Tải bản đầy đủ (.pdf) (13 trang)

Báo cáo hóa học: " QUADRATIC OPTIMIZATION OF FIXED POINTS FOR A FAMILY OF NONEXPANSIVE MAPPINGS IN HILBERT SPACE" pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (530 KB, 13 trang )

QUADRATIC OPTIMIZATION OF FIXED POINTS
FOR A FAMILY OF NONEXPANSIVE MAPPINGS
IN HILBERT SPACE
B. E. RHO ADES
Received 10 September 2003
Given a finite family of nonexpansive self-mappings of a Hilbert space, a particular qua-
dratic functional, and a strongly positive selfadjoint bounded linear operator, Yamada
et al. defined an iteration scheme which converges to the unique minimizer of the qua-
dratic functional over the common fixed point set of the mappings. In order to obtain
their result, they needed to assume that the maps satisfy a commutative type condition.
In this paper, we establish their conclusion without the assumption of any type of com-
mutativity.
Finding an optimal point in the intersection F of the fixed point sets of a family of
nonexpansive maps is one that occurs frequently in various areas of mathematical sci-
ences and engineering. For example, the well-known convex feasibility problem reduces
to finding a point in the intersection of the fixed point sets of a family of nonexpan-
sive maps. (See, e.g., [3, 4].) The problem of finding an optimal point that minimizes a
given cost function Θ : Ᏼ
→ R over F is of wide interdisciplinary interest and practical
importance. (See, e.g., [2, 4, 5, 7, 14].) A simple algorithmic solution to the problem of
minimizing a quadratic function over F is of extreme value in many applications includ-
ing the set-theoretic signal estimation. (See, e.g., [5, 6, 10, 14].) The best approximation
problem of finding the projection P
F
(a) (in the norm induced by the inner product of
Ᏼ)fromanygivenpointa in Ᏼ is the simplest case of our problem. Some papers dealing
with this best approximation problem are [2, 9, 11].
Let Ᏼ be a Hilbert space, C a closed convex subset of Ᏼ,andT
i
,wherei = 1,2, ,N,
a finite family of nonexpansive self-maps of C,withF :=∩


n
i=1
Fix(T
i
) =∅. Define a qua-
dratic function Θ : Ᏼ → R by
Θ(u):=
1
2
Au,u−b, u∀u ∈ Ᏼ,(1)
where b ∈ Ᏼ and A is a selfadjoint strongly positive operator. We will also assume that
B := I − A satisfies B < 1, although this is not restrictive, since µA is strongly positive
Copyright © 2004 Hindawi Publishing Corporation
Fixed Point Theory and Applications 2004:2 (2004) 135–147
2000 Mathematics Subject Classification: 47H10
URL: />136 Quadratic optimization
with I − µA < 1foranyµ ∈ (0,2/A), and minimizing

Θ(u):=(1/2)µAu,u−µb, u
over F is equivalent to the original minimization problem.
Ya m ada e t a l. [13] show that there exists a unique minimizer u

of Θ over C if and
only if u

satisfies

Au

− b,u − u



≥ 0 ∀u ∈ C. (2)
In their solution of this problem, Yamada et al. [13] add the restriction that the T
i
satisfy
Fix

T
N
···T
1

=
Fix

T
1
T
N
···T
3
T
2

=
Fix

T
N−1

T
N−2
···T
1
T
N

. (3)
There are many nonexpansive maps, with a common fixed point set, that do not satisfy
(3). For example, if X = [0,1] and T
1
and T
2
are defined by T
1
x = x/2+1/4andT
2
x =
3x/4, then Fix(T
1
,T
2
) ={2/5},whereasFix(T
2
,T
1
) ={3/10}.
In our solution, we are able to remove restriction (3). We will take advantage of the
modified Wittmann iteration scheme developed by Atsushiba and Takahashi [1].
Let α

n1

n2
, ,α
nN
∈ (0,1], n = 1,2, Given the mappings T
1
,T
2
, ,T
N
,onecan
define, for each n,newmappingsU
1
, ,U
N
by
U
n1
= α
n1
T
1
+

1 − α
n1

I,
U

n2
= α
n2
T
2
U
n1
+

1 − α
n2

I,
.
.
.
U
n,N−1
= α
n,N−1
T
N−1
U
n,N−2
+

1 − α
n,N−1

I,

W
n
:= U
nN
= α
nN
T
N
U
n,N−1
+

1 − α
nN

I.
(4)
From [1, Lemmas 3.1 and 3.2], if the T
i
are n onexpansive, so are the U
ni
, and both sets
of functions have the same fixed point set.
The iteration scheme we will use is the following. Let b ∈ C and choose any u
0
∈ C.
Define {u
n
} by
u

n+1
= λ
n
b +

I − λ
n
A

W
n
u
n
,(5)
where the W
n
are the self-maps of C generated by (4).
Theorem 1. Let T
i
: Ᏼ → Ᏼ (i = 1, , N) be nonexpansive with nonempty common fixed
point set F =∅. Assume that {λ
n
} and {α
ni
} satisfy
(i) 0 ≤ λ
n
≤ 1,
(ii) lim λ
n

= 0,
(iii)

n≥1
λ
n
=∞,
B. E. Rhoades 137
(iv)

n≥1

n
− λ
n−1
| < ∞,
(v)

n≥1

ni
− α
n−1,i
| < ∞ for each i = 1,2, ,N.
Then, for any point u
0
∈ Ᏼ,thesequence{u
n
} generated by (5) converges strongly to the
unique minimizer u


of the function Θ of (1)overF.
Proof. From [15], u

exists and is unique. We will first assume that
u
0
∈ C
u

:=

x ∈ Ᏼ |


x − u






b − Au



1 −B

,(6)
where A and B are as previously defined.

For any x ∈ Ᏼ and 0 ≤ λ ≤ 1, define
T
λ
(x) = λb +(I − λA)W(x). (7)
Then, for any y ∈ Ᏼ, since W is nonexpansive,


T
λ
(x) − T
λ
(y)


=


(I − λA)

W(x) − W(y)





1 − λ

1 −B

x − y. (8)

Also, since u

∈ F,


T
λ

u


− u



= λ


b − Au



. (9)
Thus,


T
λ
(x) − u







T
λ
(x) − T
λ

u




+


T
λ

u


− u






1 − λ

1 −B



x − u



+ λ

1 −B



b − Au



1 −B



x − Au



1 −B
.

(10)
If, in (7), we make the substitution λ = λ
n
, T
λ
(x) = u
n+1
,andW(x) = W
n
u
n
,thenit
follows from (9)and(10)thatu
n
and W
n
u
n
belong to C
u

for each n.Thus,{u
n
} and
{W
n
u
n
} are bounded. Since B < 1, {BW
n

u
n
} is also bounded.
Let K denote the diameter of C
u

.
We may w rite (5)intheform
u
n+1
= λ
n
b +

I − λ
n
(I − B)

W
n
u
n
= λ
n
b +

I − λ
n

W

n
u
n
+ λ
n
BW
n
u
n
.
(11)
We will first show that
lim


u
n+1
− u
n


=
0. (12)
138 Quadratic optimization
Using (11), since each W
n
is nonexpansive and B < 1,


u

n+1
− u
n


=


λ
n
b +

1 − λ
n

W
n
u
n
+ λ
n
BW
n
u
n
− λ
n−1
b



1 − λ
n−1

W
n−1
u
n−1
− λ
n−1
BW
n−1
u
n−1





λ
n
− λ
n−1


b +

1 − λ
n




W
n
u
n
− W
n−1
u
n


+


λ
n
− λ
n−1




W
n−1
u
n−1


+


1 − λ
n



W
n−1
u
n
− W
n−1
u
n−1


+ λ
n
B


W
n
u
n
− W
n−1
u
n



+ λ
n
B


W
n−1
u
n
− W
n−1
u
n−1


+


λ
n
− λ
n−1




BW
n−1
u
n−1



≤ 3


λ
n
− λ
n−1


K +

1 − λ
n
+ λ
n
B

×



W
n
u
n
− W
n−1
u

n


+

1 − λ
n
+ λ
n
B



W
n−1
u
n
− W
n−1
u
n−1



.
(13)
From (4), since T
N
and U
n−1,N−1

are nonexpansive,


W
n
u
n
− W
n−1
u
n


=


α
nN
T
N
U
n,N−1
u
n
+

1 − α
nN

u

n
− α
n−1,N
T
N
U
n−1,N−1
u
n


1 − α
n−1,N

u
n





α
nN
− α
n−1,N




u

n


+


α
nN
T
N
U
n,N−1
u
n
− α
n−1,N
T
N
U
n−1,N−1
u
n





α
nN
− α

n−1,N




u
n


+


α
nN

T
N
U
n,N−1
u
n
− T
N
U
n−1,N−1
u
n




+


α
nN
− α
n−1,N




T
N
U
n−1,N−1
u
n





α
nN
− α
n−1,N





u
n


+ α
nN


U
n,N−1
u
n
− U
n−1,N−1
u
n


+


α
nN
− α
n−1,N


K
≤ 2K



α
nN
− α
n−1,N


+ α
nN


U
n,N−1
u
n
− U
n−1,N−1
u
n


.
(14)
Again, from (4),


U
n,N−1
u
n

− U
n−1,N−1
u
n


=


α
n,N−1
T
N−1
U
n,N−2
u
n
+

1 − α
n,N−1

u
n
− α
n−1,N−1
T
N−1
U
n−1,N−2

u
n


1 − α
n−1,N−1
u
n






α
n,N−1
− α
n−1,N−1




u
n


+


α

n,N−1
T
N−1
U
n,N−2
u
n
− α
n−1,N−1
T
N−1
U
n−1,N−2
u
n





α
n,N−1
− α
n−1,N−1




u
n



+ α
n,N−1


T
N−1
U
n,N−2
u
n
− T
N−1
U
n−1,N−2
u
n


+


α
n,N−1
− α
n−1,N−1


K

≤ 2K


α
n,N−1
− α
n−1,N−1


+ α
n,N−1


U
n,N−2
u
n
− U
n−1,N−2
u
n


≤ 2K


α
n,N−1
− α
n−1,N−1



+


U
n,N−2
u
n
− U
n−1,N−2
u
n


.
(15)
B. E. Rhoades 139
Therefore,


U
n,N−1
u
n
− U
n−1,N−1
u
n



≤ 2K


α
n,N−1
− α
n−1,N−1


+2K


α
n,N−2
− α
n−1,N−2


+


U
n,N−3
u
n
− U
n−1,N−3
u
n



.
.
.
≤ 2K
N−1

i=2


α
ni
− α
n−1,i


+


U
n1
u
n
− U
n−1,1
u
n



=


α
n1
T
1
u
n
+

1 − α
n1

u
n
− α
n−1,1
T
1
u
n


1 − α
n−1,1

u
n



+2K
N−1

i=2


α
ni
− α
n−1,i





α
n1
− α
n−1,1




u
n


+



α
n1
T
1
u
n
− α
n−1,1
T
1
u
n


+2K
N−1

i=2


α
ni
− α
n−1,i


≤ 2K
N−1


i=1


α
ni
− α
n−1,i


.
(16)
Substituting (16)into(14),


W
n
u
n
− W
n−1
u
n


≤ 2K


α
nN
− α

n−1,N


+2α
nN
K
N−1

i=1


α
ni
− α
n−1,i


≤ 2K
N

i=1


α
ni
− α
n−1,i


.

(17)
Using (17)in(13),


u
n+1
− u
n




1 − λ
n

1 −B



u
n
− u
n−1


+3K


λ
n

− λ
n−1


+2

1 − λ
n

1 −B

K
N

i=1


α
ni
− α
n−1,i


.
(18)
Thus, since 0 < 1− λ
n
(1 −B) < 1foralln,



u
n+m+1
− u
n+m



n+m

i=m

1 − λ
i

1 −B



u
i+1
− u
i



+3K

n+m

i=m



λ
i
− λ
i−1


+2K
n+m

i=m
N

j=1


α
ij
− α
i−1, j



.
(19)
140 Quadratic optimization
From (iii), since the product diverges to zero,
limsup
n



u
n+1
− u
n


=
limsup
n


u
n+m+1
− u
m+n


≤ 2K


i=m


λ
i
− λ
i−1



+2K


i=m
N

j=1


α
ij
− α
i−1, j


.
(20)
Therefore, taking the limsup
m
of both sides and using (iv) and (v),
limsup
n


u
n+1
− u
n



=
0, (21)
and (12)issatisfied.
Now, for any nonexpansive self-map T of C
u

,defineG
t
: C
u

→ C
u

by
G
t
(x) = tb +(1− t)TG
t
(x)+tBTG
t
(x) (22)
for each t ∈ (0,1]. Using an argument similar to the proof of [8, Theorem 12.2, page
45], we will now show that if T has a fixed point, then, for each x in C
u

, the strong
limit
t→0

G
t
(x) exists and is a fixed point of T.
Define y(t) = G
t
(x)andletw be a fixed point of T:
y(t) − w = t(b − w)+(1− t)

Ty(t) − w

+ tBTy(t). (23)
Since T is nonexpansive,


y(t) − w


≤ tb − w +(1− t)


Ty(t) − w


+ tB


Ty(t)


≤ tb − w +(1− t)



y(t) − w


+ tB


Ty(t)


,
t


y(t) − w


≤ tb − w +tB


Ty(t) − w


+ tBw,
(24)
or


y(t) − w



≤b − w + B


y(t) − w


+ Bw, (25)
which, since
B < 1, yields


y(t) − w



1
1 −B

b − w + Bw

, (26)
and y(t) remains bounded as t → 0.
Also,


BTy(t)



<


Ty(t)





Ty(t) − Tw


+ w≤


y(t) − w


+ w, (27)
and both BTy(t)andTy(t) remain bounded as t → 0.
Hence,


y(t) − Ty(t)


=
t



b − Ty(t)+BT y(t)


−→ 0ast −→ 0. (28)
B. E. Rhoades 141
Define y
n
= y(t
n
)andlett
n
→ 0. Let µ
n
be a Banach limit and f : C
u

→ R
+
defined by
f (z) = µ
n



y
n
− z


2


. (29)
Since f is continuous and convex, f (z) →∞as z→∞.SinceᏴ is reflexive, f attains
it infimum over C
u

.
Let M be the set of minimizers of f over C
u

.Ifu ∈ C
u

,then
f (Tu)
= µ
n



y
n
− Tu


2

=
µ
n




Ty
n
− Tu


2


µ
n



y
n
− u


2

=
f (u). (30)
Therefore, M is invariant under T. Since it is also bounded, closed, and convex, it must
contain a fixed point of T. Denote this fixed point by v.Then,

y
n

− Ty
n
, y
n
− v

=

y
n
− v, y
n
− v

+

v − Ty
n
, y
n
− v

=


y
n
− v



2
+

Tv− Ty
n
, y
n
− v

.
(31)
But



Tv− Ty
n
, y
n
− v






Tv− Ty
n





y
n
− v





y
n
− v


2
, (32)
so that

y
n
− Ty
n
, y
n
− v

≥ 0. (33)
Since
y

n
= t
n
b +

1 − t
n

Ty
n
+ t
n
BTy
n
,
y
n
− b =

1 − t
n

Ty
n
− b

+ t
n
BTy
n

=

1 − t
n

Ty
n
− y
n

+

1 − t
n

y
n
− b

+ t
n
BTy
n
,
(34)
thus,
t

y
n

− b

=

1 − t
n

Ty
n
− y
n

+ t
n
BTy
n
(35)
or
y
n
− b − Bv =
1 − t
n
t
n

Ty
n
− y
n


+ BTy
n
− Bv. (36)
Therefore, from (33),

y
n
− b − Bv, y
n
− v

=
1 − t
n
t
n

Ty
n
− y
n
, y
n
− v

+

BTy
n

− Bv, y
n
− v



BTy
n
− Bv, y
n
− v

.
(37)
142 Quadratic optimization
For any z ∈ C
u

,


y
n
− v


2
=



y
n


1 − t
n

v − t
n
z + t
n
(z − v) − t
n
b − t
n
Bv + t
n
(b + Bv)


2



y
n


1 − t
n


v − t
n
b − t
n
Bv


2
+2t
n

z − v + b+ Bv, y
n


1 − t
n

v − t
n
z − t
n
b − t
n
Bv

.
(38)
Let  > 0begiven.SinceᏴ is uniformly smooth, there exists a t

0
> 0suchthat,forall
t
n
≤ t
0
,



z − v + b+ Bv,

y
n
− v



y
n


1 − t
n

v − t
n
z − t
n
b − t

n
Bv



< . (39)
Thus, from (38),

z − v + b+ Bv, y
n
− v

<  +

z − v + b+ Bv, y
n


1 − t
n

v − t
n
z − t
n
b − t
n
B

<  +

1
2t



y
n
− v


2



y
n


1 − t
n

v − t
n
b − t
n
Bv


2


.
(40)
Since the Gateaux derivative exists in Ᏼ,weobtain
µ
n

z − v + b+ Bv, y
n
− v

≤ 0. (41)
Setting z = θ in (41) and adding (37)and(41)yields
µ
n

y
n
− v, y
n
− v

≤ µ
n

BTy
n
− Bv, y
n
− v


(42)
or
µ
n



y
n
− v


2

≤ µ
n



BTy
n
− Bv




y
n
− v




≤ µ
n

B


Ty
n
− Tv




y
n
− v



≤
Bµ
n



y
n
− v



2

.
(43)
Therefore, µ
n
y
n
− v
2
= 0. Thus, there is a subsequence of {y
n
} converging strongly
to v. Suppose that lim
k→∞
y(t
n
k
) = v
1
and lim
k→∞
y(t
m
k
) = v
2
.From(37), we have


v
1
− b − Bv
2
,v
1
− v
2



BTv
1
− Bv
2
,v
1
− v
2

,

v
2
− b − Bv
1
,v
2
− v

1



BTv
2
− Bv
1
,v
2
− v
1

.
(44)
Adding these inequalitites, we obtain

v
1
− BTv
1
+ BTv
2
− v
2
,v
1
− v
2


≤ 0 (45)
or

v
1
− v
2
,v
1
− v
2



BTv
1
− BTv
2
,v
1
− v
2

; (46)
B. E. Rhoades 143
that is,


v
1

− v
2


2



BTv
2
− BTv
1




v
1
− v
2


≤B


Tv
2
− Tv
1





v
1
− v
2


≤B


v
2
− v
1


2
,
(47)
which, since B < 1, implies that v
1
= v
2
, and thus lim y
n
= v.
Now, setting z = θ in (41), we obtain
µ

n

b − (I − B)v, y
n
− v

≤ 0 (48)
or
µ
n

b − Av, y
n
− v

≤ 0, (49)
which, from (2), implies that v = u

.
Let u
nk
denote the unique element of C
u

such that
u
nk
=
1
k

b +

1 −
1
k

W
n
u
nk
+
1
k
BW
n
u
nk
. (50)
From what we have just proved, lim
k
u
nk
→ u

. Using (11),


u
n+1
− W

n+1
u
n+1,k


=


λ
n
b +

1 − λ
n
+ λ
n
B

W
n
u
n
− W
n+1
u
n+1,k


≤ λ
n



b − W
n+1
u
n+1,k


+

1 − λ
n



W
n
u
n
− W
n+1
u
n+1,k


+ λ
n
B



W
n
u
n
− W
n+1
u
n+1,k


+ λ
n


BW
n+1
u
n+1,k


< 3Kλ
n
+

1 − λ
n
+ λ
n
B




W
n
u
n
− W
n
u
nk


+


W
n
u
nk
− W
n
u
n+1,k


+


W
n

u
n+1,k
− W
n+1
u
n+1,k



≤ 3Kλ
n
+

1 − λ
n
+ λ
n
B



u
n
− u
nk


+



u
nk
− u
n+1,k


+


W
n
u
n+1,k
− W
n+1
u
n+1,k



.
(51)
As in (17),


W
n
u
n+1,k
− W

n+1
u
n+1,k


≤ 2K
N

i=1


α
n+1,i
− α
ni


. (52)
From the definition of u
nk
,
u
nk
=
1
k
b +

1 −
1

k

W
n
u
nk
+
1
k
BW
n
u
nk
,
u
n+1,k
=
1
k
b +

1 −
1
k

W
n+1
u
n+1,k
+

1
k
BW
n+1
u
n+1,k
,
u
n+1,k
− u
nk
=

1 −
1
k


W
n+1
u
n+1,k
− W
n
u
nk

+
1
k

B

W
n+1
u
n+1,k
− W
n
u
nk

.
(53)
144 Quadratic optimization
Therefore, since W
n+1
is nonexpansive,


u
n+1,k
− u
nk




1 −
1
k

+
1
k
B



W
n+1
u
n+1,k
− W
n
u
nk




1 −
1
k
+
1
k
B





W
n+1
u
n+1,k
− W
n+1
u
nk


+


W
n+1
u
nk
− W
n
u
nk





1 −
1
k
+

1
k
B




u
n+1,k
− u
nk


+


W
n+1
u
nk
− W
n
u
nk



.
(54)
Thus, using (17),


1 −B

k


u
n+1,k
− u
nk




k − 1+B

k
2K
N

i=1


α
n+1,i
− α
n,i


(55)

or


u
n+1,k
− u
nk




k − 1+B

1 −B
2K
N

i=1


α
n+1,i
− α
n,i


. (56)
Substituting (56)and(52)into(51)yields



u
n+1
− W
n+1
u
n+1,k


≤ 3Kλ
n
+

1 − λ
n
+ λ
n
B



u
n
− u
nk


+

k
1 −B


2K
N

i=1


α
n+1,i
− α
n,i


.
(57)
Thus, using (iii) and (v), we have
µ
n



u
n
− W
n
u
nk


2


=
µ
n



u
n+1
− W
n+1
u
n+1,k


2

≤ µ
n



u
n
− u
nk


2


. (58)
From (53),
u
nk
− u
n
=
1
k

b − u
n

+

1 −
1
k


W
n
u
nk
− u
n

+
1
k

BW
n
u
nk
. (59)
Hence,

1 −
1
k


u
n
− W
n
u
nk

=
u
n
− u
nk

1
k

u
n

− b

+
1
k
BW
n
u
nk
, (60)

1 −
1
k

2


u
n
− W
n
u
nk


2




u
n
− u
nk


2

2
k

u
n
− b − BW
n
u
nk
,u
n
− u
nk

=

1 −
2
k




u
n
− u
nk


2

2
k

u
nk
− b − BW
n
u
nk
,u
n
− u
nk

.
(61)
B. E. Rhoades 145
Therefore, using (58)and(61),

1 −
1
k


2
µ
n


u
n
− u
nk


2


1 −
1
k

2
µ
n


u
n
− W
n
u
nk



2


1 −
2
k

µ
n


u
n
− u
nk


2

2
k
µ
n

u
nk
− b − BW
n

u
nk
,u
n
− u
nk

,
(62)
which implies that
1
2k
µ
n



u
n
− u
nk


2

≥ µ
n

b − u
nk

+ BW
n
u
nk
,u
n
− u
nk

. (63)
Since lim
k
u
nk
→ u

, independent of n, it follows that
0 ≥ µ
n

b − u

+ Bu

,u
n
− u


= µ

n

b − (I − B)u

,u
n
− u


=
µ
n

b − Au

,u
n
− u


.
(64)
From (12),
lim



b − u

,u

n+1
− u




b − u

,u
n
− u




=
0. (65)
We need the following result from [12]. If A is a real number and {a
1
,a
2
, }∈

such
that µ
n
{a
n
}≤a for all Banach limits µ
n

and limsup
n
(a
n+1
− a
n
) ≤ 0, then limsup
n
a
n
≤ a.
Consequently,
limsup
n

b − u

,u
n
− u


≤ 0. (66)
Since u

∈ F,


W
n

u
n
− u



=


W
n
u
n
− W
n
u






u
n
− u



. (67)
From (11),

u
n+1
− u

= λ
n

b − u


+

1 − λ
n

W
n
u
n
− u


+ λ
n
BW
n
u
n
= λ
n


b − u


+

1 − λ
n
+ λ
n
B

W
n
u
n
− u


+ λ
n
Bu

(68)
or

1 − λ
n
+ λ
n

B

W
n
u
n
− u


=
u
n+1
− u

− λ
n

b − u


− λ
n
Bu

. (69)
Therefore,

1 − λ
n
+ λ

n
B

2


W
n
u
n
− u



2



u
n+1
− u



2
− 2λ
n

b − u


+ Bu

,u
n+1
− u


,
(70)
146 Quadratic optimization
which implies that


u
n+1
− u



2


1 − λ
n
+ λ
n
B

2



W
n
u
n
− u



2
+2λ
n

b − u

,u
n+1
− u


+2λ
n

Bu

,u
n+1
− u



.
(71)
From (ii) and the boundedness of C
u

, there exists a positive integer N such that, for
all n ≥ N,
λ
n

b − u

,u
n+1
− u




4
, λ
n

Bu

,u
n+1
− u





4
. (72)
Therefore, for n ≥ N,


u
n+1
− u



2


1 − λ
n
+ λ
n
B

2


u
n
− u




2
+

2
+

2
,


u
n+m
− u



2


n+m−1

i=m

1 − λ
i
+ λ
i
B


2



u
m
− u



2
+ 

n+m−1

i=m

1 − λ
i
+ λ
i
B


2
.
(73)
Using (iii),
limsup
n



u
n
− u



2
= limsup
n


u
n+m
− u



2
≤ 0. (74)
Thus, {u
n
} converges strongly to u

.
Now let u
0
∈ Ᏼ.Let{s
n

} be another sequence generated by (11)forsomes
0
∈ C
u

.
Then, by what we have just proved, lims
n
= u

.SinceW
n
is nonexpansive for each n,


u
n+1
− s
n+1


=


λ
n
b +

1 − λ
n

A

W
n
u
n
− λ
n
b −

1 − λ
n
A

W
n
s
n






1 − λ
n
A

W
n

u
n
− W
n
s
n





1 − λ
n
+ λ
n
B



W
n
u
n
− W
n
s
n





1 − λ
n
+ λ
n
B



u
n
− s
n


.
(75)
By induction,


u
n
− s
n





u

0
− s
0


n

k=1

1 − λ
k

1 −B

. (76)
Therefore, using (iii), limu
n
− s
n
=0andu
n
− u

≤u
n
− s
n
 + s
n
− u


 so that
limu
n
= u

. 
B. E. Rhoades 147
References
[1] S. Atsushiba and W. Takahashi, Strong convergence theorems for a finite family of nonexpansive
mappings and applications, Indian J. Math. 41 (1999), no. 3, 435–453.
[2] H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in
Hilbert space, J. Math. Anal. Appl. 202 (1996), no. 1, 150–159.
[3] H. H. Bauschke and J. M. Borwein, On projection algorithms for s olving convex feasibility prob-
lems,SIAMRev.38 (1996), no. 3, 367–426.
[4] P. L. Combettes, The foundations of set theoretic estimation, Proc. IEEE 81 (1993), no. 2, 182–
208.
[5] , Constrained image recovery in a product space, Proceedings of the IEEE International
Conference on Image Processing (Washington, DC, 1995), IEEE Computer Socitey Press,
California, 1995, pp. 2025–2028.
[6] P.L.CombettesandP.Bondon,Adaptive linear filtering with convex constraints, Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Detroit,
Mich, 1995), Institute of Electrical and Electronics Engineers, New Jersey, 1995, pp. 1372–
1375.
[7] F. Deutsch and H. Hundal, The rate of convergence of Dykstra’s cyclic projections algorithm: the
polyhedral case, Numer. Funct. Anal. Optim. 15 (1994), no. 5-6, 537–565.
[8] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings,
Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, New
York, 1984.
[9] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957–961.

[10] A. N. Iusem and A. R. De Pierro, On the convergence of Han’s method for convex programming
with quadratic objective,Math.Program.52 (1991), no. 2, Ser. B, 265–284.
[11] P. L. Lions, Approximation de points fixes de contractions,C.R.Acad.Sci.ParisS
´
er. A-B 284
(1977), no. 21, A1357–A1359 (French).
[12] G. G. Lorentz, A contribut ion to the theory of divergent sequences,ActaMath.80 (1948), 167–
190.
[13] I. Yamada, N. Ogura, Y. Yamashita, and K. Sakaniwa, Quadratic optimization of fixed points of
nonexpansive mappings in Hilbert space, Numer. Funct. Anal. Optim. 19 (1998), no. 1-2,
165–190.
[14] D. C. Youla, Mathematical theory of image restoration by the method of convex projections,Image
Recovery: Theory and Applications (H. Stark, ed.), Academic Press, Florida, 1987, pp. 29–
77.
[15] E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Opera-
tors, Springer-Verlag, New York, 1990.
B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106,
USA
E-mail address:

×