Tải bản đầy đủ (.pdf) (6 trang)

ĐỀ CƯƠNG CHI TIẾT HỌC PHẦN: DỮ LIỆU LỚN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (567.01 KB, 6 trang )

<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">

<b><small>TRƯỜNG ĐH NGOẠI NGỮ - </small></b>

<b>CHƯƠNG TRÌNH GIÁO DỤC ĐẠI HỌC </b>

<b>Trình độ đào tạo: Đại học Ngành: Công nghệ thông tin Mã số: 7480201 </b>

<b>ĐỀ CƯƠNG CHI TIẾT HỌC PHẦN </b>

<i><b>1. Thông tin chung về HP </b></i>

<b>1.1 Mã học phần: 1230493 1.2 Tên học phần: Dữ liệu lớn 1.3 Ký hiệu học phần: 1230493 1.4 Tên tiếng Anh: Big Data </b>

- Danh sách giảng viên cùng giảng dạy:

<b>1.8 Điều kiện tham gia học phần: </b>

<b>2. Mục tiêu HP 2.1. Mục tiêu chung </b>

Học phần giới thiệu định nghĩa và các vấn đề cơ bản của dữ liệu lớn trong 3 chương đầu tiên. Sau đó các cơng cụ cung cấp các chức năng khác nhau để quản lý dữ liệu lớn, kết nối cơ sở dữ liệu lớn, lập trình và phát triển ứng dụng cũng như triển khai các ứng dụng dữ liệu lớn trong nhiều môi trường khác nhau được giới thiệu ở chương thứ 4.

Chương 5 giới thiệu các chủ đề chuyên sâu về việc phân tích dữ liệu lớn, cung cấp những gợi ý thích hợp để sinh viên phát triển và tiến hành các đề tài nghiên cứu về dữ liệu lớn.

<b>2.2. Mục tiêu HP cụ thể 2.2.1. Về kiến thức: </b>

- Kiến thức nền tảng: Các khái niệm về dữ liệu lớn và các vấn đề liên quan. Biết và giải thích được các thuật ngữ tiếng Anh thuộc lĩnh vực dữ liệu lớn

- Hiểu được ý nghĩa và ứng dụng của các bài toán trong khai thác dữ liệu lớn đối với các vấn đề thực tế.

<b>2.2.2. Về kỹ năng: </b>

- Sử dụng được một số công cụ trong việc triển khai và lập trình trên dữ liệu lớn.

- Kỹ năng nghề nghiệp: Phân tích dữ liệu văn bản và dữ liệu thời gian thông qua các công cụ hỗ trợ. - Kỹ năng cá nhân: Làm việc ở mức độ cá nhân và cộng tác nhóm để trình bày một số báo cáo khoa học theo mẫu và thuyết trình các nội dung liên quan đến mơn học.

<b>2.2.3. Về thái độ </b>

- Có thái độ làm việc khoa học, trung thực, rõ ràng.

- Chuẩn bị bài trước khi đến lớp. Đi học đầy đủ. Tham gia tích cực trong giờ học. - Làm tất cả các bài tập lý thuyết và thực hành.

</div><span class="text_page_counter">Trang 2</span><div class="page_container" data-page="2">

<b>3. Chuẩn đầu ra của HP “Dữ liệu lớn” </b>

<b>Bảng 3.1. Chuẩn đầu ra (CĐR) của HP </b>

Sau khi học xong học phần, SV có khả năng:

CLO1 Hiểu được các khái niệm về dữ liệu lớn và ý nghĩa, ứng dụng của các bài toán trong khai thác dữ liệu lớn trong thực tế.

CLO2 Có trách nhiệm trong học tập, trung thực và sử dụng phần mềm hợp pháp. CLO3 Sử dụng được các công cụ trong việc triển khai và lập trình trên dữ liệu

<b>4. Mối liên hệ giữa CĐR HP (CLO) với CĐR CTĐT (PLO) </b>

Mức độ đóng góp của CLO vào PLO được xác định cụ thể:

<i><small>1 – CLO có đóng góp vừa vào PLO 2 – CLO có đóng góp nhiều vào PLO </small></i>

<i>Chú thích: 2 - Cao, 1 - Thấp - phụ thuộc vào mức hỗ trợ của CLO đối với PLO ở mức bắt đầu (1) hoặc mức nâng cao hơn mức bắt đầu, có nhiều cơ hội được thực hành, thí nghiệm, thực tế,…(mức 2) </i>

<b>Bảng 4.1. Mối liên hệ của CĐR HP (CLO) đến CĐR của CTĐT (PLO) <small>PLO </small></b> <small>(1) (2) (3) (4) (5) (6) (7a,b,c,d) (8b, c,d) (9) (10) (11) CLO 1 2 </small>

<i><b>a. Phương pháp, hình thức kiểm tra - đánh giá của HP </b></i>

<b>Bảng 5.1. Phương pháp, hình thức kiểm tra - đánh giá kết quả học tập của SV ở HP <small>Th/phần </small></b>

<b><small>đánh giá </small><sup>Trọng </sup><small>số </small><sup>Bài đánh giá </sup><sup>Trọng số </sup><small>con </small></b>

<b><small>Rubric Lquan đến CĐR nào ở bảng 3.1 </small></b>

<i><b><small>HD PP đánh giá </small></b></i>

<small>A1. Kiểm tra thường xuyên (KTTX) </small>

<small>20% </small>

<small>A1.1. Từng buổi học </small>

<small>10% </small>

<small>R1 CLO 1 - Điểm danh </small>

<small>- Đánh giá hoạt động trên lớp </small>

<small>A1.2. Tuần 4: Làm bài </small>

<small>30% </small>

<small>Sinh viên hoàn thành bài thực hành trong buổi thực hành </small>

- <small>Vấn đáp</small>

<i><b>b. Chính sách đối với HP </b></i>

<i>- </i>

</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3">

<b>6. Kế hoạch và nội dung giảng dạy HP </b>

<b>Bảng 6.1. Kế hoạch và nội dung giảng dạy của HP theo tuần <small>Tuần/ </small></b>

<b><small>TT) </small></b>

<b><small>CĐR của bài học (chương)/ </small></b>

<b><small>chủ đề </small></b>

<b><small>Lquan đến CĐR nào ở bảng 3.1 </small></b>

<b><small>PP giảng dạy đạt </small></b>

<b><small>CĐR </small></b>

<b><small>Hoạt động học của </small></b>

<b><small>SV(*) </small></b>

<b><small>Tên bài đánh </small></b>

<b><small>giá </small></b>

<small>(ở cột 3 </small>

<b><small>bảng 6.1 </small></b>

<small>(1) (2) (3) (4) (5) (6) (7) (8) 1 </small> Chương 1. Cơ bản về

Dữ liệu lớn

1.1. Dữ liệu lớn là gì? 1.2. Phân tích với BigSheets

1.3. Phân tích dữ liệu tĩnh

1.4. Dữ liệu khi phân tích động, thời gian thực

<small>giảng </small>

<small>1.2. Đặt câu hỏi gợi mở để sinh viên trả lời 1.3. Liên hệ với những kiến thức đã học trước đó và kinh nghiệm đã có </small>

<small>CLO1 CLO2 </small>

<small>- GV sử dụng tài liệu [1] và projector để thuyết giảng </small>

<small>- Phần chuẩn bị ở nhà: </small>

Đọc trước Cuốn [1]: Phần 2; Cuốn [2]: Phần 1, 2

<small>- Ghi chú, tham gia các hoạt động trên lớp 2 </small> Chương 2. Hadoop cơ

bản

2.1. Giới thiệu Hadoop 2.2. Kiến trúc

Hadoop

2.3. Quản trị Hadoop 2.4. Các thành phần

của Hadoop

<small>giảng </small>

<small>2.2. Đặt câu hỏi gợi mở để sinh viên trả lời 2.3. Cách đánh giá giải thuật </small>

<small>CLO1 CLO2 CLO3 </small>

<small>- GV sử dụng tài liệu [1] và projector để thuyết giảng </small>

<small>- Phần chuẩn bị ở nhà: </small>

Đọc trước Cuốn [1]: Phần 2; Cuốn [3]

<small>- Ghi chú, tham gia các hoạt động trên lớp 3 </small> Chương 3. Lập trình

MapReduce 3.1. Giới thiệu

MapReduce 3.2. Lập trình

MapReduce 3.3. Lập trình

MapReduce dùng BigInsights

<small>giảng </small>

<small>3.2. Đặt câu hỏi gợi mở để sinh viên trả lời 3.3. Cách nghiên cứu và đánh giá giải thuật </small>

<small>CLO1 CLO2 CLO3 </small>

<small>- GV sử dụng tài liệu [1] và projector để thuyết giảng </small>

<small>- Phần chuẩn bị ở nhà: </small>

Đọc trước Cuốn [1]: Phần 2; Cuốn [3]

<small>- Ghi chú, tham gia các hoạt động trên lớp 4 Bài tập Chương 2, 3 3 4.1. Giao bài </small>

<small>tập </small>

<small>4.2. Mô tả các yêu cầu thực hiện </small>

<small>4.3. Đánh giá, hướng dẫn thực hiện và sửa bài tập </small>

<small>CLO3 CLO4 </small>

<small>A1.2. </small>

<small>5 </small> Chương 4. Các công cụ phát triển ứng dụng dữ liệu lớn

4.1. Pig

- Pig Cơ bản - Các phép toán

quan hệ Pig

<small>giảng </small>

<small>5.2. Đặt câu hỏi gợi mở để sinh viên trả lời 5.3. Cách nghiên cứu và </small>

<small>CLO1 CLO2 CLO3 CLO5 </small>

<small>- GV sử dụng tài liệu [1] và projector để thuyết giảng </small>

<small>- Phần chuẩn bị ở nhà: </small>

Đọc trước Cuốn [1]: Phần 3; Cuốn [2]:

<small>A1.2. </small>

</div><span class="text_page_counter">Trang 4</span><div class="page_container" data-page="4">

<small>4</small>Các phép toán đánh

giá và các hàm khác

<small>đánh giá giải </small>

<small>- Ghi chú, tham gia các hoạt động trên lớp 6 </small> Chương 4. Các công

cụ phát triển ứng dụng dữ liệu lớn (tt)

4.2. Jaql

- Tổng quan Jaql - Ngôn ngữ Jaql Cơ

bản

- Các phép toán cơ sở

- Hỗ trợ SQL Jaql - Jaql và

MapReduce - Input và Output 4.3. Chuyển dữ liệu vào Hadoop với Flume

- Các kịch bản nạp dữ liệu

- Sử dụng Sqoop - Tổng quan về

<small>CLO1 CLO2 CLO3 CLO5 </small>

<small>- GV sử dụng tài liệu [1] và projector để thuyết giảng </small>

<small>- Phần chuẩn bị ở nhà: </small>

Đọc trước Cuốn [1]: Phần 3; Cuốn [2]: Phần 5

<small>- Ghi chú, tham gia các hoạt động trên lớp </small>

<small>7 </small> Chương 4. Các công cụ phát triển ứng dụng dữ liệu lớn

4.4. Sử dụng Hbase để Truy xuất thời gian thực đến Dữ liệu lớn

- Giới thiệu Hbase - HBase Client API

– Cơ bản - Client API: Các

tính năng Quản trị và Nâng cao - Các client HBase

hiện có

- Tích hợp HBase và MapReduce - Cấu hình và Quản

trị HBase

<small>giảng </small>

<small>7.2. Đặt câu hỏi gợi mở để sinh viên trả lời 7.3. Trình bày ví dụ và bài tập áp dụng </small>

<small>CLO1 CLO2 CLO3 CLO5 </small>

<small>- GV sử dụng tài liệu [1] và projector để thuyết giảng </small>

<small>- Phần chuẩn bị ở nhà: </small>

Đọc trước Cuốn [1]: Phần 3; Cuốn [2]: Phần 5

<small>- Ghi chú, tham gia các hoạt động trên lớp </small>

<small>8 </small> Chương 5. Phân tích Dữ liệu Lớn 5.1. Phân tích dữ liệu

bảng tính với BigSheets - BigSheets là gì? - Chức năng của

BigSheets

- BigSheets chuyên sâu

<small>giảng </small>

<small>8.2. Đặt câu hỏi gợi mở để sinh viên trả lời 8.3. Trình bày ví dụ và bài tập áp dụng </small>

<small>CLO1 CLO2 CLO3 CLO5 </small>

<small>- GV sử dụng tài liệu [1] và projector để thuyết giảng </small>

<small>- Phần chuẩn bị ở nhà: </small>

Đọc trước Cuốn [1]: Phần 5, 6; Cuốn [3]

<small>- Ghi chú, tham gia các hoạt động trên lớp </small>

</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5">

<small>5</small>- Một ví dụ tình

huống sử dụng BigSheets đầy đủ 5.2. Phân tích Văn

bản Cơ bản 5.3. Báo cáo và phân

tích với Hadoop

<small>9 </small> Chương 5. Phân tích Dữ liệu Lớn 5.4. Ngôn ngữ R

- Phân tích dữ liệu với ngơn ngữ R - Sử dụng R với Cơ

sở dữ liệu

5.5. Phân tích tích dữ liệu thời gian thực - Tính tốn dịng Tính tốn dịng với mơi trường

<small>3 9.1. Giao bài tập </small>

<small>9.2. Mô tả các yêu cầu thực hiện </small>

<small>9.3. Đánh giá, hướng dẫn thực hiện và sửa bài tập </small>

<small>CLO1 CLO2 CLO3 CLO5 </small>

<small>- GV sử dụng tài liệu [1] và projector để thuyết giảng </small>

<small>- Phần chuẩn bị ở nhà: </small>

Đọc trước Cuốn [1]: Phần 5, 6; Cuốn [3]

<small>- Ghi chú, tham gia các hoạt động trên lớp </small>

<small>10 Ôn tập 3 10.1. Ôn tập kiến thức 10.2. Rút tỉa bài học kinh nghiệm từ các bài tập 10.3. Hướng dẫn thực hiện đồ án mơn học </small>

<small>- Ơn tập nội dung lý thuyết - Thảo luận và ghi chú </small>

<b>- Các học phần thực hành: được tổ chức thực hiện vào tuần thứ 4 của học kỳ, có nội dung thuyết giảng và chuẩn đầu ra tương quan với nội dung bài giảng lý thuyết. </b>

<i> </i>

<b><small>Buổi/ </small></b>

<b><small>Số tiết (TH) </small></b>

<b><small>Hoạt động của giảng viên </small></b>

<b><small>Lquan đến CĐR nào ở bảng 3.1 </small></b>

<b>Hoạt động học của </b>

<b><small>Tên bài đánh giá </small></b>

<small>1 </small> <sub>Bài 1: </sub>đặt cấu hình Hadoop <small>3 TH - Thuyết giảng - Hướng dẫn sinh </small>

<small>viên thực hiện </small>

<small>CLO1 CLO3 </small>

<small>- Nghe giảng, ghi chú - Trả lời câu </small>

<small>hỏi </small>

<small>- Thực hành trên máy </small>

<small>2, 3 Bài 2: </small>Cài đặt thuật toán khai thác dữ liệu cơ bản trên Hadoop - Mapreduce

<small>6 TH - Thuyết giảng - Hướng dẫn sinh </small>

<small>viên thực hiện </small>

<small>CLO1 CLO3 </small>

<small>- Nghe giảng, ghi chú - Trả lời câu </small>

<small>hỏi </small>

<small>- Thực hành trên máy </small>

<small>4,5,6,7 </small>

Bài 3: Các công cụ phát triển ứng dụng dữ liệu lớn

<small>12 TH - Thuyết giảng - Hướng dẫn sinh </small>

<small>viên thực hiện </small>

<small>CLO1 CLO3 CLO5 </small>

<small>- Trả lời câu hỏi </small>

<small>- Thực hành trên máy </small>

<small>8,9 Bài 4: </small>Phân tích dữ liệu với ngôn ngữ R

<small>6 TH - Thuyết giảng - Hướng dẫn sinh </small>

<small>viên thực hiện </small>

<small>CLO1 CLO3 CLO5 </small>

<small>- Trả lời câu hỏi </small>

<small>- Thực hành trên máy </small>

<small>10 Bài 5: Thi thực hành 3 TH - Giao bài thi CLO3 - Thực hiện A2 </small>

</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6">

<small>CLO4 trên máy </small>

<b>7. Học liệu: </b>

<b>Bảng 7.1. Sách, giáo trình, tài liệu tham khảo </b>

<b>XB </b>

<b>Tên sách, giáo trình, tên bài báo, văn bản </b>

<b>NXB, tên tạp chí/ nơi ban hành VB Giáo trình chính </b>

1 Nhóm tác giả 2012 <b>Big Data Now: 2012 Edition </b>

<b>( </b>

O’Reilly Media, Inc.

<b>Sách, giáo trình tham khảo </b>

2 Jeffrey Needham 2013 Disruptive Possibilities: How Big Data Changes Everything

<b> </b>

<i><b>8.Cơ sở vật chất phục vụ giảng dạy: </b></i>

<b>Bảng 8.1. Cơ sở vật chất giảng dạy của HP </b>

<b>mềm,… </b>

<b>Số lượng </b>

<i>1 </i> <small>Phòng máy Khoa CNTT Giảng viên sẽ hướng dẫn sinh viên tải và cài đặt theo yêu cầu từng buổi thực hành </small>

</div>

×