Tải bản đầy đủ (.pdf) (10 trang)

SỬ DỤNG ẢNH VỆ TINH CÓ ĐỘ PHÂN GIẢI CAO - IKONOS VÀ GIS ĐỂ THÀNH LẬP BẢN ĐỒ CỎ BIỂN TRƯỜNG HỢP NGHIÊN CỨU TẠI CỬA SÔNG KRABI, THÁI LAN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (751.86 KB, 10 trang )

<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">

<b>SỬ DỤNG ẢNH VIỄN THÁM VÀ GIS ĐỂ LẬP BẢN ĐỒ CỎ BIỂN: TRƯỜNG HỢP NGHIÊN CỨU TẠI CỬA SÔNG KRABI, THÁI LAN </b>

Nguyễn Xuân Vỵ

<i>Viện Hải dương học, Nha Trang </i>

<b><small>Tóm tắt </small></b> <small>Cửa sông Krabi là một phần của vịnh Phangnga, biển Andaman, Thái Lan. Thảm cỏ biển tại đảo Siboya là thảm cỏ biển lớn thứ ba ở Thái Lan. Có chín lồi cỏ biển được ghi nhận tại khu vực nghiên cứu, và tổng diện tích của thảm cỏ biển gần 10km2. Các thảm cỏ biển tại đảo Siboya được sử dụng như một ngư trường khai thác cho cộng đồng địa phương xung quanh. Tuy nhiên, các thảm cỏ biển này đang bị đe dọa do các hoạt động khai thác thủy sản, nạo vét kênh rạch và các hoạt động trên đất liền. Nghiên cứu này nhằm mục đích phát triển một phương thức sử dụng ảnh vệ tinh có độ phân giải cao - IKONOS và GIS để thành lập bản đồ cỏ biển. Các mơ hình LAI, PCA, NDVI và FCC được sử dụng để cải thiện hình ảnh. Phương pháp Maximum Likelihood Classification được sử dụng để phân lớp. Độ chính xác của việc lập bản đồ cỏ biển đạt được trong nghiên cứu này là 87,9%. Các kết quả từ việc phân tích hình ảnh chỉ ra rằng tổng diện tích cỏ biển là 9.344 km</small><sup>2</sup><small> trong đó thảm cỏ biển có độ bao phủ 60 – 75% chiếm 27% trong toàn khu vực. </small>

<b>USE OF REMOTE SENSING IMAGE AND GIS TO MAP THE SEAGRASS BED: STUDY CASE IN KRABI ESTUARY, THAILAND </b>

Nguyen Xuan Vy

<i>Institute of Oceanography, 01 Cauda, Vinh Nguyen, Nhatrang City, Vietnam </i>

<b><small>Abstract </small></b> <small>Krabi estuary is a part of Phangnga bay, the Andaman sea. Seagrass bed in Siboya island is the third biggest in Thailand. Nine species of seagrass were recorded in the study area. Seagrass beds in Siboya island have been using as main fishing ground by local communities. However, these seagrass beds are under threats from fishing activities, channel dredging and land development activities. This study aimed at developing an approach of using high spatial resolution image - IKONOS and GIS to map seagrass bed. LAI, PCA. NDVI and FCC models are applied to enhance image. Maximum Likelihood Classification is used for classification. User accuracy of mapping seagrass achieved in this study is 87.9%. Results from image analysis show that the total area of seagrass bed is 9,344 km2 in which seagrass beds with coverage of 60 – 75% occupy 27% of the area. </small>

</div><span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2">

<b>I. GIỚI THIỆU </b>

Cỏ biển được tìm thấy ở các vùng nhiệt đới và vùng nước ấm trên thế giới và tạo thành một thành phần quan trọng của hệ sinh thái ven bờ (den Hartog, 1970; Fortes, 1993; Lewmanomont, 1995). Chúng là thức ăn chính của bị biển, rùa và các động vật biển khác, cung cấp bề mặt cho các sinh vật sống bám như rong biển và nhiều động vật kích thước nhỏ khác (Fortes, 1993). Trên thế giới đã phát hiện được 60 loài. Tuy nhiên, phân bố của cỏ biển đang bị suy giảm do các hoạt động của con người và thiên nhiên (UNDP, 2004). Cỏ biển cũng có chức năng vật lý quan trọng trong môi trường biển (Fortes, 1993; Green and Short, 2003). Chúng tham gia vào sản xuất sơ cấp, và có vai trị quan trọng trong chu trình dinh dưỡng của hệ sinh thái ven bờ. Hệ thống rễ và thân ngầm của cỏ biển cố định nền đáy và trầm tích (Bradley, 1997). Ngồi ra, chúng còn bẫy và lưu trữ vật chất trong trầm tích ven bờ (Gacia, 2003; Fortes, 2004).

Tại Thái Lan, độ bao phủ cỏ biển và các quần xã sống trong cỏ biển đang bị suy thoái trong những năm gần đây do nhiều nguyên nhân khác nhau (Supanwanid và Lewmanomont, 1996; UNEP, 2004). Supanwanid và Lewmanomont (1996) chỉ ra bốn nguyên nhân chính: (1) biên độ mặn quá cao tại các khu vực có đập ngăn mặn, hoạt động thủy lợi; (2) trầm tích trong nước tăng cao do rừng ngập mặn bị phá hủy, phát triển ven bờ các khu du lịch, bến cảng, đường xá và nạo vét luồng lạch; (3) nước thải từ các khu nuôi tôm, nước thải thành phố và các khu công nghiệp mang theo các mầm bệnh và tích tụ trong trầm tíc; và (4) các hoạt động khai thác thủy sản trong cỏ biển như hình thức lưới cào, hoạt động đánh bắt con non hay đào nền đáy để bắt các loại thân mềm, cua sống trong cỏ biển.

Viễn thám và hệ thống thông tin địa lý là công cụ được sử dụng cho việc thu thập, lưu trữ, truy xuất và diễn đạt dữ liệu không gian từ thế giới thực (Burough, 1986; Aronoff, 1989). Phát triển bền vững hệ sinh thái cỏ biển đòi hỏi cơ sở thơng tin chính xác từ nhiều nguồn dữ liệu khác nhau, do vậy kỹ thuật RS và GIS rất hữu ích để diễn đạt mối liên hệ giữa hệ sinh thái cỏ biển và

<i>những yếu tố khác liên quan đến chúng (Bradley, 1997; Douven et al., 2003). </i>

Ứng dụng của RS và GIS vào quản lý đới bờ gồm lập bản đồ cỏ biển, biến động diện tích, bản đồ độ sâu (Kirkman, 1996; Green và cs, 2000). Trong bài báo này, lập bản đồ cỏ biển sử dụng ảnh có độ phân giải cao – IKONOS – được ứng dụng cho quản lý cỏ biển tại đảo Siboya, cửa sông Krabi, vịnh Phangnga, Thái Lan.

</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3">

<b>II. TÀI LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU 1. Khu vực nghiên cứu </b>

Cửa sông Krabi từ 7° 51′ đến 8° 06′ vĩ độ bắc và từ 98° 53′ đến 99° 02′ kinh độ đông. Trong nghiên cứu này, khu vực được chọn thuộc huyện Nau Klong là một phần của vịnh Phangnga, biển Andaman.

<small>Hình 1. Tỉnh Krabi và khu vực nghiên cứu </small>

<b>2. Dữ liệu viễn thám </b>

Chúng tôi sử dụng ảnh IKONOS chụp ngày 15/11/2002. Ảnh bao quát diện tích 18 km2 bao gồm thảm cỏ biển tại đảo Siboya. Ảnh IKONOS gồm 4 băng: xanh lá (0,45 – 0,52 μm), xanh dương (0,52 – 0,60 μm), đỏ (0,63 – 0,69 μm) và băng có bước sóng 0,76 – 0,90 μm (gần hồng ngoại) với độ phân giải 4m.

<b>3. Xử lý ảnh </b>

Ảnh IKONOS được xử lý bằng phần mềm ENVI (Environment for Visualizing Images) version 4.0. Các bước tiến hành chính được biểu diễn qua sơ đồ sau:

<b>4. Khảo sát thực địa </b>

Khảo sát thực địa được thực hiện tại thảm cỏ biển 1 năm sau khi chụp hình ảnh nhưng cùng một mùa. Các trạm được đặt dọc theo các mặt cắt vng góc với bờ. Tại mỗi trạm (tổng cộng 91 trạm), ghi nhận số liệu về độ sâu, độ trong suốt,

</div><span class="text_page_counter">Trang 4</span><div class="page_container" data-page="4">

hiện trạng tự nhiên nền đáy bao gồm độ bao phủ cỏ biển, khu vực có cỏ biển ở vùng nước nơng, khu vực có cỏ biển ở vùng nước sâu, đáy bùn khơng có cỏ biển, đáy cát khơng có cỏ biển.

<small>Hình 2. Các bước xử lý ảnh IKONOS </small>

<b>III. KẾT QUẢ NGHIÊN CỨU </b>

<b>1. Phân tích thành phần cơ bản (Principle Component Analysis) </b>

Trong nghiên cứu này, ảnh thành phần cơ bản (Principle Component - PC) được xuất ra dựa trên các băng ánh sáng nhìn thấy được và băng gần hồng ngoại (band 1-4). Bốn PC băng được tính tốn và cho ra các ảnh PC1, PC2, PC3. Trong ảnh PC, khu vực có cỏ biển và khu vực khơng có cỏ biển được nhìn thấy trong PC1. Cỏ biển có màu sậm hơn so với khu vực khơng có cỏ biển. Tuy nhiên, ảnh PC này khơng thể phân biệt được có cỏ biển hay khơng có cỏ biển ở vùng nước sâu hơn.

</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5">

<b>2. Tổ hợp màu (False Color Composite) </b>

Tổ hợp màu (FCC) của nhiều băng được xuất ra. Trong số những FCC được hình thành có ba ảnh FCC cho chúng tơi hình ảnh rõ nét đó là 432, 431 và 321. Trong tổ hợp màu FCC của IKONOS băng 4,3 và 2 (Red, Green, Blue) cỏ biển có màu đất nung xiena, cịn vùng nước có độ sâu > 10m có màu xiena nhạt. Vùng nước nông với đáy là bùn có màu hồng nhạt. Vùng nước nơng đáy cát có màu lục lam (cyan), các dải cát có màu trắng. Trong tổ hợp màu FCC của IKONOS băng 4,3 và 1 (Red, Green, Blue) thảm cỏ biển xuất hiện rõ ràng hơn, cỏ biển có màu đất nung xiena, cịn vùng nước có độ sâu > 10m có màu hồng. Trong ảnh FCC 431 này, cỏ biển ở vùng nước sâu và vùng nước nơng có sự khác biệt nhau về màu sắc. Cỏ biển vùng nước nơng có màu xiena nhạt, màu cỏ biển ở vùng nước sâu có mầu xiena sẫm hơn. Vực nước đáy bùn có màu hồng nhạt. Vực nước đáy cát có màu lục lam (cyan). Trong FCC 431, dải cát cũng có màu trắng. Trong tổ hợp màu FCC 321 (RGB) của IKONOS, thảm cỏ biển hiện rõ ràng hơn những FCC trước, chúng có màu đất nung đỏ và vùng nước sâu hơn 10 m có màu hồng nhạt. Trong FCC này, có sự khác nhau giữa cỏ biển vùng nước nông và cỏ biển vùng nước sâu. Cỏ biển vùng nước nơng có màu đất nung sáng, cịn cỏ biển vùng nước sâu có màu đất nung sẫm. Vực nước với đáy bùn (khơng có cỏ biển) có màu lục lam nhạt. Vực nước với đáy cát (khơng có cỏ biển) có màu lục lam sáng, dải cát (khơng ngập nước) có màu trắng (Hình 3).

<b>3. Chỉ số diện tích lá (Leaf Area Index) </b>

Năm loại nền đáy được lựa chọn để tính chỉ số LAI. Kết quả chỉ ra rằng giá trị pixel của khu vực có cỏ biển từ 0,3939 đến 0,5466. Giá trị này khác nhau giữa các vùng có nền đáy khác nhau. Tuy nhiên, giá trị pixel giữa khu vực nước sâu có sự hiện diện của cỏ biển và vùng nước sâu không có sự hiện diện của cỏ biển thì khơng khác nhau nhiều. Vì vậy, trong một số trường hợp, phần mềm ENVI nhầm lẫn trong việc phân lớp.

<b>4. Phân lớp hình ảnh </b>

Trong nghiên cứu này, chúng tơi sử sụng phương pháp phân lớp có chỉ định (Supervisor Classification) để phân ra 5 lớp từ ảnh IKONOS. Mỗi khu vực chọn một vùng (1 đến 2 pixel) để đo giá trị tán sắc của chúng. Kết quả ảnh phân lớp được biểu thị qua hình 4.

</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6">

<small>Hình 3. Ảnh IKONOS band 321 và các trạm khảo sát (A) và Ảnh IKONOS đã được phân lớp (B) </small>

<b>5. Sau khi phân lớp </b>

Kết hợp các lớp cùng một loại nhưng lại khác nhau trên hình ảnh ví dụ như cỏ biển vùng nước sâu và cỏ biển vùng nước nông thành một lớp. Xác nhập các polygon nhỏ (2/3 pixel) vào các polygon lớn hơn gần ngay bên cạnh để giảm đi những polygon không cần thiết. Để đánh giá chất lượng của hình ảnh đã được phân lớp, chúng tôi sử dụng phương pháp hệ số Kappa (Congolton, 1991). Đó là một cách thức so sánh mức độ đúng giữa hình ảnh đã được phân lớp với số liệu thực địa. Độ chính xác đạt được trong nghiên cứu này là 87,91% dựa trên phép chia: số trạm trên ảnh phân lớp đúng với ngoài thực tế chia cho tổng số trạm đã khảo sát [(15+30+10+13+12)/91 = 80/91 = 0.8791].

<b>6. Xuất hình ảnh đã phân lớp dạng raster sang GIS (dạng vector) </b>

Chuyển ảnh từ dạng raster sang vector được thực hiện trong phần mềm ENVI, sau khi đã chuyển xong, sử dụng phần mềm Arc View để tiếp tục phân tích dữ liệu. Hình 3A cho thấy các loại nền đáy khác nhau, màu xanh sáng minh họa cho cỏ biển ở vùng nước nông, màu xanh sẫm minh họa cho cỏ biển phân bố vùng nước sâu hơn, màu xanh minh họa cho vùng nước khơng có cỏ biển, màu

</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7">

lục lam minh họa cho vùng đáy bùn khơng có cỏ biển, màu trắng sẫm minh họa cho vùng đáy cát khơng có cỏ biển.

<small>Bảng 1. Độ chính xác của ảnh đã được phân lớp </small>

<small>A: Vùng nước nơng, có cỏ biển; B: Vùng nước sâu có cỏ biển; C: Vùng nước sâu, khơng có cỏ biển; D: Đáy bùn khơng có cỏ biển; E: Đáy cát, khơng có cỏ biển. </small>

<b>7. Hình thành bản đồ cỏ biển </b>

GIS không những hiển thị bản đồ số thơng thường mà chúng cịn rất hữu hiệu trong quản lý số liệu, điều này rất cần thiết cho những phân tích về sau. Cơ sở dữ liệu từ khảo sát thực địa cũng được thêm vào các lớp.

<small>Bảng 2. Độ bao phủ của thảm cỏ biển tại đảo Siboya </small>

Dữ liệu từ ảnh viễm thám cho ta thấy rõ nét về đường biên của thảm cỏ biển, các thảm cỏ biển lốm đốm, các thảm cỏ biển liên tục. Dữ liệu từ khảo sát thực địa rất hữu dụng để hiệu chỉnh bản đồ cỏ biển. Diện tích cỏ biển tổng cộng được tính tốn trong nghiên cứu này là 9,34 km<sup>2</sup>. Trong số đó, thảm cỏ lốm đốm là 5,5 km<sup>2</sup> (59%), thảm cỏ có độ bao phủ 30 – 45% là 0,69 km<sup>2</sup> (7%), thảm cỏ có độ bao phủ 45 – 60% là 0,67 km<sup>2</sup> (7%) và thảm cỏ có độ bao phủ

</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8">

60 – 75% là 2,5 km<sup>2</sup> (27%). Kết quả đường biên của thảm cỏ biển và độ bao phủ được thể hiện qua Hình 3B và Bảng 2.

<small>Hình 4. Thảm cỏ biển tại đảo Siboya </small>

<b>IV. THẢO LUẬN </b>

Trong nghiên cứu này, ảnh vệ tinh IKONOS được ứng dụng để tạo bản đồ cỏ biển tại đảo Siboya. Tuy nhiên, do giá thành của ảnh IKONOS rất cao nên chúng tơi chỉ sử dụng diện tích 18 km<sup>2</sup>, chỉ bao quanh thảm cỏ biển lớn nhất của đảo. Bên cạnh đó, sự thay đổi của thảm cỏ biển không thể thực hiện được do chúng tôi chỉ sử dụng ảnh của năm 2002 mà khơng có ảnh của những năm trước. Trên lý thuyết, thời gian thu ảnh và thời gian khảo sát thực tế phải đồng thời, tuy nhiên, điều này không thực hiện được. Kirkman (1996) cho phép thời gian thu ảnh và khảo sát thực địa khác nhau về năm, nhưng phải giống nhau về mùa.

Về phương diện phân tích ảnh viễn thám, ảnh IKONOS là ảnh có độ phân giải rất cao nên rất hữu dụng cho việc phân lớp các loại nền đáy. Trong nghiên cứu này, bốn mơ hình và phương pháp bao gồm FCC, PCA, LAI và

</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9">

band 321 được lựa chọn và FCC band 321 cho kết quả tốt nhất. Mơ hình NDVI được tính tốn trên band 4 và band 3 cũng được ứng dụng để làm lộ ra thảm cỏ biển. Thêm vào đó, PCA là phương pháp hữu hiệu cho việc cải thiện hình ảnh để phân biệt nơi có và khơng có cỏ biển. Tuy nhiên, hình ảnh được cải thiện bằng mơ hình LAI giữa band 4 và band 3 không được rõ do giá trị pixel của các nền đáy khơng khác nhau nhiều. Trong xử lí ảnh, giá trị pixel của cỏ biển vùng nước sâu và khu vực nước sâu (khơng có cỏ biển) khơng khác nhau nhiều. Ví dụ, trong hình ảnh của mơ hình NDVI, giá trị pixel của cỏ biển vùng nước sâu và khu vực nước sâu không có cỏ biển là 0,66407 và 0,66144. Đây là nguyên nhân gây nhầm lẫn trong một số trường hợp. Dữ liệu thực địa rất quan trọng để hiệu chỉnh hình ảnh đã được phân lớp. Mức độ sai số tại 91 điểm trong nghiên cứu này là 0,8791 điều đó chứng tỏ rằng các loại nền đáy được nhận diện trong nghiên cứu này là đáng tin cậy. Mumby và cs (2002) dùng ảnh IKONOS để lập bản đồ hệ sinh thái biển bao gồm cỏ biển, độ sai số của họ là 0,86, vì vậy mức độ sai số trong nghiên cứu này là chấp nhận được. Tuy nhiên, đối với vùng nước sâu nhưng khơng có cỏ biển ln bị nhầm lẫn trong q trình phân lớp vì mức độ hấp thụ ánh sáng của vực nước này và vùng có cỏ biển là gần giống nhau.

<b>V. KẾT LUẬN </b>

Mục đích nghiên cứu này là để minh họa cho việc dùng dữ liệu và thông tin không gian vào quản lý đới bờ và chỉ ra rằng kỹ thật thông tin địa lý rất hữu dụng cho quản lý tổng hợp đới bờ. Độ sai số trong phân lớp ảnh IKONOS là 0,8791. Diện tích của thảm cỏ biển là 9,34 km<sup>2</sup> trong đó, thảm cỏ lốm đốm là 5,5 km<sup>2</sup> (59%), thảm cỏ có độ bao phủ 30 – 45% là 0,69 km<sup>2</sup> (7%), thảm cỏ có độ bao phủ 45 – 60% là 0,67 km<sup>2</sup> (7%) và thảm cỏ có độ bao phủ 60 – 75% là 2,5 km<sup>2</sup> (27%).

<b>TÀI LIỆU THAM KHẢO </b>

Aronoff S., 1989. Geographic Information Systems: A Management Perspective. WDL Publication, Ottawa, Canada.

Bradley D. R., 1997. Quantifying temporal change in seagrass areal coverage: the use of GIS and low resolution aerial photography. Aquatic Botany. 58:. 8 pp.

Burough P. A., 1986. Geographic Information System: A Management Perspective. WDL Publication. Ottawa. Canada.

Congolton R. G., 1991. A review of Assessing the Accuracy of Classifications of Remote Sensed Data. Remote Sensing of Environment. 37. 11 p.

Den Hartog C., 1970. The seagrasses of the world. North Holland Publishing Company, Amsterdam 1970.

</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10">

Douven W. J. A. M., J. J. Buurman and W. Kiswara, 2003. Spatial information for coastal zone management: the example of the Banten Bay seagrass ecosystem, Indonesia. Ocean and Coastal management. Vol 46: 615 - 634. Fortes M. D., 1993. Seagrasses: Their role in Marine Ranching. Chapter 11. In

Seaweed cultivation and Marine Ranching. Japan International Cooperation Agency (JICA).

Fortes M. D., 2004. Seagrass in the South China Sea. UNEP/GEF Regional Working Group on Seagrass, Bangkok, Thailand 2004.

Gacia E., 2003. Sediment deposition and production in SE-Asia seagrass meadows. Estuaries, Coastal and Shelf Science. 56. 10 p.

Green E. P., J. M. Peter, J. E. Alasdair and C. D. Clark, 2000. Remote Sensing Handbook for Tropical Coastal Management. 316 p.

Green E. P. and F. T. Short, 2003. World Atlas of Seagrasses. Prepared by the UNDP World Conservation Monitoring Centre. University of California Press, Berkeley, USA.

Kirkman H., 1996. Baseline and Monitoring Methods for Seagrass Meadows. Environmental Management. 47. 11 p.

Lewmanomont K., 1995. Common seaweeds and seagrasses of Thailand. Bangkok. Thailand.

Mumby, P. J. and A. J. Edwards, 2002. Mapping marine environments with IKONOS imagery: enhanced spatial resolution can deliver greater thematic

<i>accuracy. Remote Sensing of Environment. 82. 9 p. </i>

Supanwanid C. and K. Lewmanomont, 1996. The seagrass of Thailand. In: World Seagrasses Atlas of the World.

UNEP, 2004. Regional working group on seagrass. Report of the third meeting of “Reversing environmental degradation trends in the South China Sea and Gulf of Thailand.

</div>

×