Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.73 MB, 41 trang )
<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">
<b>BỘ NÔNG NGHIỆP VÀ PHÁT TRIỂN NÔNG THÔNPHÂN HIỆU TRƯỜNG ĐẠI HỌC THỦY LỢI</b>
<b>BỘ MÔN CÔNG NGHỆ THÔNG TIN---</b>
<b>Tên đề tài:</b>
<b>DỰ ĐỐN GIÁ CHUNG CƯ BẰNG MƠ HÌNH HỒI QUY </b>
<b>TPHCM, ngày 14 tháng 9 năm 2023</b>
<b>Giảng viên hướng dẫn:</b> <i><b>ThS. VŨ THỊ HẠNH</b></i>
<b>Sinh viên thực hiện:</b> <i><b>Tăng Vương Thiên PhúcTrịnh Duy Khánh</b></i>
<i><b>Phan Trọng Đức</b></i>
<i><b>20510671842051067153</b></i>
</div><span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2"><b>3.</b> ... <b>Công nghệ thơng tin trong mơ hình hồi quy:</b>
<b>1.2 Các phương pháp về tiền x lý d liệu:ử ữ Error! Bookmark not defined.1.3 Các kỹ thuật tiền xử lý d liệu:ữ Error! Bookmark not defined.</b>
</div><span class="text_page_counter">Trang 4</span><div class="page_container" data-page="4">Qua bài tập lớn này, chúng em xin gửi lời cảm ơn tới thầy cô khoa công nghệ thông tin, đặc biệt là cô Vũ Thị Hạnh đã cho chúng em có cơ hội được tìm hiểu một góc kiến thức mới, hay và bổ ích cùng với đó là sự tận tâm dạy dỗ chúng em, giúp chúng em có thể hồn thiện đề tài này. Trong q trình tìm hiểu và hồn thiện, đề tàisẽ khơngthểtránh khỏi những saisót, khuyếtđiểm.Vìvậy, nhómthực hiện chúng em hy vọng nhận được sự đánh giá và đóng góp nhiệt tình từ phía thầy và các bạn để bài của nhóm chúng em được hoàn thiện hơn.
Qua bài tập lớn này, chúng em xin cảm ơn các bạn lớp S23-62TH đã giúp đỡ chúng em trong quá trình học tập và làm bài tập lớn, đã chia sẻ kinh nghiệm kiến thức của các bạn đã tạo nên nền tảng kiến thức cho chúng em.
Chúngemxin chânthành cảm ơn!
</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5">Mở đầu báo cáo chuyên ngành Cơng nghệ thơng tin về dự đốn giá chung cư bằng mơ hình hồi quy là một phần quan trọng trong việc hiểu rõ và dự đoán các yếu tố ảnh hưởng đến giá bất động sản. Trong báo cáo này, chúng ta sẽ trình bày quá trình nghiên cứu và phát triển mơ hình hồi quy dự đốn giá chung cư, với sự sử dụng của công nghệ thông tin để cải thiện độ chính xác và t c đố ộ của dự đoán.
Trong một thời đại mà thị trường bất động sản đang phát triển mạnh mẽ, việc dự đoán giá chung cư trở nên quan trọng hơn bao giờ hết. Đối với người mua, bấ ộng sản là một đầt đ u tư lớn, và có khả năng dự đoán giá là một yếu tố quyết định trong q trình quyết định mua hoặc khơng mua một căn hộ. Đối với nhà phát triển và nhà đầu tư, dự đốn giá chung cư có thể giúp họ đưa ra quyết định chiến lược về ệc xây dựng, mua bán và cho thuê bất động sảvi n.
Mục tiêu chính của báo cáo này là tạo ra một mơ hình dự đốn giá chung cư dựa trên dữ ệu lịch sử và các yếu tố ảnh hưởng. Chúng tôi sẽ sử dụng kỹ thuật hồi quy, một phương lipháp thống kê mạnh mẽ, để thực hiện dự đốn này. Cụ ể, chúng tơi sẽ:th
Thu thập và tiền xử lý dữ ệu liên quan đến giá chung cư, diện tích, vị li trí, tiện ích, và các yếu tố khác có thể ảnh hưởng đến giá.
Xây dựng một mơ hình hồi quy dự đốn giá chung cư, sử dụng các công nghệ thông tin và công cụ phân tích dữ liệu hiện đại.
Đánh giá hiệu suất của mơ hình và đề xuất cải tiến nếu cần.
Mơ hình hồi quy là một phương pháp thống kê phổ biến và hiệu quả trong việc dự đoán các giá trị số. Chúng ta sử dụng hồi quy vì nó cho phép chúng tơi phân tích sự tương quan giữa giá chung cư và các biến độ ập, như diện tích, vị c l trí, tiện ích, và nhiều yếu tố khác. Sự kế ợp giữa công nghệ thông tin và hồi quy sẽ giúp cải thiện tính chính xác và tốt h c độ của dự đoán.
</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6">Đối với người dân: Giá chung cư ảnh hưởng đến quyế ịnh mua bất động sản và t đtài chính cá nhân của mọi ngư i. ờ Hiểu rõ giá chung cư giúp họ đưa ra quyế ịnh t đthông minh về việc mua nhà để ở, đầu tư, hoặc cho thuê.
Đối với nhà phát triển và nhà đầu tư: Dự đoán giá chung cư giúp họ ản lý dự qu án xây dựng, dự án đầu tư, và lập kế ạch kinh doanh. Nắho m b t đưắ ợc sự biến động của th trưị ờng giúp họ tối ưu hóa lợi nhuận và giảm rủi ro.
Mục tiêu chính của nghiên cứu này là phát triển một mơ hình dự đốn giá chung cư dựa trên d liữ ệu lịch sử và các yếu tố ảnh hưởng. Cụ ể, chúng ta đặth t ra các mục tiêu sau:
Xây dựng một mơ hình hồi quy đa biến dự đoán giá chung cư dựa trên các biến độc lập như diện tích, vị trí, tiện ích, số ợng phịng, và các yếu tố khác.lư
Sử dụng công nghệ thông tin và các công cụ phân tích dữ ệu để tối ưu hóa q litrình x lý dử ữ liệu, lựa chọn biến quan trọng, và đánh giá mơ hình.
Đánh giá hiệu suất của mơ hình bằng các chỉ số ống kê và đồ ị, để xác định th thmức độ chính xác của dự đốn.
Nếu cần, đề xuất các cải tiến và ứng dụng thực tế của mơ hình dự đoán giá chung cư trong lĩnh vực bấ ộng sản.t đ
</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7">Bằng cách đạt được những mục tiêu này, chúng ta hy vọng rằng nghiên cứu này sẽ đóng góp vào việc nâng cao hiệu quả và chính xác trong việc dự đốn giá chung cư, giúp cả người dân và các nhà đầu tư trong lĩnh vực bất động sản đưa ra các quyết định thông minh và đúng đắn.
Mơ hình hồi quy là một phương pháp thống kê đượ ử dụng để dự đoán giá trị củc s a một biến phụ thuộc (dependent variable) dựa trên một hoặc nhiều biến độc lập (independent variables). Trong trường hợp của chúng ta, biến phụ thuộc là giá chung cư, trong khi các biến độc lập có thể bao gồm diện tích, vị trí, tiện ích, số ợng phịng, lưvà nhiều yếu tố khác. Mơ hình hồi quy giúp chúng ta hiểu mối quan hệ giữa các biến này và dự đoán giá chung cư dựa trên d liữ ệu lịch sử.
<b>Hồi quy tuyến tính đơn biến: Trong trường hợp này, chỉ có một biến độc lập ảnh </b>
hưởng đến biến phụ thuộc. Ví dụ, dự đốn giá chung cư dựa trên diện tích.
<b>Hồi quy tuyến tính đa biến: Khi có nhiều biến độc lập ảnh hưởng đến biến phụ thuộc. </b>
Mơ hình này phù hợp để dự đốn giá chung cư, vì nó cho phép chúng ta xem xét tất cả các yếu tố ảnh hưởng cùng một lúc.
<b>Hồi quy Logistic: Loại hồi quy này thường được sử dụng khi biến phụ </b>thuộc là một biến nhị phân, chẳng hạn như dự đoán xem một căn hộ sẽ được bán hay không.
<b>Hồi quy Ridge và Lasso: Đây là các biến thể của hồi quy tuyến tính đa biến với mục </b>
tiêu kiểm soát overfitting và cải thiện tính ổn định của mơ hình.
<b>Thu thập và xử lý dữ liệu: Công nghệ thông tin giúp thu thập dữ liệu từ nhiều nguồn </b>
khác nhau và tự động hóa q trình xử lý dữ ệu. Các cơng cụ và ngơn ngữ lập trình linhư <b>Python R</b>, , và <b>SQL thư</b>ờng được sử dụng để làm việc với d liệu.ữ
<b>Mơ hình hóa dữ liệu: Cơng nghệ thơng tin cho phép xây dựng mơ hình hồi quy dựa </b>
trên dữ ệu thu thập. Thư viện và li framework như scikit-learn TensorFlow, , và PyTorch giúp chúng ta triển khai mơ hình một cách hiệu quả.
<b>Đánh giá và cải tiến mơ hình: Cơng nghệ thơng tin cung cấp các cơng cụ để đánh giá </b>
hiệu suấ ủa mơ hình, như t c <b>cross-validation mean squared error MSE r-square</b>, ( ), .
</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8">13Nó cũng hỗ ợ tối ưu hóa mơ hình thơng qua việc điều chỉnh siêu tham số tr
<b>(hyperparameters) và sử dụng các kỹ thuật như feature selection</b>
<b>Trực quan hóa kết quả: </b>Cơng ngh thơng tin cho phép tệ ạo đồ ị và biểu đồ để hiển ththị kết quả của mơ hình hồi quy, giúp người dùng hiểu rõ hơn về mối quan hệ giữa các biến và dự đốn.
<b> Nhóm em sử dụng Colaboratory ( Google Colab ) để viết code.</b>
<b> Google Colab là một sản phẩm từ Google Research, nó cho phép chạy các </b>
dịng code Python thơng qua trình duyệt, đặc biệt phù hợp với Data analysis, machine learning và giáo dục.
<b> Google Colab được Google phát hành đến với công chúng nhằm để cải thiện </b>
<b>chất lượng giáo dục. Và bên cạnh đó là việc nghiên cứu Machine Learning.</b>
<b>5.1. Khái niệm tiền xử lý dữ liệu:</b>
Tiền xử lý dữ ệu (li <b>data preprocessing) là quá trình chuẩ bị và làm sạch </b>n dữ liệu trước khi nó được sử dụng cho các nhiệm vụ phân tích dữ ệu hoặc huấli n luyện mơ hình máy học. Q trình này rất quan trọng trong quá trình khai phá dữ ệu (li <b>data mining</b>) và phân tích dữ ệu (li <b>data analysis</b>), bởi vì dữ ệu thơ lithường khơng đủ hoàn hảo để ợc sử dụng trực tiếp. Mục tiêu chính của tiềđư n xử lý dữ ệu là làm cho dữ ệu trở nên dễ dàng để làm việc và phân tích, cảli li i thiện chất lượng dữ ệu, và giảm tiề ẩn cho sự sai lệch và nhiễu trong dữ li m liệu.
</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9"><b>5.2. Các bước tiền xử lý dữ ệu thường bao gồlim:</b>
<b>Thu thập dữ liệu: Đây là bước đầu tiên trong quá trình tiền xử lý dữ ệu, </b>linơi bạn thu thập dữ ệu từ các nguồn khác nhau, chẳng hạn như cơ sở dữ liliệu, tệp văn bản, cảm biến, hoặc trực tuyến.
<b>Làm sạch dữ ệu (Data Cleaningli</b> ): Loại bỏ c giá trị bị thiếu (cá <b>missingvalues), giá trị ngoại lệ (outliers</b>), hoặc dữ ệu không hợp lệ. Điều này bao ligồm việc điền giá trị thiếu, loại bỏ giá trị ngoại lệ, và sửa lỗi trong dữ liệu.
<b>Tiêu chuẩn hóa dữ liệu Data Standardization</b> ( ): Chuyển đổi dữ liệu thành định dạng tiêu chuẩn để đảm bảo tính nhất quán và dễ dàng so sánh. Ví dụ, có thể chuyển đổi đơn vị đo lường hoặc tỷ lệ các biến sao cho chúng có cùng phạm vi hoặc định dạng.
<b>Biến đổi dữ ệu (Data Transformation):li</b> Áp dụng các biến đổi dữ ệu để litạo ra các tính năng mới hoặc biến đổi hiện có. Ví dụ ạn có thể tạo tổng , bcủa một số ến, thực hiện chuyển đổbi <b>i logarit</b>, hoặc chuẩn hóa phân phối của bi n.ế
<b>Tạo tập dữ ệu (Data Sampling):li</b> Nếu dữ ệu quá lớn, bạn có thể lấy mẫli u một phần nhỏ để tăng hiệu suất xử lý hoặc xây dựng mơ hình.
<b>Chọn tính năng (Feature Selection): Xác định các tính năng quan trọng </b>
cho mơ hình hoặc phân tích và loại bỏ các tính năng khơng cần thiết.
<b>Xử lý dữ ệu dạng văn bản hoặc hình ảnh (Text or Image Data liProcessing): Nếu bạn làm việc với dữ ệu văn bản hoặc hình ảnh, bạn cầ</b>li n thực hiện các bước đặc biệt cho loại dữ ệu này, chẳng hạn như rút trích đặli c trưng (<b>feature extraction) cho dữ ệu văn bản hoặc tiền xử lý hình ảnh </b>li
<b>(image preprocessing).</b>
<b>Xử lý lặp lại (Handling Redundancy): ại bỏ dữ ệu trùng lặp nếu có.</b>Lo li
</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10">Quá trình tiền xử lý dữ liệu là một phần quan trọng trong chuỗi công việc khi làm việc với dữ ệu, và nó ảnh hưởng đáng kể đến kết quả ối cùng của các li cuphân tích và mơ hình hóa dữ liệu.
Ứng dụng của khai phá dữ ệu rất đa dạng và được sử dụng rộng rãi trong nhiều lilĩnh vực khác nhau. Dưới đây là một số ví dụ về cách khai phá dữ ệu có thể được áp lidụng:
<b>Bất động sản: Khai phá dữ ệu có thể được sử dụng để phân tích giá cả, dự đốn </b>lith trưị ờng bất động sản, và tìm ra các yếu tố ảnh hưởng đến giá nhà. Điều này giúp người mua và nhà đầu tư hiểu rõ hơn về ị trường và đưa ra quyết định dựa trên ththông tin cụ thể.
<b>Kinh doanh và tiếp thị: Các doanh nghiệp sử dụng khai phá dữ liệu để hiểu hơn về </b>
hành vi của khách hàng, dự đoán xu hướng tiêu dùng, và tối ưu hóa chiến dịch tiếp thị. Điều này giúp họ tạo ra chiến lược kinh doanh hiệu quả hơn.
<b>Y tế: Khai phá dữ ệu y tế có thể giúp trong việc phát hiện bệnh tật sớm, dự đoán </b>lidịch bệnh, và nghiên cứu về hiệu quả của các phương pháp điều trị.
<b>Tài chính: Ngành tài chính sử dụng khai phá dữ ệu để dự đoán biến động thị </b>litrường tài chính, xác định rủ ro tín dụng, và tối ưu hóa quản lý danh mụi c đầu tư.
<b>Giáo dục: Trong giáo dục, khai phá dữ liệu có thể được sử dụng để theo dõi tiến bộ </b>
học tập của học sinh, cá nhân hóa phương pháp dạy học, và cải thiện chất lượng giảng dạy.
<b>Hệ ống điều khiển tự độthng: Trong các hệ ống tự động như xe tự hành và nhà </b>ththông minh, khai phá dữ liệu được sử dụng để thu thập thông tin từ cảm biến và điều khiển các hoạ ộng theo cách tối ưu.t đ
<b>Chăm sóc sức khỏe cá nhân: Ứng dụng di động và các thiết bị theo dõi sức khỏe </b>
sử dụng khai phá dữ liệu để cung cấp thông tin sức khỏe cá nhân và đề xuất các biện pháp cải thiện.
<b>An ninh và phát hiện gian lận: Các tổ </b>chức sử dụng khai phá dữ ệu để phát hiệli n các hoạt động gian lận, bất thường trong giao dịch, và xác định nguy cơ bảo mật.
</div><span class="text_page_counter">Trang 11</span><div class="page_container" data-page="11"><b>Hành vi xã hội và dự đoán: Mạng xã hội và các nề ảng trực tuyế</b>n t n sử dụng khai phá dữ ệu để dự đốn sở thích và hành vi của người dùng, cung cấp nội dung cá linhân hóa và quảng cáo đích thực.
<b>Nghiên cứu khoa học: Khai phá dữ ệu cũng được sử dụng rộng rãi trong nghiên </b>licứu khoa học, từ nghiên cứu khoa học xã hội đến khoa học máy tính và các lĩnh vực khác.
<b>7. Tổng quan về hệ hỗ ợ ra quyết địtrnh</b>
Trong bối cảnh thị trường bấ ộng sản ngày nay, việt đ c dự đoán giá chung cư đang trở thành một nhiệm vụ quan trọng và phứ ạp đố ới cả người mua và nhà đầu tư. c t i vSự biến đổi nhanh chóng của th trưị ờng đặt ra một loạt thách thức trong việc đưa ra quyết định thông minh về mua, bán hoặc đầu tư vào bất động sản. Để giải quyết vấn đề này, xuất hiện mộ ệ ống hỗ ợ ra quyết định dựt h th tr a trên sự kế ợp giữt h a thuật toán hồi quy và phân loại.
Thuật tốn hồi quy đóng một vai trị quan trọng trong việc xây dựng mơ hình dự đoán giá chung cư. Hệ ống thu thập dữ th liệu v các biề ến độ ập như diện tích, vị c l trí, số phịng ngủ, tiện ích và các yếu tố khác, sau đó sử dụng dữ ệu cũ và dự đoán trong litương lai để tạo ra các dự đoán giá bất động sản. Mơ hình hồi quy giúp dự đốn giá chính xác và đáng tin cậy dựa trên các yếu tố quan trọng này.
Ngồi ra, hệ ống cịn áp dụng thuật toán phân loạ để phân loại các chung cư vào th i các nhóm giá cả, như "giá thấp," "giá trung bình" và "giá cao." Điều này giúp người dùng hiểu rõ hơn về đa dạng trong thị trường bấ ộng sản và tìm ra các tùy chọn phù t đhợp với nhu cầu của họ. Các phân nhóm này có thể được xây dựng dựa trên mức giá trung bình trong khu vực, diện tích, hoặc các tiêu chí khác.
Để ển khai hệ ống hỗ ợ ra quyế ịnh này, chúng ta cần sử dụng dữ ệu từ tri th tr t đ licác giao dịch mua bán chung cư trước đó, bao gồm thơng tin về diện tích, vị trí, số phịng ngủ và giá bán. Các thuật toán hồi quy và phân loại sẽ sử dụng dữ ệu này để lixây dựng các mơ hình dự đốn và phân loại. Kế ợp cả hai thuật tốn này giúp tăng t htính chính xác và sự hiệu quả của h thống, cung cấp cho người dùng thông tin quý ệ báu để đảm bảo sự hài lịng và đầu tư thơng minh trong thị trường bất động sản.
</div><span class="text_page_counter">Trang 12</span><div class="page_container" data-page="12">13Hệ ống hỗ ợ ra quyế ịnh này có ý nghĩa lớn trong việc giúp người mua và nhà th tr t đđầu tư đưa ra những quyết định thông minh, hiểu rõ hơn về ị th trường và tìm ra những cơ hội đáng giá trong lĩnh vực bất động sản đầy biến đổi.
Hồi quy tuyến tính (<b>Linear Regression</b>) là một phần quan trọng trong việc khai phá dữ ệu trong lĩnh vựli c bất động sản, như được mô tả trong đoạn văn. <b>Linear Regression là một thuật toán máy họ</b>c dựa trên các lý thuyết thống kê và xác suất, cho phép phân tích mối quan hệ tuyến tính giữa một biến độc lập (hoặc nhiều biến độc lập) và biến phụ thuộc. Trong bố ảnh bất động sản, việc áp dụng i c <b>Linear Regression</b>
có thể giúp dự đốn giá cả, giá trị tài sản, hoặc các yếu tố khác dựa trên dữ ệu có sẵn.liMục tiêu chính c a ủ <b>Linear Regression trong lĩnh vự</b>c bất động sản như đã được nêu rõ trong đoạn văn là tìm ra những qui luật hoặc mơ hình tiề ẩn trong dữ ệu liên m liquan đến dự án chung cư. Cụ ể, có thể sử dụng th <b>Linear Regression</b> để:
<b>Dự đoán giá cả: Một ứng dụng phổ biến của Linear Regression</b> là xây dựng mơ hình dự đốn giá cả căn hộ hoặc dự án chung cư dựa trên các yếu tố như vị trí, diện tích, tiện ích, và các yếu tố khác. Điều này giúp người mua và bán có cái nhìn trực tiếp về giá trị ềm năng.ti
<b>Đánh giá tác động của yếu tố độc lập: Linear Regression cho phép xác định mức </b>
độ ảnh hưởng của các biến độc lập (ví dụ: diện tích, vị trí, tiện ích) lên biến phụ thuộc (ví dụ: giá cả). Điều này có thể giúp nhà phát triển và quản lý dự án hiểu rõ hơn về yếu tố nào đóng góp nhiều vào giá trị tài sản.
<b>Đánh giá hiệu suất dự án: Linear Regression</b>cũng có thể đượ ử dụng để đánh c sgiá hiệu suất dự án bất động sản. Điều này bao gồm việc dự đoán giá trị tài sản theo thời gian hoặc đo lường tác động của các cải thiện cơ sở hạ tầng và thay đổi môi trường xung quanh dự án.
<b>Linear Regression khơng chỉ giúp xây dựng mơ hình dự đốn mà còn giúp hiểu </b>
sâu hơn về mối quan hệ giữa các yếu tố bấ ộng sản và git đ á trị của chúng. Điều này cung cấp tri thức giúp ngành bấ ộng sản đưa ra quyế ịnh thông minh hơn, tạo lợt đ t đ i ích cho người mua và nhà phát triển.
</div><span class="text_page_counter">Trang 13</span><div class="page_container" data-page="13"><b>Random Forest là một phương pháp máy học mạnh mẽ có thể đượ ứng dụng </b>c trong lĩnh vực bấ ộng sản để dự đoán giá chung cư và khám phá mối quan hệ phức t đtạp giữa các biến độ ập và giá trị c l tài sản, như được mơ tả trong đoạn văn.
<b>Random Forest là một thuật tốn học máy dự</b>a trên nguyên tắc của "tập hợp"
<b>(ensemble learning</b>), trong đó nó sử dụng một loạt cây quyế ịnh (t đ <b>decision trees</b>) để tạo ra một mô hình dự đốn mạnh hơn. Đây là cách <b>Random Forest có th</b>ể đượ ứng c dụng trong lĩnh vực bất động sản:
<b>Dự đốn giá cả: Random Forest có khả năng học từ dữ ệu lịch sử về giá chung </b>licư và các yếu tố độc lập như vị trí, diện tích, tiện ích, và nhiều biến khác. Dựa trên việc xây dựng hàng loạt cây quyết định từ dữ liệu này, nó có thể tạo ra một mơ hình dự đốn giá cả chính xác hơn và ổn định hơn.
<b>Đánh giá tác động của yếu tố độc lập: Random Forest cho phép đánh giá tác </b>
động của các yếu tố độc lập lên giá trị tài sản bằng cách xem xét độ quan trọng của từng biến trong việc tạo ra dự đoán. Điều này giúp nhà phát triển và quản lý dự án hiểu rõ hơn về cách từng yếu tố ảnh hưởng đến giá bấ ộng sản.t đ
<b>Đánh giá hiệu suất dự án: Random Forest </b>có thể được sử dụng để đánh giá hiệu suất dự án bất động sản theo thời gian. Điều này có thể bao gồm việc dự đoán giá trị tài sản trong tương lai dựa trên dữ li<b>ệu cũ và các yếu tố thay đổi.</b>
Một điểm mạnh củ<b>a Random Forest</b> là khả năng xử lý các tương tác phức tạp giữa các biến độ ập, đồng thời giảm thiểu hiện tượng overfitting (quá khớp) và cải c lthiện tính ổn định của mơ hình dự đốn.
Với <b>Random Forest, lĩnh vực bấ ộng sản có thể sử dụng dữ liệu lị</b>t đ ch sử và các yếu tố quan trọng để tạo ra mơ hình dự đốn giá trị tài sản và hiểu rõ hơn về ị thtrường. Điều này giúp người mua và nhà phát triển đưa ra quyế ịnh thông minh hơn, t đmang lại lợi ích lớn cho ngành bất động sản.
Cây quyết định là một phương pháp phân loại và dự đoán trong lĩnh vực bất động sản. Nó là một thuật tốn máy học mạnh mẽ cho phép xây dựng mơ hình dự đốn dựa
</div><span class="text_page_counter">Trang 14</span><div class="page_container" data-page="14">13trên quyế ịnh đượ ạo ra từ dữ ệu. Trong bấ ộng sản, t đ c t li t đ <b>decision tree có th</b>ể được áp dụng để:
<b>Phân loại bất động sản: Decision tree có thể được sử dụng để phân loại các loại </b>
bất động sản vào các danh mục dựa trên các yếu tố quan trọng như diện tích, vị trí, loại hình, và giá trị. Chẳng hạn, bạn có thể tạo một cây quyết định để phân loại các căn hộ thành "căn hộ cao cấp," "căn hộ tiêu chuẩn," hoặc "căn hộ giá rẻ" dựa trên các đặc điểm của chúng.
<b>Dự đoán giá trị tài sản: Decision tree có thể được sử dụng để dự đoán giá trị của </b>
tài sản dựa trên các yếu tố như diện tích, vị trí, tiện ích, và tình trạng của tài sản. Điều này giúp người mua và bán bất động sản hiểu rõ hơn về giá trị ềm năng củti a tài sản và quyế ịnh mua bán dựa trên dự đoán từ cây quyết định.t đ
<b>Đánh giá quyết định đầu tư: Decision tree cũng có thể giúp nhà đầu tư bất động </b>
sản đánh giá quyết định đầu tư. Bằng cách sử dụng các yếu tố như tỷ ất lợi nhuận sukỳ vọng, thời gian đầu tư, và rủi ro, cây quyế ịnh có thể tạo ra các dự đốn về t đ khả năng sinh lờ ừ dự án đầu tư cụ i t thể.
Cây quyết định giúp tạo ra sự minh bạch trong quá trình ra quyết định và tạo ra các lựa chọn dựa trên dữ ệu thống kê. Nó cung cấp cho người dùng cái nhìn trực quan về liquyết định và có thể giúp họ đưa ra các quyết định thông minh trong lĩnh vực bấ ộng t đsản.
Một trong những cơng cụ quan trọng trong việc dự đốn và phân loại trong lĩnh vực bất động sản là <b>Support Vector Machine (SVM). SVM</b> là một thuật toán học máy đượ ử dụng rộng rãi trong việc phân loạc s i và dự đốn dựa trên dữ ệu. Nó có likhả năng xây dựng một ranh giới tối ưu giữa các lớp dữ ệu khác nhau dựli a trên các điểm dữ ệu mẫu. Trong lĩnh vựli c bất động sản, <b>SVM</b> có thể được áp dụng trong các tác vụ sau:
<b>Phân loại loại hình bất động sản: SVM có thể được sử dụng để phân loại các loại </b>
hình bất động sản như căn hộ, biệt thự, nhà phố, văn phòng, và nhiều loại khác. Điều này giúp người mua và nhà đầu tư nhanh chóng xác định loại hình bất động sản phù hợp với nhu cầu của họ.
</div><span class="text_page_counter">Trang 15</span><div class="page_container" data-page="15"><b>Dự đoán giá trị bất động sản: SVM</b> có khả năng dự đốn giá trị của bất động sản dựa trên các yếu tố như diện tích, vị trí, tiện ích, và các biến độc lập khác. Điều này giúp người mua và bán có cái nhìn chi tiết về giá trị ềm năng của tài sản.ti
<b>Đánh giá tác động của yếu tố độc lập: SVM có thể xác định mức độ ảnh hưởng </b>
của các biến độc lập như vị trí, giao thơng, hoặc tiện ích đối với giá trị bất động sản. Điều này giúp nhà phát triển hiểu rõ hơn về những yếu tố nào có thể làm tăng hoặc giảm giá trị tài sản.
<b>Phát hiện biên giới và khuyến nghị đầu tư: SVM cũng có thể được sử dụng để </b>
xác định biên giới của một khu vực cụ ể dựa trên các dữ ệu địa lý. Nó có thể hỗ th litrợ trong việc đưa ra quyết định đầu tư thông minh bằng cách xác định các vùng có tiềm năng tăng giá trị trong tương lai.
<b>SVM là một công cụ mạnh mẽ để hỗ ợ quyết định trong lĩnh vự</b>tr c bất động sản. Nó giúp tạo ra các mơ hình dự đốn chính xác và tối ưu hóa quyế ịnh dựt đ a trên dữ liệu, giúp cho người mua, bán, và nhà đầu tư đạt được sự hiểu biết sâu sắc hơn về thị trường bấ ộng sản.t đ
<b>Lựa chọn vị trí phù hợp: KNN có thể giúp người mua bất động sản tìm các khu </b>
vực có bấ ộng sản tương tự với các yếu tố như vị trí, diện tích, tiện ích, và giá trị. t đĐiều này giúp họ tìm ra những vị trí phù hợp với nhu cầu của họ.
<b>Đánh giá thị trường tài sản: Bằng cách quan sát các tài sản trong khu vực cụ ể </b>thvà sử dụng <b>KNN</b>, bạn có thể đánh giá thị trường bất động sản trong khu vực đó. Điều này có thể giúp nhà đầu tư và nhà phát triển hiểu rõ hơn về giá trị tài sản và tiềm năng lợi nhuận.
<b>KNN </b>có th cung cể ấp một cách tiếp cận đơn giản và hiệu quả để đánh giá và dự đoán giá trị tài sản dựa trên các yếu tố quan trọng trong bấ ộng sản. Nó giúp ngườt đ i
</div><span class="text_page_counter">Trang 16</span><div class="page_container" data-page="16">13dùng có cái nhìn tổng quan về ị th trường và đưa ra quyế ịnh thông minh trong lĩnh t đvực này.
Trong chương này, chúng ta sẽ đi sâu vào các kỹ thuật và thuậ toán được sử t dụng để ực hiện dự án dự đoán giá chung cư trong lĩnh vực bất động sản. Để thhiểu rõ hơn về tầm quan trọng của việc sử dụng các kỹ thuật và thuật toán này, chúng ta sẽ bắt đầu bằng việc tìm hiểu sơ lược về bối cảnh và tầm quan trọng của việc dự đoán giá chung cư trong thị trường hiện nay.
Thị trường bất động sản ngày nay đang trải qua sự ến đổi nhanh chóng, và biviệc dự đoán giá chung cư trở nên ngày càng quan trọng đối với người mua và nhà đầu tư. Việc đưa ra quyết định thông minh về mua hoặ đầu tư vào bất động c sản đòi hỏi sự ểu biết về ững yếu tố ảnh hưởng đến giá cả và giá trị của các hi nhdự án chung cư. Đây chính là lý do tại sao sử dụng các kỹ thuật và thuật toán trong lĩnh vực dự đoán giá chung cư trở nên cần thiết.
Chương 3 sẽ ới thiệu các kỹ thuật và thuật tốn chính mà chúng ta sẽ sử gidụng trong dự án dự đoán giá chung cư. Các kỹ thuật này bao gồm những phương pháp mạnh mẽ trong lĩnh vực thống kê, máy học và khoa học dữ ệu, giúp chúng lita hiểu rõ hơn về dữ ệu thị trường bất động sản và xây dựng các mơ hình dự liđốn.
Chương 3 sẽ giải quyết một số mục tiêu chính, bao gồm:
<b>Hiểu biết về các kỹ thuật và thuật tốn: Chúng ta sẽ tìm hiểu về các kỹ thuật như Linear Regression, Decision Trees Random Forests</b>, và các thuật toán phân loại.
<b>Ứng dụng các kỹ thuật và thuật toán: Chúng ta sẽ ảo luận về cách áp dụng các </b>thkỹ thuật và thuật toán này vào việc dự đoán giá chung cư và phân loại chúng dựa trên các yếu tố quan trọng.
<b>Hiểu rõ vai trị của các kỹ thuật và thuật tốn trong thị trường bất động sản: </b>
Chúng ta sẽ đánh giá cách các kỹ thuật này có thể cải thiện tính chính xác và sự
</div><span class="text_page_counter">Trang 17</span><div class="page_container" data-page="17">hiệu quả trong việc dự đoán giá cả, đánh giá tác động của các yếu tố độc lập và đánh giá hiệu suất dự án bất động sản.
<b>import pandas as pd: Dòng này nhập thư viện pandas, thường được sử dụng để </b>
thao tác và phân tích dữ liệu.
<b>import numpy as np: Thư viện numpy, được sử dụng để </b>thực hiện các phép toán số học và cung cấp các cấu trúc dữ ệu cho dữ ệu số.li li
<b>import matplotlib.pyplot as plt: Thư viện matplotlib, dùng để ực quan hóa dữ </b>trliệu, bao gồm việc tạo biểu đồ và biểu đồ.
<b>Import các thư viện Machine Learning: from matplotlib import style</b>
<b>from sklearn.model_selection import StratifiedShuffleSplit, cross_val_score</b>
<b>from sklearn.linear_model import LinearRegression</b>
<b>from sklearn.tree import DecisionTreeRegressor</b>
<b>from sklearn.ensemble import RandomForestRegressorfrom sklearn.metrics import mean_squared_error</b>
<b>from sklearn.preprocessing import StandardScaler</b>
</div><span class="text_page_counter">Trang 18</span><div class="page_container" data-page="18"><b>from sklearn.model_selection import ...: Dòng này nhập các hàm và lớp liên </b>
quan đến việc chia dữ ệu, kiểm tra sự tồn tại của phần thiếu và tối ưu hóa siêu litham số cho các mơ hình học máy.
<b>from sklearn.preprocessing import StandardScaler: Import lớp để </b>chuẩn hóa (scale) các đặc trưng số.
<b>from sklearn.linear_model import LinearRegression: Import lớp Linear Regression cho mô hình hồi quy tuyến tính.</b>
<b>from sklearn.metrics import mean_squared_error: Import phương pháp để </b>
đánh giá mơ hình hồi quy.
<b>from sklearn.tree import DecisionTreeRegressor: Import lớp Decision Tree Regressor cho mơ hình hồi quy dựa trên cây quyết định.</b>
<b>from sklearn.ensemble import RandomForestRegressor: Import lớp Random Forest Regressor</b> cho mơ hình hồi quy dựa trên rừng ngẫu nhiên.
<b>from sklearn.model_selection import StratifiedShuffleSplit: Lớp Stratified Shuffle Split được sử dụng để tạo sự phân chia dữ ệu/kiểm tra được phân tầng </b>livà xáo trộn. Tính năng này hữu ích khi bạn muốn duy trì sự phân bổ lớp trong tập dữ ệu của mình trong quá trình phân chia, điều này rất cần thiết cho một số tác livụ phân loại nh t đấ ịnh.
<b>from sklearn.model_selection import cross_val_score: Quá trình nhập này cho </b>
phép bạn sử dụng hàm <b>cross_val_score</b> để ực hiện xác thực chéo, điều này rấth t quan trọng để đánh giá hiệu suấ ổng quát hóa của các mơ hình học máy.t t
<b> from matplotlib import style: Câu lệnh nhập này cho phép bạn đặt kiểu cho các ô Matplotlib. Bạn có thể chỉ định kiểu của ô bằng cách sử dụng lần nhập này, điều </b>
này có thể ảnh hưởng đến giao diện trực quan hóa của bạn.
</div><span class="text_page_counter">Trang 19</span><div class="page_container" data-page="19"><b>Dòng này sử dụng pd.read_csv('housing.csv') để nạp tệp CSV ('housing.csv') vào một Data Frame</b> của <b>pandas</b> có tên là <b>df. DataFrame</b> này cho phép bạn làm việc với dữ ệu trong mã linguồn của bạn.
<b>df["ocean_proximity"].value_counts(): Đếm số ợng giá ị duy nhấ</b>lư tr t trong cột
<b>"ocean_proximity", giúp bạn hiểu về phân phố</b>i của d liữ ệu phân loại.
<b>df.describe(): Cung cấp các thống kê tóm tắt cho các cộ ố học, như giá trị trung bình, độ </b>t slệch chuẩn, giá trị tối thiểu và tối đa.
<i><b>Trực quan hóa dữ liệu:</b></i>
<b>df.hist(bins=50, figsize=(15, 8))</b>
Tạo ra biểu đồ histogram cho mỗi đặc trưng số học trong tập dữ ệu. Biểu đồ lihistogram giúp bạn xem phân phố ủa các đặc trưng số, có thể giúp bạn hiểu về các mẫu dữ i cliệu.
</div><span class="text_page_counter">Trang 20</span><div class="page_container" data-page="20">StratifiedShuffleSplit là một phương thức trong scikit-learn được sử dụng để phân chia dữ ệu có tính đồng nhất (stratified) thành các phần. Nó đảm bảo rằng phân phối củli a một biến phân loại (có lẽ "income_cat") được bảo toàn trong các phần.
n_splits=1 chỉ định rằng bạn muốn tạo một lần phân chia duy nhất.
test_size=0.2 xác định kích thước phần kiểm tra, trong trường hợp này, là 20% của tập dữ liệu.
</div>