Tải bản đầy đủ (.pdf) (16 trang)

Báo cáo hóa học: "Research Article Existence and Multiple Solutions for Nonlinear Second-Order Discrete Problems with Minimum and Maximum" ppt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (529.83 KB, 16 trang )

Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2008, Article ID 586020, 16 pages
doi:10.1155/2008/586020
Research Article
Existence and Multiple Solutions for
Nonlinear Second-Order Discrete Problems with
Minimum and Maximum
Ruyun Ma and Chenghua Gao
College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China
Correspondence should be addressed to Ruyun Ma,
Received 15 March 2008; Revised 6 June 2008; Accepted 19 July 2008
Recommended by Svatoslav Stan ˇek
Consider the multiplicity of solutions to the nonlinear second-order discrete problems with
minimum and maximum: Δ
2
uk−1fk,uk, Δuk, k ∈ T,min{uk : k ∈

T}  A, max{uk :
k ∈

T}  B,wheref : T × R
2
→R,a,b∈ N are fixed numbers satisfying b ≥ a  2, and A, B ∈ R are
satisfying B>A,
T  {a  1, ,b− 1},

T  {a, a  1, ,b− 1,b}.
Copyright q 2008 R. Ma and C. Gao. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


1. Introduction
Let a, b ∈ N,a 2 ≤ b, T  {a  1, ,b− 1},

T  {a, a  1, ,b− 1,b}.Let

E :

u | u :

T −→ R

, 1.1
and for u ∈

E,let
u

E
 max
k∈

T


uk


. 1.2
Let
E :


u | u : T −→ R

, 1.3
and for u ∈ E,let
u
E
 max
k∈T


uk


. 1.4
It is clear that the above are norms on

E and E, respectively, and that the finite dimensionality
of these spaces makes them Banach spaces.
2 Advances in Difference Equations
In this paper, we discuss the nonlinear second-order discrete problems with minimum
and maximum:
Δ
2
uk − 1f

k, uk, Δuk

,k∈ T,
1.5

min

uk : k ∈

T

 A, max

uk : k ∈

T

 B,
1.6
where f : T × R
2
→ R is a continuous function, a, b ∈ N are fixed numbers satisfying b ≥ a  2
and A, B ∈ R satisfying B>A.
Functional boundary value problem has been studied by several authors 1–7.But
most of the papers studied the differential equations functional boundary value problem
1–6.Asweknow,thestudyofdifference equations represents a very important field in
mathematical research 8–12, so it is necessary to investigate the corresponding difference
equations with nonlinear boundary conditions.
Our ideas arise from 1, 3. In 1993, Brykalov 1 discussed the existence of two
different solutions to the nonlinear differential equation with nonlinear boundary conditions
x

 h

t, x, x



,t∈ a, b,
min

ut : t ∈ a, b

 A, max

ut : t ∈ a, b

 B,
1.7
where h is a bounded function, that is, there exists a constant M>0, such that |ht, x, x

|≤
M. The proofs in 1 are based on the technique of monotone boundary conditions developed
in 2.From1, 2, it is clear that the results of 1 are valid for functional differential equations
in general form and for some cases of unbounded right-hand side of the equation see 1,
Remark 3 and 5, 2, Remark 2 and 8.
In 1998, Stan
ˇ
ek 3 worked on the existence of two different solutions to the nonlinear
differential equation with nonlinear boundary conditions
x

tFxt, a.e.t∈ 0, 1,
min

ut : t ∈ a, b


 A, max

ut : t ∈ a, b

 B,
1.8
where F satisfies the condition that there exists a nondecreasing function f : 0, ∞ → 0, ∞
satisfying


0
ds/fs ≥ b − a,


0
s/fsds  ∞, such that


Fut


≤ f



u

t




. 1.9
It is not difficult to see that when we take Fut  ht, u, u

, 1.8 is to be 1.7,andF may
not be bounded.
But as far as we know, there have been no discussions about the discrete problems
with minimum and maximum in literature. So, we use the Borsuk theorem 13 to discuss
the existence of two different solutions to the second-order difference equation boundary
value problem 1.5, 1.6 when f satisfies
H1 f : T × R
2
→ R is continuous, and there exist p : T → R,q: T → R,r: T → R, such
that


fk, u, v


≤ pk|u|  qk|v|  rk, k, u, v ∈ T × R
2
, 1.10
where Γ : 1 − b − a

b−1
ia1
|pi|−

b−1

ia1
|qi| > 0.
In our paper, we assume

l
sk
us0, if l<k.
R. Ma and C. Gao 3
2. Preliminaries
Definition 2.1. Let γ :

E → R be a functional. γ is increasing if
x, y ∈

E : xk <yk, for k ∈

T ⇒ γx <γy. 2.1
Set
A 

γ | γ :

E −→ R is continuous and increasing

, A
0


γ | γ ∈A,γ00


. 2.2
Remark 2.2. Obviously, min{uk : k ∈

T}, max{uk : k ∈

T} belong to A
0
. Now, if we take
C  B − A, ωumin

uk : k ∈

T

, 2.3
then boundary condition 1.6 is equal to
ωuA, max

uk : k ∈

T

− min

uk : k ∈

T

 C. 2.4
So, in the rest part of this paper, we only deal with BVP 1.5, 2.4.

Lemma 2.3. Suppose c, d ∈ N,c<d,uuc,uc  1, ,ud.Ifthereexistη
1

2
∈{c, c 
1, ,d− 1,d},η
1

2
, such that uη
1
uη
2
 ≤ 0,then


uk


≤ d − c max
k∈{c, ,η
2
−1}


Δuk


,k∈


c, ,η
1

,


uk


≤ d − c max
k∈{η
1
, ,η
2
−1}


Δuk


,k∈

η
1
 1, ,η
2

,



uk


≤ d − c max
k∈{η
1
, ,d−1}


Δuk


,k∈

η
2
 1, ,d

.
2.5
Furthermore, one has
max
k∈{c, ,d}


uk


≤ d − c max
k∈{c, ,d−1}



Δuk


. 2.6
Proof. Without loss of generality, we suppose uη
1
 ≤ 0 ≤ uη
2
.
i For k ≤ η
1

2
, we have
uku

η
1


η
1
−1

ik
Δui,uku

η

2


η
2
−1

ik
Δui. 2.7
Then

η
2
−1

ik
Δui ≤ uk ≤−
η
1
−1

ik
Δui. 2.8
Furthermore,


uk


≤ max







η
2
−1

ik
Δui





,





η
1
−1

ik
Δui







, 2.9
which implies


uk


≤ d − c max
k∈{c, ,η
2
−1}


Δuk


. 2.10
4 Advances in Difference Equations
ii For η
1
<k≤ η
2
,weget
uku


η
1


k−1

iη
1
Δui,uku

η
2


η
2
−1

ik
Δui. 2.11
Then

η
2
−1

ik
Δui ≤ uk ≤
k−1


iη
1
Δui. 2.12
Furthermore,


uk


≤ max






η
2
−1

ik
Δui





,






k−1

iη
1
Δui






, 2.13
which implies


uk


≤ d − c max
k∈{η
1
, ,η
2
−1}


Δuk



. 2.14
iii For η
1

2
<k, we have
uku

η
1


k−1

iη
1
Δui,uku

η
2


k−1

iη
2
Δui. 2.15
Then

k−1

iη
2
Δui ≤ uk ≤
k−1

iη
1
Δui. 2.16
Furthermore,


uk


≤ max






k−1

iη
2
Δui






,





k−1

iη
1
Δui






, 2.17
which implies


uk


≤ d − c max
k∈{η
1

, ,d−1}


Δuk


. 2.18
In particular, it is not hard to obtain
max
k∈{c, ,d}


uk


≤ d − c max
k∈{c, ,d−1}


Δuk


. 2.19
Similarly, we can obtain the following lemma.
R. Ma and C. Gao 5
Lemma 2.4. Suppose c, d ∈ N,c<d,uuc,uc  1, ,ud.Ifthereexistsη
1
∈{c, c 
1, ,d− 1,d} such that uη
1

0,then


uk


≤ d − c max
k∈{c, ,η
1
−1}


Δuk


,k∈

c, ,η
1

,


uk


≤ d − c max
k∈{η
1
, ,d−1}



Δuk


,k∈

η
1
 1, ,d

.
2.20
In particular, one has
max
k∈{c, ,d}


uk


≤ d − c max
k∈{c, ,d−1}


Δuk


. 2.21
Lemma 2.5. Suppose γ ∈A

0
,c∈ 0, 1.Ifu ∈

E satisfies
γu − cγ−u0, 2.22
then there exist ξ
0

1


T, such that uξ
0
 ≤ 0 ≤ uξ
1
.
Proof. We only prove that there exists ξ
0


T, such that uξ
0
 ≤ 0, and the other can be proved
similarly.
Suppose uk > 0fork ∈

T. Then γu >γ00,γ−u <γ00. Furthermore,
γu − cγ−u > 0, which contradicts with γu − cγ−u0.
Define functional φ : va,va  1, ,vb − 1 → R by
φvmax


d−1

kc
vk : c ≤ d, c, d ∈

T \{b}

. 2.23
Lemma 2.6. Suppose uk is a solution of 1.5 and ωu0.Then
min

φΔu,φ−Δu


b − a

b−1

ia1


ri


. 2.24
Proof. Let
C




k | Δuk > 0,k∈

T \{b}

,C



k | Δuk < 0,k∈

T \{b}

, 2.25
and N
C

be the number of elements in C

,N
C

the number of elements in C

.
If C

 ∅, then φΔu0; if C

 ∅, then φ−Δu0. Equation 2.24 is obvious.

Now, suppose C

/
 ∅ and C

/
 ∅.Itiseasytoseethat
min

N
C

,N
C



b − a
2
. 2.26
At first, we prove the inequality
φΔu ≤
N
C

Γ
b−1

ia1



ri


. 2.27
Since ωu0, by Lemma 2.5 , there exist ξ
1

2


T,ξ
1
≤ ξ
2
, such that uξ
1
uξ
2
 ≤ 0.
Without loss of generality, we suppose uξ
1
 ≤ 0 ≤ uξ
2
.
6 Advances in Difference Equations
For any α ∈ C

, there exits β satisfying one of the following cases:
Case 1. β  min{k ∈


T \{b}|Δuk ≤ 0,k > α},
Case 2. β  max{k ∈

T \{b}|Δuk ≤ 0,k < α}.
We only prove that 2.27 holds when Case 1 occurs, if Case 2 occurs, it can be
similarly proved.
If Case 1 holds, we divide the proof into two cases.
Case 1.1. If uαuβ ≤ 0, without loss of generality, we suppose uα ≤ 0 ≤ uβ, then by
Lemma 2.3, we have


uk


≤ b
− a max
k∈{α, ,β−1}


Δuk


,k∈{α  1, ,β}. 2.28
Combining this with
0 ≥ uαuβ −
β−1

iα
Δui ≥−

β−1

iα
Δui, 2.29
we have


uk


≤ b − a max
k∈{α, ,β−1}


Δuk


,k∈{α, ,β}. 2.30
At the same time, for k ∈{α, ,β− 1}, we have Δuk > 0and
ΔukΔuβ −
β

ik1
Δ
2
ui − 1, ΔukΔuα
k

iα1
Δ

2
ui − 1. 2.31
For k  β,weget
0 ≥ ΔuβΔuα
β

iα1
Δ
2
ui − 1 ≥
β

iα1
Δ
2
ui − 1. 2.32
So, for k ∈{α, ,β},


Δuk


≤ max

k

iα1


Δ

2
ui − 1


,
β

ik1


Δ
2
ui − 1




β

iα1


Δ
2
ui − 1



β


iα1


f

i, ui, Δui




β

iα1



pi




ui





qi





Δui





ri




b−1

ia1



pi


b − a max
k∈{α, ,β−1}


Δuk






qi


max
k∈{α, ,β}


Δuk





ri



.
2.33
Thus


Δuα


≤ max
k∈{α, ,β}



Δuk



1
Γ
b−1

ia1


ri


. 2.34
R. Ma and C. Gao 7
Case 1.2 uαuβ ≥ 0. Without loss of generality, we suppose uα ≥ 0,uβ ≥ 0. Then ξ
1
will be discussed in different situations.
Case 1.2.1 ξ
1
<α≤ β.ByLemma 2.3 we take η
1
 ξ
1

2
 α, d  β,itisnotdifficult to see
that



uk


≤ b − a max
k∈{ξ
1
, ,β−1}


Δuk


,k∈

ξ
1
 1, ,β

. 2.35
For k  ξ
1
, we have
0 ≥ u

ξ
1

 uα −

α−1

iξ
1
Δui ≥−
α−1

iξ
1
Δui. 2.36
So, we get


uk


≤ b − a max
k∈{ξ
1
, ,β−1}


Δuk


,k∈

ξ
1
, ,β


. 2.37
At the same time, for k ∈{α, ,β},
ΔukΔuβ −
β

ik1
Δ
2
ui − 1, ΔukΔuα
k

iα1
Δ
2
ui − 1. 2.38
Combining this with Δuβ ≤ 0, Δuα > 0, we have


Δuk


≤ max

β

ik1


Δ

2
ui − 1


,
k

iα1


Δ
2
ui − 1




β

iα1


Δ
2
ui − 1



β


iα1



pi




ui





qi




Δui





ri





b−1

ia1



pi


b − a max
k∈{ξ
1
, ,β−1}


Δuk





qi


max
k∈{α1, ,β}


Δuk






ri



,
2.39
for k ∈{α, ,β}.
Also, for k ∈{ξ
1
, ,α− 1}, we have Δuk > 0and
ΔukΔuβ −
β

ik1
Δ
2
ui − 1, ΔukΔuα −
α

ik1
Δ
2
ui − 1. 2.40
Similarly, we get



Δuk



b−1

ia1



pi


b − a max
k∈{ξ
1
, ,β−1}


Δuk





qi


max

k∈{ξ
1
1, ,β}


Δuk





ri



. 2.41
8 Advances in Difference Equations
By 2.39 and 2.41,fork ∈{ξ
1
, ,β},


Δuk



b−1

ia1




pi


b − a max
k∈{ξ
1
, ,β}


Δuk





qi


max
k∈{ξ
1
, ,β}


Δuk






ri



. 2.42
Then


Δuα


≤ max
k∈{ξ
1
, ,β}


Δuk



1
Γ
b−1

ia1



ri


. 2.43
Case 1.2.2 α ≤ ξ
1
<β.ByLemma 2.3 we take c  α, η
1
 ξ
1

2
 β, it is easy to obtain that


uk


≤ b − a max
k∈{α, ,β−1}


Δuk


,k∈{α, ,β}. 2.44
At the same time, for k ∈{α, ,β},
ΔukΔuβ −
β


ik1
Δ
2
ui − 1, ΔukΔuα
k

iα1
Δ
2
ui − 1.
2.45
Together with Δuβ ≤ 0, Δuα > 0, we have


Δuk


≤ max

β

ik1


Δ
2
ui − 1


,

k

iα1


Δ
2
ui − 1




β

iα1


Δ
2
ui − 1



β

iα1



pi





ui





qi




Δui





ri




b−1

ia1




pi


b − a max
k∈{α, ,β−1}


Δuk





qi


max
k∈{α, ,β}


Δuk





ri




.
2.46
Thus


Δuα


≤ max
k∈{α, ,β}


Δuk



1
Γ
b−1

ia1


ri


. 2.47
Case 1.2.3 α<β≤ ξ

1
. Without loss of generality, we suppose β<ξ
1
when β  ξ
1
,by
Lemma 2.4, it can be proved similarly. Then from Lemma 2.3 we take c  α, η
1
 β, η
2

ξ
1
,itisnotdifficult to see that


uk


≤ b − a max
k∈{α, ,ξ
1
−1}


Δuk


,k∈


α, ,ξ
1

. 2.48
For k ∈{α, ,β− 1}, we have
ΔukΔuβ −
β

ik1
Δ
2
ui − 1. 2.49
R. Ma and C. Gao 9
Together with Δuβ ≤ 0andΔuk > 0, for k ∈{α, ,β− 1},weget


Δuk



β

ik1


Δ
2
ui − 1




β

ik1


f

i, ui, Δui




β

ik1



pi




ui






qi




Δui





ri




β

ik1



pi


b − a max
k∈{α, ,ξ
1
−1}



Δuk





qi


max
k∈{α, ,ξ
1
−1}


Δuk





ri



,
2.50
for k ∈{α, ,β− 1}.
Also, for k ∈{β, ,ξ

1
}, we have
ΔukΔuα
k

iα1
Δ
2
ui − 1, ΔukΔuβ
k

iβ1
Δ
2
ui − 1. 2.51
This being combined with Δuβ ≤ 0, Δuα > 0, we get


Δuk


≤ max

k

iα1


Δ
2

ui − 1


,
k

iβ1


Δ
2
ui − 1




ξ
1

iα1


Δ
2
ui − 1



ξ
1


iα1



pi


max
k∈{α, ,ξ
1
−1}


Δuk





qi


max
k∈{α, ,ξ
1
}


Δuk






ri



.
2.52
From 2.50 and 2.52,


Δuα


≤ max
k∈{α, ,ξ
1
}


Δuk



1
Γ
b−1


ia1


ri


. 2.53
At last, from Case 1 and Case 2,weobtain
Δuk ≤
1
Γ
b−1

ia1


ri


,k∈ C

. 2.54
Then by the definition of φ and 2.54,
φΔu ≤

k∈C

Δuk ≤


b−1
ia1


ri


Γ

k∈C


N
C

Γ
b−1

ia1


ri


. 2.55
10 Advances in Difference Equations
Similarly, we can prove
φ−Δu ≤
N
C


Γ
b−1

ia1


ri


. 2.56
From 2.26, 2.55,and2.56, the assertion is proved.
Remark 2.7. It is easy to see that φ is continuous, and
max

uk : k ∈

T

− min

uk : k ∈

T

 max

φΔu,φ−Δu

. 2.57

Lemma 2.8. Let C be a positive constant as in 2.3, ω as in 2.3, φ as in 2.23.Set
Ω

u, α, β | u, α, β ∈

E × R
2
, u

E
< C  1b − a,
|α| < C  1b − a, |β| <C 1

.
2.58
Define Γ
i
: Ω →

E × R
2
i  1, 2:
Γ
1
u, α, β

α  βk − a,α ωu,β φΔu − C

,
Γ

2
u, α, β

α  βk − a,α ωu,β φ−Δu − C

.
2.59
Then
DI − Γ
i
, Ω, 0
/
 0,i 1, 2, 2.60
where D denotes Brouwer degree, and I the identity operator on

E × R
2
.
Proof. Obviously, Ω is a bounded open and symmetric with respect to θ ∈ Ω subset of Banach
space

E × R
2
.
Define H, G : 0, 1 ×
Ω →

E × R
2
Hλ, u, α, β


α  βk − a,α ωu − 1 − λω−u,β φΔu
− φλ − 1Δu − λC

,
Gλ, u, α,βu, α, β − Hλ, u, α,β.
2.61
For u, α, β ∈
Ω,
G1,u,α,βu, α, β −

α  βk − a,α ωu,β φΔu − C



I − Γ
1

u, α, β.
2.62
By Borsuk theorem, to prove DI − Γ
1
, Ω, 0
/
 0, we only need to prove that the following
hypothesis holds.
a G0, ·, ·, · is an odd operator on
Ω,thatis,
G0, −u, −α, −β−G0,u,α,β, u, α, β ∈
Ω; 2.63

R. Ma and C. Gao 11
b H is a completely continuous operator;
c Gλ, u, α, β
/
 0forλ, u,α, β ∈ 0, 1 × ∂Ω.
First, we take u, α, β ∈
Ω, then
G0, −u, −α, −β
−u, −α, −β −

− α − βk − a, −α  ω−u − ωu, −β  φ−Δu − φΔu

 −

u, α, β − α  βk − a,α ωu − ω−u,β φΔu − φ−Δu


 −G0,u,α,β.
2.64
Thus a is asserted.
Second, we prove b.
Let λ
n
,u
n

n

n
 ⊂ 0, 1 × Ω be a sequence. Then for each n ∈ Z


and the fact k ∈

T, |λ
n
|≤1, |α
n
|≤C  1b − a, |β
n
|≤C  1, u

E
≤ C  1b − a. The Bolzano-Weiestrass
theorem and

E is finite dimensional show that, going if necessary to subsequences, we can
assume lim
n→∞
λ
n
 λ
0
, lim
n→∞
α
n
 α
0
, lim
n→∞

β
n
 β
0
, lim
n→∞
u
n
 u. Then
lim
n→∞
H

λ
n
,u
n

n

n

 lim
n→∞

α
n
 β
n
k − a,λ

n
 ω

u
n



1 − λ
n

ω

− u
n

,
β
n
 φ

Δu
n

− φ

λ
n
− 1


Δu
n

− λ
n
C



α
0
 β
0
k − a,λ
0
 ωu −

1 − λ
0

ω−u,
β
0
 φΔu − φ

λ
0
− 1

Δu


− λ
0
C.
2.65
Since ω and φ are continuous, H is a continuous operator. Then H is a completely continuous
operator.
At last, we prove c.
Assume, on the contrary, that
H

λ
0
,u
0

0

0



u
0

0

0

, 2.66

for some λ
0
,u
0

0

0
 ∈ 0, 1 × ∂Ω. Then
α
0
 β
0
k − au
0
k,k∈

T,
2.67
ω

u
0



1 − λ
0

ω


− u
0

 0, 2.68
φ

Δu
0

− φ

λ
0
− 1

Δu
0

 λ
0
C. 2.69
By 2.67 and Lemma 2.5 take u  u
0
,c 1 − λ
0
, there exists ξ ∈

T, such that u
0

ξ ≤ 0. Also
from 2.67, we have u
0
ξα
0
 β
0
ξ − a, then we get
u
0
ku
0
ξβ
0
k − ξ, 2.70
u
0
k ≤ β
0
k − ξ,k∈

T.
2.71
12 Advances in Difference Equations
Case 1. If β
0
 0, then u
0
k ≤ 0. Now, we claim u
0

k ≡ 0,k∈

T. In fact, u
0
k ≤ 0and2.68
show that there exists k
0


T satisfying u
0
k
0
0. This being combined with Δu
0
kβ
0
 0,
u
0
k ≡ 0,k∈

T. 2.72
So, α
0
 u
0
a0, which contradicts with u
0


0

0
 ∈ ∂Ω.
Case 2. If β
0
> 0, then from 2.67, Δu
0
k > 0, and the definition of φ, we have
φ

Δu
0

− φ

λ
0
− 1

Δu
0

 β
0
b − a. 2.73
Together with 2.69,wegetφβ
0
λ
0

C,and
β
0

λ
0
C
b − a
<C 1. 2.74
Furthermore, Δu
0
k > 0 shows that u
0
k is strictly increasing. From 2.68 and
Lemma 2.5, there exist ξ
0

1


T satisfying u
0
ξ
0
 ≤ 0 ≤ u
0
ξ
1
.Thus,u
0

a ≤ 0 ≤ u
0
b.It
is not difficult to see that
u
0
au
0

ξ
1


ξ
1
−1

ka
Δu
0
k ≥−
ξ
1
−1

ka
Δu
0
k, 2.75
that is,



u
0
a









ξ
1
−1

ka
Δu
0
k





< C  1b − a. 2.76
Similarly, |u
0

b| < C  1b −a, then we get u
0


E
< C  1b −a and |α
0
|  |u
0
a| <
C  1b − a, which contradicts with u
0

0

0
 ∈ ∂Ω.
Case 3. If β
0
< 0, then from 2.67,wegetΔu
0
kβ
0
< 0and
φ

Δu
0

− φ


λ
0
− 1

Δu
0



1 − λ
0

β
0
b − a. 2.77
By 2.69, we have

1 − λ
0

β
0
b − aλ
0
C. 2.78
If λ
0
 0, then β
0

b − a0. Furthermore, β
0
 0, which contradicts with β
0
< 0.
If λ
0
 1, then λ
0
C  0. Furthermore, C  0, which contradicts with C>0.
If λ ∈ 0, 1, then 1 − λ
0
β
0
b − a < 0,λ
0
C>0, a contradiction.
Then c is proved.
From the above discussion, the conditions of Borsuk theorem are satisfied. Then, we
get
DI − Γ
1
, Ω, 0
/
 0. 2.79
Set
Hλ, u, α, β

α  βk − a,α ωu − 1 − λω−u,
β  φ−Δu − φ


1 − λΔu

− λC

.
2.80
Similarly, we can prove
DI − Γ
2
, Ω, 0
/
 0. 2.81
R. Ma and C. Gao 13
3. The main results
Theorem 3.1. Suppose H1 holds. Then 1.5 and 1.6 have at least two different solutions when
A  0 and
C>
b − a

b−1

ia1


ri


. 3.1
Proof. Let A  0,C>b − a/2Γ


b−1
ia1
|ri|. Consider the boundary conditions
ωu0,φΔuC, 3.2
ωu0,φ−ΔuC. 3.3
Suppose uk is a solution of 1.5. Then from Remark 2.7,
max

uk : k ∈

T

− min

uk : k ∈

T

 max

φΔu,φ−Δu}. 3.4
Now, if 1.5 and 3.2 have a solution u
1
k, then Lemma 2.6 and 3.2 show that φ−Δu
1
 <
C and
max


u
1
k : k ∈

T

− min

u
1
k : k ∈

T

 C. 3.5
So, u
1
k is a solution of 1.5 and 2.4,thatis,u
1
k is a solution of 1.5 and 1.6.
Similarly, if 1.5, 3.3 have a solution u
2
k, then φΔu
2
 <Cand
max

u
2
k : k ∈


T

− min

u
2
k : k ∈

T

 C. 3.6
So, u
2
k is a solution of 1.5 and 2.4.
Furthermore, since φΔu
1
C and φΔu
2
 <C, u
1
/
 u
2
.
Next, we need to prove BVPs 1.5, 3.2,and1.5 and 3.3 have solutions,
respectively.
Set
Ω


u, α, β|u, α, β ∈

E × R
2
, u

E
< C  1b − a,
|α| < C  1b − a, |β| <C 1

.
3.7
Define operator S
1
: 0, 1 × Ω →

E × R
2
,
S
1
λ, u, α,β

α  βk − aλ
k−1

ia
i

la1

f

l, ul, Δul

,α ωu,β φΔu − C

. 3.8
Obviously,
S
1
0,u,α,βΓ
1
u, α, β, u, α, β ∈ Ω. 3.9
Consider the parameter equation
S
1
λ, u, α,βu, α, β,λ∈ 0, 1. 3.10
Now, we prove 3.10 has a solution, when λ  1.
14 Advances in Difference Equations
By Lemma 2.8, DI − Γ
1
, Ω, 0
/
 0. Now we prove the following hypothesis.
a S
1
λ, u, α,β is a completely continuous operator;
b
S
1

λ, u, α,β
/
u, α, β, λ, u, α, β ∈ 0, 1 × ∂Ω. 3.11
Since

E is finite dimensional, S
1
λ, u, α,β is a completely continuous operator.
Suppose b is not true. Then,
S
1

λ
0
,u
0

0

0



u
0

0

0


, 3.12
for some λ
0
,u
0

0

0
 ∈ 0, 1 × ∂Ω. Then
u
0
kα
0
 β
0
k − aλ
0
k−1

ia
i

la1
f

l, ul, Δul

,
3.13

ω

u
0

 0,
3.14
φ

Δu
0

 C. 3.15
From 3.13, u
0
k is a solution of second-order difference equation Δ
2
uk − 1
λ
0
fk,uk, Δuk.ByRemark 2.7, max
k∈

T\{b}
|Δu
0
k|≤C<C 1. And from 3.14, there
exist ξ
0


1


T, such that u
0
ξ
0
 ≤ 0 ≤ u
0
ξ
1
. Now, we can prove it in two cases.
Case 1. If there exists ξ ∈

T, such that u
0
ξ0, then
i for all k ∈{k, ,ξ},


u
0
k









u
0
ξ −
ξ−1

ik
Δu
0
i






ξ−1

ik


Δu
0
i


< C  1b − a. 3.16
ii For all k ∈{ξ  1, ,b},



u
0
k








u
0
ξ
k−1

iξ
Δu
0
i






k−1

iξ



Δu
0
i


< C  1b − a. 3.17
Case 2. If ∀k ∈

T, u
0
k
/
 0. Set
C



k | u
0
k > 0,k∈

T

,C



k | u
0

k < 0,k∈

T

,
k
0
 max C

,k
1
 min C

.
3.18
i For k ∈ C

,ifk<k
1
, then
u
0
ku
0

k
1


k

1
−1

ik
Δu
0
i < −
k
1
−1

ik
Δu
0
i, 3.19
that is,


u
0
k


<
k
1
−1

ik



Δu
0
i


< C  1b − a. 3.20
R. Ma and C. Gao 15
For k>k
1
,
u
0
ku
0

k
1


k−1

ik
1
Δu
0
i <
k−1

ik

1
Δu
0
i, 3.21
then


u
0
k


< C  1b − a. 3.22
ii Similarly, we can prove |u
0
k| < C  1b − a for k ∈ C

.
Combining Case 1 with Case 2,weget


u
0
k


< C  1b − a,k∈

T. 3.23
Moreover, α

0
 u
0
a,β
0
Δu
0
a,so,


α
0





u
0



E
< C  1b − a,


β
0



<C 1, 3.24 
which contradicts with u
0

0

0
 ∈ ∂Ω.
Similarly, consider the operator S
2
: 0, 1 × Ω →

E × R
2
,
S
2
λ, u, α,β

α  βk − a
k−1

ia
i

la1
f

l, ul, Δul


,α ωu,β φ−Δu − C

, 3.25
we can obtain a solution of BVP 1.5 and 3.3.
Theorem 3.2. Suppose H1 holds. Then 1.5 and 1.6 have at least two different solutions when
A, B ∈ R and
C>
b − a

b−1

ia1


ri


. 3.26
Proof. Obviously, ωAA.Set
ωuωu  A − A. 3.27
Then ω00. Define continuous function f
1
: T × R
2
→ R,
f
1

k, uk, Δuk


 f

k, vk, Δvk

,vkukA. 3.28
Then


f
1

k, uk, Δuk






f

k, vk, Δvk



≤ pk


vk



 qk


Δvk


 rk
≤ pk


uk


 qk


Δuk


 rkpkA.
3.29
Set rkrkpkA. Then f
1
satisfies H1.
By Theorem 3.1,
Δ
2
uk − 1f
1


k, uk, Δuk

,k∈ T,
3.30
ωu0, max

uk : k ∈

T

− min

uk : k ∈

T

 B − A : C
3.31
have at least two difference solutions u
1
k,u
2
k. Since uk is a solution of 3.30,ifand
only if ukA is a solution of 1.5,weseethat
u
i
ku
i
kA, i  1, 2 3.32
are two different solutions of 1.5 and 2.4, then u

i
k are the two different solutions of 1.5
and 1.6.
16 Advances in Difference Equations
Acknowledgments
This work was supported by the NSFC Grant no. 10671158, the NSF of Gansu Province
Grant no. 3ZS051-A25-016, NWNU-KJCXGC, the Spring-sun Program no. Z2004-1-62033,
SRFDPGrant no. 20060736001, and the SRF for ROCS, SEM 2006311.
References
1 S. A. Brykalov, “Solutions with a prescribed minimum and maximum,” Differencial’nye Uravnenija,
vol. 29, no. 6, pp. 938–942, 1993 Russian, translation in Differential Equations, vol. 29, no. 6, pp. 802–
805, 1993.
2 S. A. Brykalov, “Solvability of problems with monotone boundary conditions,” Differencial’nye
Uravnenija, vol. 29, no. 5, pp. 744–750, 1993 Russian , translation in Differential Equations, vol. 29,
no. 5, pp. 633–639, 1993.
3 S. Stan
ˇ
ek, “Multiplicity results for second order nonlinear problems with maximum and minimum,”
Mathematische Nachrichten, vol. 192, no. 1, pp. 225–237, 1998.
4 S. Stan
ˇ
ek, “Multiplicity results for functional boundary value problems,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 30, no. 5, pp. 2617–2628, 1997.
5 W. M. Whyburn, “Differential equations with g eneral boundary conditions,” Bulletin of the American
Mathematical Society, vol. 48, pp. 692–704, 1942.
6 R. Ma and N. Castaneda, “Existence of solutions of boundary value problems for second order
functional differential equations,” Journal of Mathematical Analysis and Applications, vol. 292, no. 1,
pp. 49–59, 2004.
7 A. Cabada, “Extremal solutions for the difference ϕ-Laplacian problem with nonlinear functional
boundary conditions,” Computers & Mathematics with Applications, vol. 42, no. 3–5, pp. 593–601, 2001.

8 R. Ma, “Nonlinear discrete Sturm-Liouville problems at resonance,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 67, no. 11, pp. 3050–3057, 2007.
9 R. Ma, “Bifurcation from infinity and multiple solutions for some discrete Sturm-Liouville problems,”
Computers & Mathematics with Applications, vol. 54, no. 4, pp. 535–543, 2007.
10 R. Ma, H. Luo, and C. Gao, “On nonresonance problems of second-order di ff
erence systems,”
Advances in Difference Equations, vol. 2008, Article ID 469815, 11 pages, 2008.
11 J P. Sun, “Positive solution for first-order discrete periodic boundary value problem,” Applied
Mathematics Letters, vol. 19, no. 11, pp. 1244–1248, 2006.
12 C. Gao, “Existence of solutions to p-Laplacian difference equations under barrier strips conditions,”
Electronic Journal of Differential Equations, vol. 2007, no. 59, pp. 1–6, 2007.
13 K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, Germany, 1985.

×