 1
1
( )
4
Q Q G Q Q
λ
− < + <
Bài toán 16. Tìm số cực đại, cực tiểu ở ngoài đoạn thẳng nối 2 nguồn

Nếu hai nguồn cùng pha
Số cực đại
' '
2 1 2 1

d d k d d
− ≤ λ≤ −

(
'
1
'
212
 −>−
)
Số cực tiểu
' '
2 1 2 1
1
d d (k ) d d
2
− ≤ + λ≤ −
(
'
1
'
212
 −>−
)
Chú ý: + lấy k nguyên
+ Nếu hai nguồn ngược pha, kết quả cực đại và cực tiểu sẽ trái ngược với
cùng pha.
+ Nếu hai nguồn vuông pha, số cực đại = cực tiểu
' '
2 1 2 1

1
d d (k ) d d
4
− ≤ + λ ≤ −

Bài toán 17: Những điểm cùng và ngược pha với một điểm O nào đó
$nUst.
3Ns#M"t.G
3Ns#M"t.7G3u9
3Ns#M"t.7G3v9
52&8#Gn&5XXM&+ %?;#
GG=
Ghi chú: Trường hợp tại M có sóng tổng hợp thì ta phải sử dụng phương trình
sóng tổng hợp
2 1 1 2 1 2
2 cos[ ] cos 2
2 2
M
d d d d
u A ft
ϕ ϕ
φ
π π π
λ λ
   
− + +

= + − +
   
   

Biên độ dao động tại M:

]
2
cos[2
12
ϕ
λ
π



=

00
s
với ∆ϕ = ϕ
2
- ϕ
1
Bài toán 18. Quan hệ giữa thời gian và biên độ sóng dừng
u
3
a
2

2
a
2


a
2
a
11
Hình bó
sóng

0
2
λ

12
λ

8
λ

6
λ

4
λ

3
λ

3
8
λ


5
12
λ
T/12
T/8
T/6
T/4
T/2
Bài toán 19. Sóng dừng

a. Biên độ của sóng tới và sóng phản xạ là A
⟹ biên độ dao động của bụng sóng a = 2A.
- Bề rộng của bụng sóng là: L = 4A.
- Vận tốc cực đại của một điểm bụng sóng trên dây: v
max
= ω2A
- Phương trình sóng dừng tại M:
'
s s s
  = +

2 os(2 ) os(2 ) 2 sin(2 ) os(2 )
2 2 2
s
 
 0# # b 0 # b
π π π
π π π π
λ λ
= + − = +


Chú ý:  Khoảng thời gian giữa 2 lần liên tiếp sợi dây duổi thẳng là T/2.
 Khoảng cách giữa 2 nút liền kề bằng khoảng cách 2 bụng liền kề
và bằng
2
λ
.  Khoảng cách giữa 2 nút hoÆc 2 bụng
2
λ
G
.
b. Điều kiện để có sóng dừng
* r&V#%&;: =
k
2
λ
k ϵ N (k bó nguyên)
* 5 !&VB  =
k
2 4
λ λ
+
(k bó nguyên + nửa bó)
Bài toán 20. Giao thoa sóng âm
Giao thoa sóng – sóng dừng áp dụng cho:
a. Dây đàn có 2 đầu cố định:
Âm cơ bản:


b

2
0
=
(còn gọi là họa âm bậc 1)
12
Thời
gian
hoạ âm bậc 2 là : f
2
= 2f
0
;
họa âm bậc 3 là : f
3
= 3f
0
… ⟹ bậc n:


b

2
.
=
b. Ống sáo:
Hở một đầu: âm cơ bản


b
4

0
=
(còn gọi là họa âm bậc 1);
hoạ âm bậc 3 là f
3
= 3f
0
; f
5
= 5f
0
… bậc n:
( )


b

4
12
+=
.
Hở 2 đầu: âm cơ bản


b
2
0
=
;
hoạ âm f

1
= 2f
0
; f
1
= 3f
0 ;
f… bậc n:


b

2
.
=
.
Chú ý: Đối với ống sáo hở 1 đầu, đầu kín sẽ là 1 nút, đầu hở sẽ là bụng
sóng nếu âm nghe to nhất và sẽ là nút nếu âm nghe bé nhất

Bài toán 21. Điện lượng qua mạch và đèn sáng tắt

+ Thời gian đèn sáng và tắt
- U
0
U
gh
0 U
gh
+ U
0

u = U
0
cos(ωt + φ)

+ Điện lượng chuyển qua tiết diện của dây dẫn trong khoảng thời gian



từ
1

đến
2

:

==

2
1


))

2
1



Bài toán 22. 17 dạng bài tập khó về dòng điện xoay chiều


Các dạng sau đây áp dụng cho đoạn mạch xoay chiều L – R – C mắc
nối tiếp

Dạng 1: Hỏi Điều kiện để có cộng hưởng điện mạch RLC và các hệ quả
13
R
C
L
M N
B
A
&wa8&
&wa8+

&w?
u

&w?
u
Đáp: Điều kiện Z
L
= Z
c
→ LCω
2
= 1
Khi đó Z = Z
min
= R ; I = I

max
=
U
R
cosφ = 1 ; P = P
max
=
2
U
R
Dạng 2: Cho R biến đổi
Hỏi R để P
max
, tính P
max
, hệ số công suất cosφ lúc đó?
Đáp : R = │Z
L
- Z
C
│,
2
Max
U 2
P = , cosφ =
2R 2
Dạng 3: Cho R biến đổi nối tiếp cuộn dây có r
Hỏi R để công suất trên R cực đại
Đáp : R
2

= r
2
+ (Z
L
- Z
C
)
2
Dạng 4: Cho R biến đổi , nếu với 2 giá trị R
1
, R
2
mà P
1
= P
2

Hỏi R để P
Max


Đáp R = │Z
L
- Z
C
│=
1 2
R R
Dạng 5: Cho C
1

, C
2
mà I
1
= I
2
(P
1
= P
2
)
Hỏi C để P
Max
(cộng hưởng điện)
Đáp
C1 C2
c L
Z + Z
Z = Z =
2
Dạng 6: Cho L
1
, L
2
mà I
1
= I
2
(P
1

= P
2
)
Hỏi L để P
Max
(cộng hưởng điện)
Đáp
L1 L2
L C
Z + Z
Z = Z =
2
Dạng 7: Hỏi với giá trị nào của C thì điện áp hiệu dụng trên tụ điện U
Cmax

Đáp Z
C
=
2 2
L
L
R + Z
Z
, Khi đó

2 2
ax
-
s
x e y

x
e
+
=

2 2 2 2 2 2
ax ax ax
; 0
s e - s - s
x x x x x x x x
= + + − − =
Dạng 8: Hỏi với giá trị nào của L thì điện áp hiệu dụng trên tụ điện U
Lmax

Đáp Z
L
=
2 2
C
C
R + Z
Z
, Khi đó

2 2
ax

-s
x e y
x

e
+
=

2 2 2 2 2 2
ax ax ax
; 0
= + + − − =
-s e  - s  -s
x x x x x x x x
Dạng 9: Hỏi điều kiện để φ
1
, φ
2
lệch pha nhau
π
2
(vuông pha nhau)
14
Đáp Áp dụng công thức tan φ
1
.tanφ
2
= -1
Dạng 10: Hỏi khi cho dòng điện không đổi trong mạch RLC thì tác dụng
của R, Z
L
, Z
C
?

Đáp : I = U/R Z
L
= 0 Z
C
=

Dạng 11: Hỏi Với ω = ω
1
hoặc ω = ω
2
thì I hoặc P hoặc U
R
có cùng
một giá trị thì I
Max
hoặc P
Max
hoặc U
RMax

Đáp khi :
1 2
ω ω ω
=
⇒ tần số
1 2
b b b
=
Dạng 12: Giá trị ω = ? thì I
Max

⇒ U
Rmax
; P
Max
còn U
LCMin
Đáp : khi
1
-
ω
=
(cộng hưởng)
Dạng 13: Hỏi: Hai giá trị của
ω
:
1 2
h h
ω ω
=

Đáp
2
1 2 0
ω ω ω
=

Dạng 14: Hỏi Hai giá trị của L :
1 2
- -
h h=


Đáp
1 2
2
0
2
ω
+ =- -


Dạng 15: Hỏi Hai giá trị của C :
1 2
 
h h=
Đáp
2
1 2 0
1 1 2
ω
+ =
  -
Dạng 16: Hỏi Hai giá trị của R :
1 2
e e
h h=
Đáp R
1
R
2
=

2
( )
- 
y y−
và R
1
+ R
2
=
2
x
h

Dạng 17: Hỏi khi điều chinh L để U
RC
không phụ thuộc vào R thì
Đáp: Khi đó Z
L
= 2 Z
C
Bài toán 23. TruyÒn t¶i ®iÖn n¨ng


xh,
: là công suất và điện
áp nơi truyền đi,
',' xh
: là
công suất và điện áp nhận được
nơi tiêu thụ; I: là cường độ

dòng điện trên dây, R: là điện
trở tổng cộng của dây dẫn truyền tải.
+ §é gi¶m thÕ trªn d©y dÉn:
zexxx
=−=∆
'
với I =
P
U

+ C«ng suÊt hao phÝ trªn ®êng d©y:
15

e
x
h
ezhhh .
cos
'
22
2
2

===
+ Hiệu suất tải điện:
h
hh
h
h
r


==
'
'
,
Chú ý:
+ Chú ý phân biệt hiệu suất của MBA
( )
r
và hiệu suất tải điện
( )
'r
.
+ Khi cần truyền tải điện ở khoảng cách

thì ta phải cần sợi dây dẫn
có chiều dài
2
.
Bi toỏn 24. Nng lng ca mch dao ng
Năng lợng điện trờng:

2
2
2 2
0
1 1
cos
2 2 2
tt

Q
q
W Cu t
C C

= = =
=
( )
22
0
2
1
z-
Năng lợng từ trờng:

2 2 2
0
1 1
sin
2 2
dt
W Li LI t

= =
=
( )
22
0
2
1

x
Năng lợng điện từ:

2 2
0 0
1 1
2 2
= + = =

{ { { x -z
2
2 2
0
1 1 1
2 2 2
Q
Li Cu
C
= + =

- Liờn h gia in tớch cc i v in ỏp cc i:
00
x^
=
- Liờn h gia in tớch cc i v dũng in cc i:
00
^z

=
- Biu thc c lp thi gian gia in tớch v dũng in:

2
2
22
0


)^
+=
Bi toỏn 25. Quỏ trỡnh bin i nng lng mch dao ng
Nu mch dao ng cú chu k T v tn s f thỡ N|8&i
|8p (

{{ ,
) dao ng vi tn s f= 2f, chu k T=
T/2
16
W
tt
= 3 W
t
W
tmax

W

= 0
W
t
= 3 W
tt

W
t
= W
tt
W
tmin
= 0
W
max
u
-U
0

0

U
2
0

0
U
2

0
U 2
2


0
U 3

2
+U
0
T/4 T/12 T/6

T/8 T/8

T/6 T/12
Ghi chú:
- Hai lần liên tiếp W
đt
= W
tt
là T/4
- Khi q cực đại thì u cực đại còn khi đó i cực tiểu (bằng 0) và ngược lại.
Bài toán 26. Tán sắc từ môi trường này sang môi trường khác
* Nếu dùng ánh sáng đơn sắc thì:
+ Màu đơn sắc không thay đổi (vì f không đổi)
+ Bước sóng đơn sắc thay đổi
Vận tốc và bước sóng của ánh sáng trong môi trường có chiết suất n:

#
 =
;

λ
λ
='
;
trong đó c và

λ
là vận tốc và bước sóng của ánh sáng trong chân không.
+ Dùng định luật khúc xạ để tìm góc khúc xạ
21
1
2
sin
sin





==
+ Nếu ánh sáng từ môi trường chiết quang lớn sang môi trường chiết
quang nhỏ phải x¸c ®Þnh


:
1
2
sin




=
* Nếu dùng ánh sáng trắng thì:
+ Có hiện tượng tán sắc và xuất hiện dãy quang phổ liên tục.
+ Các tia đơn sắc đều bị lệch

- Tia đỏ lệch ít so với tia tới;
- Tia tím lệch nhiều so với tia tới.
Bài toán 27. Thang sóng điện từ
Thường dùng giải quyết các câu hỏi lý thuyết so sánh các loại bức xạ
17
0,4
μm
0,75
μm
10
-11
m 10
-8
m 0,001m λ ↗(m)
f ↘(Hz)
Ghi chú
. #+1#(N|8H#n V
`# ! c}i;##5(n=A+
2
B
λ
)
#RH#+p c cG?#V%
cGc&Z
Bài toán 28. Vân sáng, tối 2,3 bức xạ trùng nhau

a. Vân sáng trùng màu vân sáng trung tâm
Khi sử dụng hai đơn sắc: vân sáng trùng màu với vân
trung tâm x
1

= x
2

1 2
1 2
D D
k k
a a
λ λ
=

1 2
2 1
k
A 2A 3A

k B 2B 3B
λ
= = = =
λ

với k
1
và k
2
là các số nguyên
+ Cặp số nguyên nhỏ nhất: trùng lần 1
+ Cặp số nguyên kế tiếp: trùng lần 2,3,…
Ghi chú:
~E;<@?#H#M

x = x
1
= nAi
1
hoặc x = x
2
= nBi
2
với n = 0, 1, 2, 3
* NU1&4a##V="}i
+
1 2
2 1
k
k
λ
=
λ
;
3
1
3 1
k
k
λ
=
λ

3
2

3 2
k
k
λ
=
λ
+ Lập bảng giá trị k
1
; k
2
; k
3
và tìm những vị trí trùng nhau ba bức
xạ
b. Các vân tối của hai bức xạ trùng nhau
x
t1
= x
t2
1 1 2 2
1 1
(k ).i (k ).i
2 2
⇔ + = +

18
Sóng vô
tuyến
Tia hồng
ngoại

Ánh
sáng
trắng
Tia tử
ngoại
Tia X
Tia
gama

1
2
1
2
1
k
A
2
1
B
k
2
+

= =

+

1
2
1 1

k A(n )
2 2
1 1
k B(n )
2 2

+ = +





+ = +



V trớ trựng: x
t
=
1 2
1 1
A(n )i B(n )i
2 2
+ = +
Vi n N
c. Võn sỏng ca bc x trựng võn ti ca bc x kia
Gi s: x
s1
= x
t2

1 1 2 2
1
k .i (k ).i
2
= +


1 2
1
2
k
A
1
B
k
2

= =

+

1
2
1
k A(n )
2
1 1
k B(n )
2 2


= +





+ = +



V trớ trựng: x
t
=
1 2
1 1
A(n )i B(n )i
2 2
+ = +
Vi n N
Bi toỏn 29. Giao thoa vi ỏnh sỏng trng
Đối với ánh sáng trng
( )
0,38 0,76
à à
= ữ
.
- Bề rộng vân sáng (quang ph) bậc k:

( ) ( )
&&G

G

GL

==

.
- Anh sáng đơn sắc có vân sáng tại điểm đang xét:

.G L

GL


= =
,
k đợc xác định từ bất phơng trình:
0,38 0,76


GL
à à

- Anh sáng đơn sắc có vân tối tại điểm đang xét:

( )
( )
2
2 1
2 2 1

L
G
G L


= + =
+
,
k đợc xác định từ bất phơng trình
( )
2
0,38 0,76
2 1


G L
à à

+
Lu ý: V trớ cú mu cựng mu vi võn sỏng trung tõm l v trớ trựng nhau
ca tt c cỏc võn sỏng ca cỏc bc x thnh phn cú trong ngun sỏng.

Bi toỏn 30. Chuyn ng ca electron trong t trng

19
+ Trong từ trờng đều: Bỏ qua trọng lực ta chỉ xét lực Lorenxơ:


sinFb
=

= ma =
2
v
m
R

( )
F


,=

+ Nếu vận tốc ban đầu vuông góc với cảm ứng từ:
Êlectron chuyển động tròn đều với bán kính

.
e
F
=
; bỏn kớnh cc i:
F

e
max0
max
=
Ghi chỳ: ^_&#&`G5=GG
<A&;&!|

2

0max
1
.
2
=mv eE s
Bi toỏn 31. Quang ph hidro
+ Khi nguyên tử đang ở mức năng lợng cao chuyn xuống mức năng l-
ợng thấp thì phát ra photon, ngợc lại chuyển từ mức năng lợng thấp
chuyn lên mức năng lợng cao nguyên tử sẽ hấp thu photon
b
@"#
=

+ Bỏn kớnh qu o dng th n ca electron trong nguyờn t hirụ:

0
2


=
Vi

11
0
10.3,5

=
: l bỏn kớnh Bo ( qu o K)
+ Mi liờn h gia cỏc bc súng v tn s ca cỏc vch quang ph
ca nguyờn t hirụ:

Thớ d
31
=
32
+
21

213231
111

+=

213231
bbb
+=

+ Nng lng electron trong nguyờn t hirụ:
2
13,6
( )

E

=-
Vi n N
*
: lng t s.
+ Nng lng ion húa hydro (t trng thỏi c bn)
W
cung cp

= E

- E
1


+ ng nng electron trờn qu o
W

= ẵ mv
2
=
2
13,6
( )

E

=-
20
 Chú ý: Khi nguyên tử ở trạng thái kích thích n (trạng thái thứ n) có
thể phát ra số bức xạ điện từ tối đa cho bởi công thức:
( )
n n 1
N
2

=
Bài toán 32. Cấu tạo hạt nhân
+ Kích thước (bán kính) của hạt nhân:


3
1
15
.10.2,1 0e

=

; với A là số khối của hạt nhân.
+ Mật độ khối lượng (khối lượng riêng)hạt nhân

X
m
D
V
=
Với
X
m
và V: khối lượng và thể tích hạt nhân
+ Mật độ điện tích hạt nhân

Q
q
V
=
Với Q là điện tích (chỉ gồm các prôtôn
V =
3
4

R
3
π
là thể tích hạt nhân

Bài toán 33. Phóng xạ tại hai thời điểm
N
0
N
0


0 ∆t
1
t ∆t
1
t

1
1 0
t
T
1
N N (1 )
2

∆ = −
(1)
2
2 0

t
T
1
N N '(1 )
2

∆ = −
(2)
Biết
0
0
t
T
N
N '
2
=
(3)
Giải hệ (1), (2) và (3) ta sẽ có kết quả

Bài toán 34. Tỉ số hạt sinh ra và số hạt còn lại
Bài tập 1: Biết tỉ số số hạt sinh ra và số hạt còn lại thời điểm t
1
; tìm tỉ số
này ở thời điểm t
2
?
0 t
1
t

2
t
21
N
0

Giải: Ta viết
1
k
sinhra
1
con 1
N
N
2 1 a
N N

= = − =
(1)
2
k
sinhra
2
con 2
N
N
2 1 b
N N

= = − =

(2)
Giải hệ (1) và (2) để tìm lời giải
Bài tập 2: Cho trước phản ứng: X → Y + x
4
2
He + y
0
1−
β

.
Chất phóng xạ X có chu kỳ bán rã là T.
Sau thời gian t = kT thì tỉ số số hạt α và số hạt X còn lại là?
Giải:
+  % !"nH
3$nUq#&V#5N
\
>.G
KQ%> `&∆N%>#,N
KHl> `&Y`i∆N�•#∆N
Kp&5}%C#V&+
Dạng 35. Công thức tính năng lượng của phản ứng hạt nhân
F#?#G%8 W = (M
trước
– M
sau
) c
2
Nếu F|8CG W = ∆E
sau

- ∆E
trước
F&!1G%#?# W = (∆m
sau
- ∆m
trước
)c
2
F&!|#?# W = W
sau
- W
trước


Chú ý: p, n và electron có độ hụt khối bằng 0.
Dạng 36. Tính động năng và vận tốc các hạt của phản hạt nhân
a. Nếu là phóng xạ
0⇢F3
Mo-F&!8

B C
p p 0+ =
uur uur

B C
p p=

B B C C
2m W 2m W=
(1)

R8"o-FN-

( )
2
toa truoc sau sau B C
W m m c W W W
= − = = +
(2)
Hệ (1) và (2) giúp ta giải đề bài

b. Nếu là phản ứng hạt nhân
Thường phải dùng 2 định luật
+ o;=n|8"V:
22

( )
2
toa truoc sau sau truoc
W m m c W W
= − = −
(Sử dụng độ hụt khối của các hạt nhân:
( )
2
0
#

)
+ R8"&;=n&!8(

A B C D

P P P P+ = +
r r r r

( ) ( )
2 2
A B C D
P P P P
+ = +
r r r r
3N#V"nYn&I#)a#&2<#?#&
8
Ghi chú
+ N|8#"nH@•D&!|#?#
+ Dùng phương pháp giải toán vecto và hình hoc
+ Từ đó suy ra đại lượng cần tìm ví dụ góc hợp bởi chiều chuyển động
của các hạt so với một phương nào đó…
+ Quan hệ độ lớn động lượng và động năng p = 2mW
MỤC LỤC
Bài
toán
Tên bài Tra
ng
Chương DAO ĐỘNG ĐIỀU HÒA
1 Một số khái niệm hay 2
2 Thời gian ngắn nhất để
vật đi từ x
1
đến x
2
3

3 Tính quãng đường vật đi
được trong thời gian t
3
4 GhÐp lß xo; cắt lò xo và
ghép vật
4
5 Lò xo bị nén và dãn 5
6 Vận tốc - lực căng dây của
con lắc đơn
5
7 Chu kỳ của con lắc đơn
phụ thuộc 5 yếu tố
6
8 Con lắc đơn chịu tác dụng
thêm một lực phụ không
đổi
6
9 Sơ đồ biến đổi động năng
– thế năng
7
10 Tổng hợp dao động điều
hòa
8
11 Dao động tắt dần có ma
sát
8
12 Dao động hệ vật dưới lò
xo
9
Chương SÓNG CƠ – SÓNG ÂM

13 Độ lệch pha của 2 điểm
trên phương truyền sóng
cách nhau một đoạn d
9
14 Phương trình sóng cơ 10
15 Tìm số điểm dao động cực
đại, cực tiểu giữa hai
nguồn
10
16 Tìm số cực đại, cực tiểu ở
ngoài đoạn thẳng nối 2
nguồn
11
17 Những điểm cùng và
ngược pha với một điểm
O nào đó
11
18 Quan hệ giữa thời gian và
biên độ sóng dừng
12
19 Sóng dừng 12
20 Giao thoa sóng âm 13
Chương DÒNG ĐIỆN XOAY CHIỀU
21 Điện lượng qua mạch và
đèn sáng tắt
13
22 17 dạng bài tập khó về
dòng điện xoay chiều
14
23

TruyÒn t¶i ®iÖn n¨ng
16
Chương DAO ĐỘNG ĐIỆN TỪ
24 Năng lượng của mạch dao 16
23
động
25 Quá trình biến đổi năng
lượng mạch dao động
17
Chương SÓNG ÁNH SÁNG
26 Tán sắc từ môi trường này
sang môi trường khác
17
27 Thang sóng điện từ 18
28 Vân sáng, tối 2, 3 bức xạ
trùng nhau
18
29 Giao thoa với ánh sáng
trắng
19
Chương LƯỢNG TỬ ÁNH SÁNG
30 Chuyển động của electron
trong từ trường
20
31 Quang phổ hidro 20
Chương PHÓNG XẠ - HẠT NHÂN
32 Cấu tạo hạt nhân dạng
mới
21
33 Phóng xạ tại hai thời điểm 22

34 Tỉ số hạt sinh ra và số hạt
còn lại
22
35 Tính năng lượng của phản
ứng hạt nhân
23
36 Tính động năng và vận tốc
các hạt của phản hạt nhân
23
Thầy Nguyễn Văn Dân
Mùa thi 2014
24

×