Tải bản đầy đủ (.pdf) (289 trang)

Multi-Robot Systems. From Swarms to Intelligent Automata Volume III pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (7.96 MB, 289 trang )

Multi-Robot S
y
stems. From Swarms to Intelli
g
ent Automata
V
olume III
Volume III
Proceedings from the 2005 International Workshop
on Multi-Robot Systems
Edited b
y
LYNNE E. PARKER
T
h
e University o
f
Tennessee
,
Knoxvi
ll
e, TN, U.S.A
.
an
d
FRANK E. SCHNEIDER
Multi-Robot Systems.
From
Swarms to
Intelligent
Automata


ALAN C. SCHULTZ
N
av
y
Center
f
or Applied Research in A.I.
,
N
ava
l
Researc
h
La
b
oratory
,
Was
h
ington, DC, U.S.A
.
F
GAN, Wac
h
t
b
erg, Germany
A
C.I.P. Catalogue record for this book is available from the Library of Congress.
Published by Springer,

P.O. Box 17
,
3300 AA Dordrecht
,
The Netherlands.
Printed on acid-
f
ree pape
r
All Rights Reserved
©
2005 Sprin
g
e
r
No part of this work may be reproduced, stored in a retrieval system, or transmitted
i
n any form or by any means, electronic, mechanical, photocopying, microfilming,
r
ecording or otherwise, without written permission from the Publisher, with the
exception of an
y
material supplied specificall
y
for the purpose of bein
g
entered
and executed on a computer system, for exclusive use by the purchaser of the work.
Print
ed

in th
e
N
e
th
e
rlan
ds.
ISBN-13 978-1-4020-3388-9 (HB) Springer Dordrecht, Berlin, Heidelberg, New York
ISBN-10 1-4020-3388-5 (HB) Sprin
g
er Dordrecht, Berlin, Heidelber
g
, New York
ISBN-10 1-4020-3389-3 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York
I
SBN-13 978-1-4020-3389-6 (e-book) Springer Dordrecht, Berlin, Heidelberg, New York
C
ontents
Pr
e
f
ace
ix
Part I Task Allocatio
n
The Generation of Bidding Rules for Auction-Based Robot Coordination
3
C
rai

g
Tove
y
, Michail G. La
g
oudaki
s
,
Sonal Jain, and Sven Koeni
g
Issues in Multi-Robot Coalition Formatio
n
15
L
ovekesh Vi
g
and Julie A. Adam
s
Sensor Network-Mediated Multi-Robot Task Allocatio
n
27
M
axim A. Batalin and
G
aura
vS
.
S
ukhatm
e

Part II Coordination in Dynamic Environment
s
M
ulti-Ob
j
ective Cooperative Control of D
y
namical S
y
stem
s
41
Z
hihua Q
u
,
Jin
g
Wan
g
,
a
nd Richard A. Hul
l
L
evels of Multi-Robot Coordination for D
y
namic Environment
s
53

C
olin P. McMillen, Paul E. R
y
bski, and Manuela M. Velos
o
Parallel Stochastic Hill-Climbin
g
with Small Team
s
6
5
B
rian P. Gerke
y
, Sebastian Thru
n
,
Geo
ff
Gordo
n
T
owar
d
Versat
ili
t
y
o
f

Mu
l
t
i
-Ro
b
ot S
y
stem
s
79
C
o
l
in C
h
err
y
an
d
Hon
g
Z
h
an
g
Part III In
f
ormat
i

on / Sensor S
h
ar
i
n
g
an
d
Fus
i
o
n
Decentra
li
ze
d
Commun
i
cat
i
on Strate
gi
es
f
or Coor
di
nate
d
Mu
l

t
i
-A
g
ent Po
li
c
i
es 9
3
M
aayan Rot
h
, Rei
d
Simmons, an
d
Manue
l
aVe
l
os
o
Improving Multirobot Multitarget Tracking by Communicating
Ne
g
at
i
ve In
f

ormat
i
o
n
pgg
107
M
att
h
ew Powers, Ramprasa
d
Ravic
h
an
d
ran, Fran
k
De
ll
aert, an
d
Tuc
k
er Ba
l
c
h
vi
MU
LTI-R

O
B
O
T
S
Y
S
TEM
S
Enabling Autonomous Sensor-Sharing for Tightly-Coupled
C
ooperat
i
ve Tas
k
s
g
119
Ly
nne E. Parker, Maureen Chandra, and Fan
g
Tan
g
Part IV Distributed Mapping and Coverag
e
Merging Partial Maps without Using Odometr
y
1
3
3

Distributed Coverage of Unknown/Unstructured Environments
b
yMo
bil
e Sensor Networ
ks
g
14
5
P
art V Motion Planning and Contro
l
1
59
J
ames Bruce and Manuela
V
elos
o
A Multi-Robot Testbed for Biologically-Inspired
C
ooperat
i
ve Contro
l
171
Rafael Fierro, Justin Clark
,
k
k

Dean Hou
g
en, and Sesh Commuri
P
art VI Human-Robot Interactio
n
T
ask Switching and Multi-Robot Team
s
1
8
5
Michael A.
G
oodric
h
,
Mor
g
an Qui
g
le
y
,
a
nd Ker
y
l Cosenz
o
User Modelling for Principled Sliding Autonomy in Human-Robot Teams 19

7
Brennan Sellner, Reid Simmons, and San
j
iv Sing
h
P
art VII A
pp
lication
s
Multi-Robot Chemical Plume Tracin
g
211
Diana Spears, Dimitri Zarzhitsk
y
,
a
nd David Tha
y
er
Deploying Air-Ground Multi-Robot Teams
i
nUr
b
an Env
i
ronment
s
pyg
pyg

223
L. Chaimowicz, A. Cowle
y
, D. Gomez-Ibanez, B. Grocholsk
y
, M. A. Hsieh
,
H. Hsu, J
.
F. Keller, V. Kumar, R. Swaminathan, and C. J. Ta
y
lo
r
P
art VIII Poster S
h
ort Paper
s
A
Robust Monte-Carlo Algorithm for Multi-Robot Localizatio
n
251
A
Dialogue-Based Approach to Multi-Robot Team Contro
l
2
5
7
N
athanael Chambers, James Allen, Lucian Galescu, and Hyuckchul Jun

g
F
r
F
F
ancesco
rr
A
mi
g
oni
,
S
imon
e
G
as
p
arini, and Maria Gin
i
I
oanni
s
Rekleiti
s
,
Ai
P
eng
PP

N
ew
,
and Howie Choset
R
eal-Time Multi-Robot Motion Planning with Safe Dynamic
s
Va
z
ha Amiranashvil
i
and Gerhard Lakeme
y
e
r
Prec
i
s
i
on Man
ip
u
l
at
i
on w
i
t
h
Coo

p
erat
i
ve Ro
b
ot
s
2
35
A
s
h
l
e
y
e
S
t
r
o
r
r
u
p
u
e
,
T
e
T

T
r
r
y
r
r
H
u
HH
n
t
s
tt
b
e
r
g
rr
e
r
,
r
r
A
v
i
O
k
o
n

, and Hrand Aghazarian
C
ontent
s
vii
for Mobile Robot Teams
263
J
ason Derenick, Christo
p
her Thorne, and John S
p
letze
r
T
h
e
G
NATs – Lo
w
-
C
ost Em
b
e
dd
e
d
Net
w

or
ks
f
or Support
i
n
g
Mo
bil
eRo
b
ot
s
277
Keit
h
J. O’Hara, Danie
l
B. Wa
lk
er, an
d
Tuc
k
er R. Ba
l
c
h
2
9

1
2
9
9
S
warm
i
n
g
UAVS Be
h
av
i
or H
i
erarc
hy
269
K
uo-
C
hi Li
n
Ro
l
eBase
d
Operat
i
on

s
283
B
rian Satterˇ eld
,
Heeten Choxi
,
and Drew Housten
Hybrid
f
Free-Space Optics/Radio Frequency (FSO/RF) Networks
bil b
b
Er
godic Dynamics by Design: A Route to Predictable Multi-Robot System
s
A
ut
h
or
In
de
x
Dy
la
n
A.
S
hell
,

C
hri
s
V
V
V
J
ones, and Maja J. Matari
JJ
c
´
Prefac
e
T
h
eT
hi
r
d
Internat
i
ona
l
Wor
k
s
h
op on Mu
l
t

i
-Ro
b
ot Systems was
h
e
ld in
March 200
5
at the Naval Research Laboratory in Washington, D.C., USA
.
Br
i
ng
i
ng toget
h
er
l
ea
di
ng researc
h
ers an
d
government sponsors
f
or t
h
ree

d
ay
s
of
tec
h
n
i
ca
li
nterc
h
ange on mu
l
t
i
-ro
b
ot systems, t
h
ewor
k
s
h
op
f
o
ll
ows tw
o

p
rev
i
ous
hi
g
hl
y success
f
u
l
gat
h
er
i
ngs
i
n 2002 an
d
2003.L
ik
et
h
e prev
i
ous tw
o
wor
k
s

h
ops, t
h
e meet
i
ng
b
egan w
i
t
h
presentat
i
ons
b
yvar
i
ous government pro
-
gram managers
d
escr
ibi
ng app
li
cat
i
on areas an
d
programs w

i
t
h
an
i
nterest
in
m
u
l
t
i
-ro
b
ot systems. U.S. Government representat
i
ves were on
h
an
df
rom
t
h
eO
ffi
ce o
f
Nava
l
Researc

h
an
d
severa
l
ot
h
er governmenta
l
o
ffi
ces.Top re
-
searc
h
ers
i
nt
h
e

e
ld
t
h
en presente
d
t
h
e

i
r current act
i
v
i
t
i
es
i
n many areas o
f
m
u
l
t
i
-ro
b
ot s
y
stems. Presentat
i
ons spanne
d
aw
id
e ran
g
eo
f

top
i
cs,
i
nc
l
u
d
-
i
n
g
tas
k
a
ll
ocat
i
on, coor
di
nat
i
on
i
n
dy
nam
i
cenv
i

ronments,
i
n
f
ormat
i
on/senso
r
s
h
ar
i
n
g
an
df
us
i
on,
di
str
ib
ute
d
mapp
i
n
g
an
d

covera
g
e, mot
i
on p
l
ann
i
n
g
an
d
c
ontro
l
,
h
uman-ro
b
ot
i
nteract
i
on, an
d
app
li
cat
i
ons o

f
mu
l
t
i
-ro
b
ot s
y
stems. A
ll
p
resentations were
g
iven in a sin
g
le-track workshop format. This proceed
-
i
n
g
s documents the work presented at the workshop.The research presenta
-
tions were followed b
y
panel discussions, in which all participants interacte
d
to hi
g
hli

g
ht the challen
g
es of this field and to develop possible solutions. I
n
addition to the invited research talks, researchers and students were
g
iven a
n
o
pportunit
y
to present their work at poster sessions.We would like to thank th
e
Naval Research Laborator
y
for sponsorin
g
this workshop and providin
g
the fa-
c
ilities for these meetin
g
s to take place.We are extremel
yg
rateful to Ma
g
dalen
a

Bu
g
a
j
ska, Paul Wie
g
and, and Mitchell A. Potter, for their vital help (and lon
g
hours) in editin
g
these proceedin
g
s and to Michelle Caccivio for providin
g
th
e
administrative su
pp
ort to the worksho
p
.
L
YNNE
E
.
P
ARKER
,
A
L

AN
C
.
S
C
H
U
LT
Z
,
A
ND
F
R
A
N
K
E
.
S
C
HNEIDER
ix
I
T
A
S
K ALL
OC
ATI

ON
THE GENERATION OF BIDDING RULES FOR
AUCTION-BASED ROBOT COORDINATION

C
ra
i
g Tovey, M
i
c
h
a
il
G. Lagou
d
a
kis
Sc
h
oo
l
of In
d
ustria
l
an
d
Systems Engineering, Georgia Institute of Tec
h
no

l
og
y
{
ctovey, m
i
c
h
a
il
.
l
a
g
ou
d
a
kis
}
@
isye.
g
atech.ed
u
S
ona
l
Ja
i
n, Sven Koen

i
g
Computer Science Department, University of Sout
h
ern Ca
l
iforni
a
{
s
ona
lj
a
i
,s
k
oen
ig
}
@
usc.ed
u
Abs
tr
act
R
o
b
ot
i

cs researc
h
ers
h
ave use
d
auct
i
on-
b
ase
d
coor
di
nat
i
on systems
f
or ro
b
o
t
t
eams because of their robustness and efficiency. However, there is no researc
h
i
nto systematic methods for deriving appropriate bidding rules for given tea
m
o
bjectives. In this paper, we propose the first such method and demonstrate it b

y
d
eriving bidding rules for three possible team objectives of a multi-robot explo
-
r
ation task. We demonstrate experimentally that the resulting bidding rules in
-
d
eed exhibit good performance for their respective team objectives and compar
e
f
avorably to the optimal performance. Our research thus allows the designer
s
o
f auction-based coordination systems to focus on developing appropriate tea
m
o
bjectives, for which good bidding rules can then be derived automatically
.
K
eywords:
A
uctions, Bidding Rules, Multi-Robot Coordination, Exploration
.
1. Introduction
T
h
et
i
me requ

i
re
d
to reac
h
ot
h
er p
l
anets ma
k
es p
l
anetary sur
f
ace exp
l
orat
i
o
n
mi
ss
i
ons pr
i
me targets
f
or automat
i

on. Sen
di
ng rovers to ot
h
er p
l
anets e
i
t
h
e
r
i
nstea
d
o
f
or toget
h
er w
i
t
h
peop
l
e can a
l
so s
i
gn

ifi
cant
l
yre
d
uce t
h
e
d
anger an
d
c
ost
i
nvo
l
ve
d
. Teams o
f
rovers are
b
ot
h
more
f
au
l
tto
l

erant (t
h
roug
h
re
d
un
-
d
ancy) an
d
more e
ffi
c
i
ent (t
h
roug
h
para
ll
e
li
sm) t
h
an s
i
ng
l
e rovers

if
t
h
e rover
s
are coor
di
nate
d
we
ll
. However, rovers cannot
b
e eas
il
yte
l
e-operate
d
s
i
nce t
his

W
et
h
an
k
Apurva Mu

dg
a
lf
or
hi
s
h
e
l
p. T
hi
s researc
h
was part
ly
supporte
dby
NSF awar
d
sun
d
er contract
s
I
TR/AP0113881
,
IIS-0098807
,
and IIS-0350584. The views and conclusions contained in this document
are t

h
ose o
f
t
h
e aut
h
ors an
d
s
h
ou
ld
not
b
e
i
nterprete
d
as represent
i
n
g
t
h
eo
ffi
c
i
a

l
po
li
c
i
es, e
i
t
h
er expresse
d
or
i
mp
li
e
d
,o
f
t
h
e sponsor
i
n
g
or
g
an
i
zat

i
ons, a
g
enc
i
es, compan
i
es or t
h
e U.S.
g
overnment
.
3
L.E. Parker et al. (eds.)
,
M
ulti-Robot Systems. From Swarms to Intelligent Automata. Volume III
,
3

14
.

c
2005 Springer. Printed in the Netherlands
.
4
T
ove

y
, et al.
r
equ
i
res a
l
arge num
b
er o
fh
uman operators an
di
s commun
i
cat
i
on
i
ntens
i
ve
,
e
rror prone, an
d
s
l
ow. Ne
i

t
h
er can t
h
ey
b
e
f
u
ll
y preprogramme
d
s
i
nce t
h
e
ir
a
ct
i
v
i
t
i
es
d
epen
d
on t

h
e
i
r
di
scover
i
es. T
h
us, one nee
d
stoen
d
ow t
h
em w
i
t
h
t
he
c
apa
bili
ty to coor
di
nate autonomous
l
yw
i

t
h
eac
h
ot
h
er. Cons
id
er,
f
or exam
-
pl
e, a mu
l
t
i
-ro
b
ot exp
l
orat
i
on tas
k
w
h
ere a team o
fl
unar rovers

h
as to v
i
s
i
t
a
num
b
er o
f
g
i
ven target
l
ocat
i
ons to co
ll
ect roc
k
samp
l
es. Eac
h
target must
be
vi
s
i

te
db
yat
l
east one rover. T
h
e rovers

rst a
ll
ocate t
h
e targets to t
h
emse
l
ves,
a
n
d
eac
h
rover t
h
en v
i
s
i
ts t
h

e targets t
h
at are a
ll
ocate
d
to
i
t. T
h
e rovers
k
no
w
t
h
e
i
r current
l
ocat
i
on at a
ll
t
i
mes
b
ut m
i

g
h
t
i
n
i
t
i
a
ll
y not
k
now w
h
ere o
b
stac
l
e
s
a
re
i
nt
h
e terra
i
n. It can t
h
ere

f
ore
b
e
b
ene

c
i
a
lf
or t
h
e rovers to re-a
ll
ocate t
he
targets to t
h
emse
l
vesast
h
ey
di
scover more a
b
out t
h
e terra

i
n
d
ur
i
ng execut
i
on
,
f
or examp
l
e, w
h
enarover
di
scovers t
h
at
i
t
i
s separate
dby
a
big
crater
f
ro
m

i
ts next tar
g
et. S
i
m
il
ar mu
l
t
i
-ro
b
ot exp
l
orat
i
on tas
k
sar
i
se
f
or m
i
ne sweep
i
n
g,
searc

h
an
d
rescue operat
i
ons, po
li
ce operat
i
ons, an
dh
azar
d
ous mater
i
a
l
c
l
ean
-
i
n
g
, amon
g
ot
h
ers
.

Multi-robot coordination tasks are t
y
picall
y
solved with heuristic method
s
since optimizin
g
the performance is often computationall
y
intractable. The
y
a
re often solved with decentralized methods since centralized methods lack ro
-
bustness: if the central controller fails, so does the entire robot team. Marke
t
mechanisms, such as auctions, are
p
o
p
ular decentralized and heuristic multi
-
r
obot coordination methods (Rabideau et al., 2000). In this case, the robot
s
a
re the bidders and the tar
g
ets are the

g
oods up for auction. Ever
y
robot bid
s
o
n tar
g
ets and then visits all tar
g
ets that it wins. As the robots discover mor
e
a
bout the terrain durin
g
execution, the
y
run additional auctions to chan
g
eth
e
a
llocation of tar
g
ets to themselves. The resultin
g
auction-based coordinatio
n
s
y

stem is efficient in terms of communication (robots communicate onl
y
nu
-
meric bids) and com
p
utation (robots com
p
ute their bids in
p
arallel). It is there
-
f
ore not surprisin
g
that auctions have been shown to be effective multi-robot
c
oordination methods (Gerkey and Matar
i
´
c, 2002, Zlot et al., 2002, Thayer
´
e
t al., 2000, Goldberg et al., 2003). However, there are currently no systemati
c
methods for deriving appropriate bidding rules for given team objectives. I
n
t
hi
s paper, we propose t

h
e

rst suc
h
met
h
o
d
an
dd
emonstrate
i
t
b
y
d
er
i
v
i
n
g
biddi
ng ru
l
es
f
or t
h

ree poss
ibl
e team o
bj
ect
i
ves o
f
t
h
emu
l
t
i
-ro
b
ot exp
l
orat
i
o
n
tas
k
.We
d
emonstrate exper
i
menta
ll

yt
h
at t
h
e resu
l
t
i
ng
biddi
ng ru
l
es
i
n
d
ee
d
e
x
hibi
t goo
d
per
f
ormance
f
or t
h
e

i
r respect
i
ve team o
bj
ect
i
ves an
d
compare
f
a
-
v
ora
bl
ytot
h
e opt
i
ma
l
per
f
ormance. Our researc
h
t
h
us a
ll

ows t
h
e
d
es
i
gners o
f
a
uct
i
on-
b
ase
d
coor
di
nat
i
on systems to
f
ocus on
d
eve
l
op
i
ng appropr
i
ate tea

m
obj
ect
i
ves,
f
or w
hi
c
h
goo
d biddi
ng ru
l
es can t
h
en
b
e
d
er
i
ve
d
automat
i
ca
ll
y
.

T
he Generation of Bidding Rules for Auction-Based Robot Coordinatio
n
5
2. The Auction-Based Coordination
Sy
stem
In
k
nown env
i
ronments, a
ll
targets are
i
n
i
t
i
a
ll
y una
ll
ocate
d
. Dur
i
ng eac
h
r

oun
d
o
f biddi
ng, a
ll
ro
b
ots
bid
sona
ll
una
ll
ocate
d
targets. T
h
ero
b
ot t
h
a
t
pl
aces t
h
e overa
ll l
owest

bid
on any target
i
sa
ll
ocate
d
t
h
at part
i
cu
l
ar target.
A
n
ew roun
d
o
f biddi
ng starts, an
d
a
ll
ro
b
ots
bid
aga
i

nona
ll
una
ll
ocate
d
targets
,
an
d
so on unt
il
a
ll
targets
h
ave
b
een a
ll
ocate
d
to ro
b
ots. (Note t
h
at eac
h
ro
b

o
t
n
ee
d
sto
bid
on
l
yonas
i
ng
l
e target
d
ur
i
ng eac
h
roun
d
, name
l
y on one o
f
t
he
targets
f
or w

hi
c
hi
ts
bid i
st
h
e
l
owest, s
i
nce a
ll
ot
h
er
bid
s
f
rom t
h
e same ro
b
o
t
h
avenoc
h
ance o
f

w
i
nn
i
ng.) Eac
h
ro
b
ot t
h
en ca
l
cu
l
ates t
h
e opt
i
ma
l
pat
hf
o
r
t
h
eg
i
ven team o
bj

ect
i
ve
f
or v
i
s
i
t
i
ng t
h
e targets a
ll
ocate
d
to
i
tan
d
t
h
en move
s
a
l
ong t
h
at pat
h

.Aro
b
ot
d
oes not move
if
no targets are a
ll
ocate
d
to
i
t
.
In un
k
nown env
i
ronments, t
h
ero
b
ots procee
di
nt
h
e same way
b
ut un
d

e
r
t
h
e opt
i
m
i
st
i
c
i
n
i
t
i
a
l
assumpt
i
on t
h
at t
h
ere are no o
b
stac
l
es. As t
h

ero
b
ot
s
m
ove a
l
on
g
t
h
e
i
r pat
h
san
d
aro
b
ot
di
scovers a new o
b
stac
l
e,
i
t
i
n

f
orms t
he
o
t
h
er ro
b
ots a
b
out
i
t. Eac
h
ro
b
ot t
h
en re-ca
l
cu
l
ates t
h
e opt
i
ma
l
pat
hf

or t
he
gi
ven team o
bj
ect
i
ve
f
or v
i
s
i
t
i
n
g
t
h
eunv
i
s
i
te
d
tar
g
ets a
ll
ocate

d
to
i
t, ta
ki
n
g
i
nto account all obstacles that it knows about. If the performance si
g
nificantl
y
de
g
rades for at least one robot (in our experiments, we use a threshold of 10
p
ercent difference), then the robots use auctions to re-allocate all unvisite
d
tar
g
ets amon
g
themselves. Each robot then calculates the optimal path for th
e
g
iven team ob
j
ective for visitin
g
the tar

g
ets allocated to it and then moves alon
g
that path, and so on until all tar
g
ets have been visited
.
This auction-based coordination s
y
stem is similar to multi-round auction
s
and sequential sin
g
le-item auctions. Its main advanta
g
e is its simplicit
y
an
d
the fact that it allows for a decentralized im
p
lementation on real robots. Eac
h
r
obot computes its one bid locall
y
and in parallel with the other robots, broad
-
c
asts the bid to the other robots

,
listens to the broadcasts of the other robots
,
and then locall
y
determines the winnin
g
bid. Thus, there is no need for
a
c
entral auctioneer and therefore no sin
g
le point of failure. A similar but mor
e
r
estricted auction scheme has been used in the
p
ast for robot coordination (Dia
s
and Stentz, 2000).
3
. Team Objectives for Multi-Robot Ex
p
loration
A
mu
l
t
i
-ro

b
ot ex
pl
orat
i
on tas
k
cons
i
sts o
f
t
h
e
l
ocat
i
ons o
f
n
ro
b
ots an
d
m
targets as we
ll
as a cost
f
unct

i
on t
h
at spec
ifi
es t
h
e cost o
f
mov
i
ng
b
etween
l
oca
-
t
i
ons. T
h
eo
bj
ect
i
ve o
f
t
h
emu

l
t
i
-ro
b
ot exp
l
orat
i
on tas
ki
sto

n
d
an a
ll
ocat
i
o
n
of
targets to ro
b
ots an
d
a pat
hf
or eac
h

ro
b
ot t
h
at v
i
s
i
ts a
ll
targets a
ll
ocate
d
t
o
i
tsot
h
at t
h
e team o
bj
ect
i
ve
i
sac
hi
eve

d
. Note t
h
at t
h
ero
b
ots are not requ
i
re
d
to return to t
h
e
i
r
i
n
i
t
i
a
ll
ocat
i
ons. In t
hi
s paper, we stu
d
yt

h
ree team o
bj
ect
i
ves
:
M
INI
S
UM
:
M
i
n
i
m
i
ze t
h
e sum o
f
t
h
e
p
at
h
costs over a
ll

ro
b
ots
.
6
T
ove
y
, et al.
M
INI
M
AX
:
M
i
n
i
m
i
ze t
h
e max
i
mum
p
at
h
cost over a
ll

ro
b
ots
.
M
INI
A
VE
A
A
:
M
i
n
i
m
i
ze t
h
e average per target cost over a
ll
targets
.
T
h
e pat
h
cost o
f
aro

b
ot
i
st
h
e sum o
f
t
h
e costs a
l
ong
i
ts pat
h
,
f
rom
i
ts
i
n
i
t
i
a
l
l
ocat
i

on to t
h
e

rst target on t
h
e pat
h
,an
d
so on, stopp
i
ng at t
h
e
l
ast target o
n
t
h
e pat
h
.T
h
e per target cost o
f
a target
i
st
h

e sum o
f
t
h
e costs a
l
ong t
h
e pat
h
of
t
h
ero
b
ot t
h
at v
i
s
i
ts t
h
e target
i
n quest
i
on,
f
rom

i
ts
i
n
i
t
i
a
ll
ocat
i
on to t
h
e

rs
t
target on t
h
e pat
h
,an
d
so on, stopp
i
ng at t
h
e target
i
n quest

i
on
.
O
pt
i
m
i
z
i
ng t
h
e per
f
ormance
f
or t
h
et
h
ree team o
bj
ect
i
ves
i
s NP-
h
ar
d

an
d
t
h
us
lik
e
l
y computat
i
ona
ll
y
i
ntracta
bl
e, as t
h
ey resem
bl
et
h
eTrave
li
ng Sa
l
es
-
p
erson Pro

bl
em, t
h
eM
i
n-Max Ve
hi
c
l
e Rout
i
ng Pro
bl
em, an
d
t
h
eTrave
li
ng Re
-
p
a
i
rperson Pro
bl
em (or M
i
n
i

mum Latency Pro
bl
em), respect
i
ve
l
y, w
hi
c
h
ar
e
i
ntracta
bl
eevenont
h
e Euc
lid
ean p
l
ane. However, t
h
ese team o
bj
ect
i
ves cove
r
aw

id
e ran
g
eo
f
app
li
cat
i
ons. For examp
l
e,
if
t
h
e cost
i
s ener
gy
consumpt
i
on
,
t
h
en t
h
e
M
INI

S
UM
team o
bj
ect
i
ve m
i
n
i
m
i
zes t
h
e tota
l
energy consume
dby
a
ll
ro
b
ots unt
il
a
ll
targets
h
ave
b

een v
i
s
i
te
d
.I
f
t
h
e cost
i
s trave
l
t
i
me, t
h
en t
he
M
I
N
IM
AX
team o
bj
ect
i
ve m

i
n
i
m
i
zes t
h
et
i
me unt
il
a
ll
targets
h
ave
b
een v
i
s
i
te
d
(
tas
k
-com
pl
et
i

on t
i
me) an
d
t
h
e
M
INI
A
VE
AA
t
eam o
bj
ect
i
ve m
i
n
i
m
i
zes
h
ow
l
ong
i
tta

k
es on average unt
il
a target
i
sv
i
s
i
te
d
(target-v
i
s
i
tt
i
me). T
h
e
M
INI
S
UM
a
n
dM
INI
M
AX

team o
bj
ect
i
ves
h
ave
b
een use
di
nt
h
e context o
f
mu
l
t
i
-ro
b
o
t
ex
pl
orat
i
on (D
i
as an
d

Stentz, 2000, D
i
as an
d
Stentz, 2002, Ber
h
au
l
teta
l
.
,
2003, Lagou
d
a
ki
seta
l
., 2004). T
h
e
M
INI
A
VE
A
A
t
eam o
bj

ect
i
ve, on t
h
eot
h
e
r
h
an
d
,
h
as not
b
een use
db
e
f
ore
i
nt
hi
s context a
l
t
h
oug
hi
t

i
s very appropr
i-
ate
f
or searc
h
-an
d
-rescue tas
k
s
,
w
h
ere t
h
e
h
ea
l
t
h
con
di
t
i
on o
f
severa

l
v
i
ct
i
ms
d
eter
i
orates unt
il
aro
b
ot v
i
s
i
ts t
h
em. Cons
id
er,
f
or examp
l
e, an eart
h
qua
ke
scenar

i
ow
h
ere an acc
id
ent s
i
te w
i
t
h
one v
i
ct
i
m
i
s
l
ocate
d
at a trave
l
t
i
me o
f
20 un
i
ts to t

h
e west o
f
aro
b
ot an
d
anot
h
er acc
id
ent s
i
te w
i
t
h
twenty v
i
ct
i
m
s
is located at a travel time of 2
5
units to its east. In this case, visiting the sit
e
to t
h
e west


rst an
d
t
h
en t
h
es
i
te to t
h
e east ac
hi
eves
b
ot
h
t
h
e
M
INI
S
UM
an
d
t
h
e
M

INI
M
AX
team o
bj
ect
i
ves. However, t
h
e twenty v
i
ct
i
ms to t
h
e east ar
e
vi
s
i
te
d
very
l
ate an
d
t
h
e
i

r
h
ea
l
t
h
con
di
t
i
on t
h
us
i
s very
b
a
d
.Ont
h
eot
h
er
h
an
d,
vi
s
i
t

i
ng t
h
es
i
te to t
h
e east

rst an
d
t
h
en t
h
es
i
te to t
h
e west ac
hi
eves t
h
e
M
INI
-
A
VE
A

A
team o
bj
ect
i
ve an
d
resu
l
ts
i
nanovera
ll b
etter average
h
ea
l
t
h
con
di
t
i
o
n
of
t
h
ev
i

ct
i
ms. T
hi
s examp
l
e
ill
ustrates t
h
e
i
mportance o
f
t
h
e
M
INI
A
VE
A
A
t
ea
m
obj
ect
i
ve

i
n cases w
h
ere t
h
e targets occur
i
nc
l
usters o
f diff
erent s
i
zes
.
4.
S
ystematic Generation of Bidding Rules
W
e see
k
to
d
er
i
ve an appropr
i
ate
biddi
ng ru

l
e
f
orag
i
ven team o
bj
ect
i
ve
.
T
hi
s
p
ro
bl
em
h
as not
b
een stu
di
e
db
e
f
ore
i
nt

h
ero
b
ot
i
cs
li
terature. Assum
e
t
h
at t
h
ere are
n
r
o
b
ots
r
1
, ,
r
n
r
a
n
d
m
current

l
y una
ll
ocate
d
target
s
t
1
, ,
t
m
t
.
A
ssume
f
urt
h
er t
h
at t
h
e team o
bj
ect
i
ve
h
as t

h
e structure to ass
i
gn a set o
f
tar
-
g
e
t
s
T
i
T
T
to ro
b
o
t
r
i
f
or a
ll
i
,
w
h
ere t
h

e sets
T
=
{
T
1
T
T
, ,
T
n
T
T
}
f
orm a
p
art
i
t
i
on o
f
T
he Generation of Bidding Rules for Auction-Based Robot Coordinatio
n
7
a
ll
targets t

h
at opt
i
m
i
zes t
h
e per
f
ormanc
e
f

g
(
r
1
,
T
1
TT
)
, ,
g
(
r
n
r
,
T

n
T
T
)

f
or g
i
ven
f
unct
i
on
s
f
a
n
d
g
.
Funct
i
on
g
d
eterm
i
nes t
h
e

p
er
f
ormance o
f
eac
h
ro
b
ot, an
d
f
unct
i
o
n
f
d
eterm
i
nes t
h
e per
f
ormance o
f
t
h
e team as a
f

unct
i
on o
f
t
h
e per
f
or
-
m
ance o
f
t
h
ero
b
ots. T
h
et
h
ree team o
bj
ect
i
ves

tt
hi
s structure. For any ro

b
o
t
r
i
an
d
any set o
f
targets
T
i
T
T
,l
et
PC
(
r
i
,
T
i
T
T
)
d
enote t
h
em

i
n
i
mum
p
at
h
cost o
f
ro
b
o
t
r
i
an
d
S
T
C
(
r
i
,
T
i
T
T
)
d

enote t
h
em
i
n
i
mum sum o
f
per target costs over a
ll
target
s
in
T
i
T
T
if
ro
b
ot
r
i
vi
s
i
ts a
ll
targets
i

n
T
i
T
T
f
rom
i
ts current
l
ocat
i
on. T
h
en
,i
t
h
o
lds
t
h
at
M
INI
S
UM
:
m
in

T

j
PC
(
r
j
r
,
T
j
T
)
,
M
INI
M
AX
:
m
in
T
max
j
PC
(
r
j
r
,

T
j
T
)
,
an
d
M
INI
A
VE
A
A
:
m
in
T
1
m

j
S
T
C
(
r
j
r
,
T

j
T
)
.
A biddi
ng ru
l
e
d
eterm
i
nes
h
ow muc
h
aro
b
ot
bid
s on a target. We propos
e
t
h
e
f
o
ll
ow
i
ng

biddi
ng ru
l
e
f
or a g
i
ven team o
bj
ect
i
ve, w
hi
c
hi
s
di
rect
l
y
d
er
i
ve
d
f
rom t
h
e team o
bj

ect
i
ve
i
tse
lf.
Bi
dd
i
n
g
Rul
e
Ro
b
o
t
r
bid
s on target
t
th
e
diff
erence
i
n per
f
ormance
f

or t
he
gi
ven team o
bj
ect
i
ve
b
etween t
h
e current a
ll
ocat
i
on o
f
targets to ro
b
ot
s
a
n
d
t
h
ea
ll
ocat
i

on t
h
at resu
l
ts
f
rom t
h
e current one
if
ro
b
o
t
r
i
sa
ll
ocate
d
t
arge
t
t
.
(Una
ll
ocate
d
targets are

i
gnore
d
.
)
C
onsequent
l
y, ro
b
o
t
r
i
s
h
ou
ld bid
on targe
t
t
f

g
(
r
1
,
T


1
T
T
)
, ,
g
(
r
n
r
,
T

n
T
T
)


f

g
(
r
1
,
T
1
T
T

)
, ,
g
(
r
n
r
,
T
n
T
T
)

,
wh
ere
T

i
T
T
=
T
i
T
T

{
t

}
an
d
T

j
T
=
T
j
T
f
or
i

=


j
.
T
h
e
biddi
ng ru
l
et
h
us per
f

orms
hill
cli
m
bi
ng to max
i
m
i
ze t
h
e per
f
ormance an
d
can t
h
us su
ff
er
f
rom
l
oca
l
opt
i
ma
.
H

owever, opt
i
m
i
z
i
ng t
h
e per
f
ormance
i
s NP-
h
ar
df
or t
h
et
h
ree team o
bj
ect
i
ves
.
O
ur auct
i
on-

b
ase
d
coor
di
nat
i
on system
i
st
h
ere
f
ore not
d
es
i
gne
d
to opt
i
m
i
z
e
t
h
e per
f
ormance

b
ut to
b
ee
ffi
c
i
ent an
d
resu
l
t
i
n a goo
d
per
f
ormance, an
d hill
cli
m
bi
ng
h
as t
h
ese propert
i
es. One potent
i

a
l
pro
bl
em w
i
t
h
t
h
e
biddi
ng ru
le
i
st
h
at t
h
ero
b
ots m
i
g
h
t not
h
ave a
ll
t

h
e
i
n
f
ormat
i
on nee
d
e
d
to compute t
he
bid
s. For examp
l
e, a ro
b
ot may not
k
now t
h
e
l
ocat
i
ons o
f
t
h

eot
h
er ro
b
ots
.
H
owever, we w
ill
now s
h
ow t
h
ataro
b
ot can ca
l
cu
l
ate
i
ts
bid
s
f
or t
h
et
h
re

e
team o
bj
ect
i
ves
k
now
i
ng on
l
y
i
ts current
l
ocat
i
on, t
h
e set o
f
targets a
ll
ocate
d
to
i
t, an
d
t

h
e cost
f
unct
i
on:
For t
h
eM
INI
S
UM
team o
bj
ect
i
ve, ro
b
o
t
r
i
s
h
ou
ld bid
on targe
t
t


j
PC
(
r
j
r
,
T

j
T
)


j
PC
(
r
j
r
,
T
j
T
)=
PC
(
r
i
,

T
i
T
T

{
t
}
)

PC
(
r
i
,
T
i
T
T
)
.
8
T
ove
y
, et al.
For t
h
eM
INI

M
AX
team o
bj
ect
i
ve, ro
b
o
t
r
i
s
h
ou
ld bid
on targe
t
t
max
j
PC
(
r
j
r
,
T

j

T
)

max
j
PC
(
r
j
r
,
T
j
T
)
=
P
C
(
r
i
,
T
i
T
T

{
t
}

)

max
j
PC
(
r
j
r
,
T
j
T
)
.
T
hi
s
d
er
iv
at
i
on uses t
h
e
f
act t
h
at ma

x
j
PC
(
r
j
r
,
T

j
T
)
=
PC
(
r
i
,
T

i
T
T
)
,
ot
h
er
-

w
i
se target
t
wou
ld h
ave a
l
rea
d
y
b
een a
ll
ocate
di
n a prev
i
ous roun
d
o
f
biddi
ng. T
h
e term max
j
PC
(
r

j
r
,
T
j
T
)
can
b
e
d
ro
pp
e
d
s
i
nce t
h
e outcomes
of
t
h
e auct
i
ons rema
i
n unc
h
ange

dif
a
ll bid
sc
h
ange
b
y a constant. T
h
us
,
r
o
b
ot
r
i
c
an
bid j
us
t
PC
(
r
i
,
T
i
T

T
∪{
t
}
)
o
n
t
arge
t
t
.
For t
h
eM
INI
A
VE
A
A
team o
bj
ect
i
ve, ro
b
ot
r
i
s

h
ou
ld bid
on targe
t
t
1
m

j
S
T
C
(
r
j
r
,
T

j
T
)

1
m

j
S
T

C
(
r
j
r
,
T
j
T
)
=
1
m

S
T
C
(
r
i
,
T
i
T
T

{
t
}
)


S
T
C
(
r
i
,
T
i
TT
)

.
T
h
e
f
actor 1
/
m
can
b
e
d
ro
pp
e
d
s

i
nce t
h
e outcomes o
f
t
h
e auct
i
ons re
-
m
a
i
n unc
h
ange
dif
a
ll bid
s are mu
l
t
i
p
li
e
db
y a constant
f

actor. T
h
us
,
r
o
b
ot
r
i
c
an
bid j
us
t
S
T
C
(
r
i
,
T
i
TT
∪{
t
}
)


S
T
C
(
r
i
,
T
i
T
T
)
o
n
t
arge
t
t
.
T
h
us, t
h
e
biddi
ng ru
l
es
f
or t

h
et
h
ree team o
bj
ect
i
ves ar
e
B
ID
S
UM
:
PC
(
r
i
,
T
i
T
T
∪{
t
}
)

PC
(

r
i
,
T
i
T
T
)
,
B
ID
M
AX
:
PC
(
r
i
,
T
i
T
T
∪{
t
}
)
,
an
d

B
ID
A
VE
AA
:
S
T
C
(
r
i
,
T
i
T
T
∪{
t
}
)

S
T
C
(
r
i
,
T

i
T
T
)
.
T
h
ero
b
ots nee
d
to
b
ea
bl
etoca
l
cu
l
ate t
h
e
i
r
bid
se
ffi
c
i
ent

l
y
b
ut comput
i
n
g
PC
(
r
i
,
T
i
T
T
∪{
t
}
)
or
S
T
C
(
r
i
,
T
i

T
T
∪{
t
}
)
i
s NP-
h
ar
d
.Ro
b
ot
r
i
t
h
us uses a gree
dy
m
et
h
o
d
to approx
i
mate t
h
ese va

l
ues. In part
i
cu
l
ar,
i
t

n
d
s a goo
d
pat
h
t
h
a
t
vi
s
i
ts t
h
e targets
i
n
T
i
TT

∪{
t
}
f
or a g
i
ven team o
bj
ect
i
ve as
f
o
ll
ows. It a
l
rea
dy
h
as a goo
d
pat
h
t
h
at v
i
s
i
ts t

h
e targets
in
T
i
T
T
.
F
i
rst,
i
t
i
nserts target
t
i
nto a
ll
p
os
i
t
i
ons on t
h
eex
i
st
i

ng pat
h
, one a
f
ter t
h
eot
h
er. T
h
en,
i
ttr
i
es to
i
mprov
e
e
ac
h
new pat
hb
y

rst us
i
ng t
h
e 2-opt

i
mprovement ru
l
ean
d
t
h
en t
h
e 1-targe
t
3
-opt
i
mprovement ru
l
e. F
i
na
ll
y,
i
tp
i
c
k
st
h
e
b

est one o
f
t
h
e resu
l
t
i
ng pat
hs
f
or t
h
eg
i
ven team o
bj
ect
i
ve. T
h
e 2-opt
i
mprovement ru
l
eta
k
es a pat
h
an

d
i
nverts t
h
eor
d
er o
f
targets
i
n eac
h
one o
fi
ts cont
i
nuous su
b
pat
h
s
i
n turn, p
i
c
ks
t
h
e
b

est one o
f
t
h
e resu
l
t
i
ng pat
h
s
f
or t
h
eg
i
ven team o
bj
ect
i
ve, an
d
repeat
s
t
h
e proce
d
ure unt
il

t
h
e pat
h
can no
l
onger
b
e
i
mprove
d
.T
h
e 1-target 3-op
t
i
mprovement ru
l
e removes a target
f
rom t
h
e pat
h
an
di
nserts
i
t

i
nto a
ll
ot
h
e
r
p
oss
ibl
e pos
i
t
i
ons on t
h
e pat
h
,p
i
c
k
st
h
e
b
est one o
f
t
h

e resu
l
t
i
ng pat
h
s
f
or t
he
gi
ven team o
bj
ect
i
ve, an
d
repeats t
h
e proce
d
ure unt
il
t
h
e pat
h
can no
l
on

g
er
be
i
mprove
d
.
T
h
et
h
ree
biddi
n
g
ru
l
es are not
g
uarantee
d
to ac
hi
eve t
h
e
i
r respect
i
ve tea

m
obj
ect
i
ves even
if
t
h
eva
l
ue
s
P
C
(
r
i
,
T
i
T
T
∪{
t
}
)
a
n
d
S

T
C
(
r
i
,
T
i
TT
∪{
t
}
)
a
re com
p
ute
d
exact
l
y. Cons
id
er t
h
es
i
mp
l
emu
l

t
i
-ro
b
ot exp
l
orat
i
on tas
ki
nF
i
gure 1 w
i
t
h
2ro
-
b
ots an
d
2 targets an
d
un
i
t costs
b
etween a
dj
acent

l
ocat
i
ons. A
ll biddi
ng ru
l
e
s
T
he Generation of Bidding Rules for Auction-Based Robot Coordinatio
n
9
F
igure
1.
A
s
i
mp
l
emu
l
t
i
-ro
b
ot exp
l
orat

i
on tas
k
.
c
an resu
l
t
i
nt
h
ero
b
ots
f
o
ll
ow
i
ng t
h
eso
lid li
nes, resu
l
t
i
ng
i
n a per

f
ormance o
f
3f
or t
h
e
M
INI
S
UM
team o
bj
ect
i
ve, a per
f
ormance o
f
3
f
or t
h
e
M
INI
M
AX
t
ea

m
obj
ect
i
ve, an
d
a per
f
ormance o
f
2
f
or t
h
e
M
INI
A
VE
A
A
t
eam o
bj
ect
i
ve. However
,
t
h

ero
b
ots s
h
ou
ld f
o
ll
ow t
h
e
d
as
h
e
dli
nes to max
i
m
i
ze t
h
e
p
er
f
ormance
f
or a
ll

t
h
ree team o
bj
ect
i
ves, resu
l
t
i
ng
i
n a per
f
ormance o
f
2
f
or t
h
e
M
INI
S
UM
t
ea
m
obj
ect

i
ve, a per
f
ormance o
f
1
f
or t
h
eM
INI
M
AX
t
eam o
bj
ect
i
ve, an
d
a per
f
or
-
m
ance o
f
1
f
or t

h
e
M
INI
A
VE
AA
team o
bj
ect
i
ve. (We re
l
y on a part
i
cu
l
ar wa
y
of b
rea
ki
ng t
i
es
i
nt
hi
smu
l

t
i
-ro
b
ot exp
l
orat
i
on examp
l
e
b
ut can eas
il
yc
h
ang
e
t
h
ee
d
ge costs
b
y sma
ll
amounts to guarantee t
h
at t
h

e
biddi
ng ru
l
es resu
l
t
in
t
h
ero
b
ots
f
o
ll
ow
i
ng t
h
eso
lid li
nes
i
n
d
epen
d
ent
l

yo
fh
ow t
i
es are
b
ro
k
en.) I
n
a
f
ort
h
com
i
ng paper, we ana
l
yze t
h
e per
f
ormance o
f
t
h
et
h
ree
biddi

ng ru
l
e
s
t
h
eoret
i
ca
ll
yan
d
s
h
ow t
h
at t
h
e per
f
ormance o
f
t
h
e
B
ID
S
UM
biddi

ng ru
l
e
i
n
t
h
e Euc
lid
ean case
i
s at most a
f
actor o
f
two away
f
rom opt
i
mum, w
h
ereas n
o
c
onstant-
f
actor
b
oun
d

ex
i
sts
f
or t
h
e per
f
ormance o
f
t
h
e
B
ID
M
AX
an
dB
ID
A
VE
AA
biddi
ng ru
l
es even
i
nt
h

e Euc
lid
ean case
.
5. Ex
p
erimental Evaluation
To
d
emonstrate t
h
at t
h
e per
f
ormance o
f
t
h
et
h
ree
biddi
ng ru
l
es
i
s
i
n

d
ee
d
goo
df
or t
h
e
i
r respect
i
ve team o
bj
ect
i
ves, we
i
mp
l
emente
d
t
h
em an
d
t
h
en teste
d
t

h
em
i
no
ffi
ce-
lik
eenv
i
ronments w
i
t
h
rooms
,d
oors
,
an
d
corr
id
ors
,
as s
h
own
i
nF
i
gure 2. We per

f
orme
d
exper
i
ments w
i
t
hb
ot
h
unc
l
ustere
d
an
d
c
l
ustere
d
targets. T
h
e
l
ocat
i
ons o
f
t

h
ero
b
ots an
d
targets
f
or eac
h
mu
l
t
i
-ro
b
ot exp
l
orat
i
o
n
tas
k
were c
h
osen ran
d
om
l
y

i
nt
h
e unc
l
ustere
d
target case. T
h
e
l
ocat
i
ons o
f
t
he
r
o
b
ots an
d
targets were a
l
so c
h
osen ran
d
om
l

y
i
nt
h
ec
l
ustere
d
target case,
b
u
t
with the restriction that
5
0 percent of the targets were placed in clusters of
5
targets eac
h
.T
h
e num
b
ers
i
nt
h
eta
bl
es
b

e
l
ow are averages over 10
diff
eren
t
m
u
l
t
i
-ro
b
ot exp
l
orat
i
on tas
k
sw
i
t
h
t
h
e same sett
i
ngs. T
h
e per

f
ormance o
f
t
he
b
est
biddi
ng ru
l
e
f
or a g
i
ven team o
bj
ect
i
ve
i
ss
h
own
i
n
b
o
ld.
5.1 Known Environments
W

e mappe
d
our env
i
ronments onto e
i
g
h
t-connecte
d
un
if
orm gr
id
so
f
s
i
z
e
51
×
5
1 and com
p
uted all costs between locations as the shortest distances o
n
t
h
egr

id
. Our auct
i
on-
b
ase
d
coor
di
nat
i
on system use
d
t
h
ese costs to

n
d
a
n
10
T
ove
y
, et al.
all
ocat
i
on o

f
targets to ro
b
ots an
d
a pat
hf
or eac
h
ro
b
ot t
h
at v
i
s
i
ts a
ll
target
s
all
ocate
d
to
i
t. We
i
nter
f

ace
di
ttot
h
e popu
l
ar P
l
ayer/Stage ro
b
ot s
i
mu
l
ato
r
(
Ger
k
ey et a
l
., 2003) to execute t
h
e pat
h
san
d
v
i
sua

li
ze t
h
e resu
l
t
i
ng ro
b
o
t
tra
il
s. F
i
gure 2 s
h
ows t
h
e
i
n
i
t
i
a
ll
ocat
i
ons o

f
t
h
ero
b
ots (squares) an
d
target
s
(
c
i
rc
l
es) as we
ll
as t
h
e resu
l
t
i
ng ro
b
ot tra
il
s(
d
ots)
f

or eac
h
one o
f
t
h
et
h
re
e
biddi
ng ru
l
es
f
or a samp
l
emu
l
t
i
-ro
b
ot exp
l
orat
i
on tas
k
w

i
t
h
3ro
b
ots an
d
2
0
u
nc
l
ustere
d
targets
i
n a comp
l
ete
l
y
k
nown env
i
ronment.
S
UM
,M
AX
and A

VE
A
A
i
nt
h
e capt
i
on o
f
t
h
e

gure
d
enote t
h
e per
f
ormance
f
or t
h
e
M
INI
S
UM
,M

INI
-
M
AX
an
dM
INI
A
VE
A
A
team o
bj
ect
i
ves, respect
i
ve
l
y. Eac
h biddi
ng ru
l
e resu
l
ts
in
a
b
etter per

f
ormance
f
or
i
ts team o
bj
ect
i
ve t
h
an t
h
eot
h
er two
biddi
ng ru
l
es. Fo
r
e
xamp
l
e, t
h
e
B
ID
S

UM
biddi
ng ru
l
e resu
l
ts
i
n pat
h
so
f
very
diff
erent
l
engt
h
s
,
wh
ereas t
h
eB
ID
M
AX
biddi
ng ru
l

e resu
l
ts
i
n pat
h
so
f
s
i
m
il
ar
l
engt
h
s. T
h
ere
-
f
ore, t
h
e
p
er
f
ormance o
f
t

h
eB
ID
M
AX
biddi
ng ru
l
e
i
s
b
etter
f
or t
h
e
M
INI
M
AX
team o
bj
ect
i
ve t
h
an t
h
e one o

f
t
h
e
B
ID
S
UM
biddi
ng ru
l
e.
W
e compare
d
t
h
e per
f
ormance o
f
t
h
et
h
ree
biddi
ng ru
l
es aga

i
nst t
h
eop
-
t
i
ma
l
per
f
ormance
f
or mu
l
t
i
-ro
b
ot exp
l
orat
i
on tas
k
sw
i
t
h
one or two ro

b
ot
s
an
d
ten targets. T
h
e opt
i
ma
l
per
f
ormance was ca
l
cu
l
ate
db
y
f
ormu
l
at
i
ng t
he
m
u
l

t
i
-ro
b
ot exp
l
orat
i
on tas
k
sas
i
nteger programs an
d
so
l
v
i
ng t
h
em w
i
t
h
t
he
c
ommerc
i
a

l
m
i
xe
di
nteger program so
l
ver CPLEX. T
h
e NP-
h
ar
d
ness o
f
opt
i-
mi
z
i
ng t
h
e per
f
ormance
did
not a
ll
ow us to so
l

ve
l
arger mu
l
t
i
-ro
b
ot exp
l
orat
i
o
n
tas
k
s. Ta
bl
e1s
h
ows t
h
e per
f
ormance o
f
eac
h biddi
ng ru
l

ean
d
t
h
e opt
i
ma
l
per
-
f
ormance
f
or eac
h
team o
bj
ect
i
ve. Aga
i
n, eac
h biddi
ng ru
l
e resu
l
ts
i
na

b
ette
r
p
er
f
ormance
f
or
i
ts team o
bj
ect
i
ve t
h
an t
h
eot
h
er two
biddi
ng ru
l
es, w
i
t
h
t
he

e
xcept
i
on o
f
t
i
es
b
etween t
h
e
B
ID
S
UM
a
n
dB
ID
M
AX
biddi
ng ru
l
es
f
or mu
l
t

i-
r
o
b
ot ex
pl
orat
i
on tas
k
sw
i
t
h
one ro
b
ot. T
h
ese t
i
es are unavo
id
a
bl
e
b
ecause t
he
M
INI

S
UM
an
dM
INI
M
AX
team o
bj
ect
i
ves are
id
ent
i
ca
lf
or one-ro
b
ot exp
l
o
-
r
at
i
on tas
k
s. T
h

e per
f
ormance o
f
t
h
e
b
est
biddi
ng ru
l
e
f
or eac
h
team o
bj
ect
i
v
e
i
sa
l
ways c
l
ose to t
h
e opt

i
ma
l
per
f
ormance. In part
i
cu
l
ar, t
h
e per
f
ormance o
f
t
h
e
B
ID
S
UM
biddi
ng ru
l
e
f
or t
h
e

M
INI
S
UM
t
eam o
bj
ect
i
ve
i
sw
i
t
hi
na
f
actor o
f
1
.
10 o
f
o
p
t
i
ma
l
,t

h
e
p
er
f
ormance o
f
t
h
e
B
ID
M
AX
biddi
ng ru
l
e
f
or t
h
e
M
INI
-
M
AX
team o
bj
ect

i
ve
i
sw
i
t
hi
na
f
actor o
f1
.
4
4o
f
o
p
t
i
ma
l
,an
d
t
h
e
p
er
f
ormanc

e
of
t
h
eB
ID
A
VE
A
A
biddi
ng ru
l
e
f
or t
h
e
M
INI
A
VE
A
A
t
eam o
bj
ect
i
ve

i
sw
i
t
hi
na
f
acto
r
of
1
.
2
8o
f
o
p
t
i
ma
l.
W
ea
l
so compare
d
t
h
e per
f

ormance o
f
t
h
et
h
ree
biddi
ng ru
l
es aga
i
nst eac
h
o
t
h
er
f
or
l
arge mu
l
t
i
-ro
b
ot exp
l
orat

i
on tas
k
sw
i
t
h
one,

ve or ten ro
b
ots an
d
100 targets. Ta
bl
e2s
h
ows t
h
e per
f
ormance o
f
eac
h biddi
ng ru
l
e. Aga
i
n, eac

h
biddi
ng ru
l
e resu
l
ts
i
na
b
etter per
f
ormance
f
or
i
ts team o
bj
ect
i
ve t
h
an t
h
eot
h
e
r
two
biddi

ng ru
l
es, w
i
t
h
t
h
e except
i
on o
f
t
h
e unavo
id
a
bl
et
i
es
.
T
he Generation of Bidding Rules for Auction-Based Robot Coordinatio
n
11
F
igure
2.
Pl

ayer/Stage screens
h
ots:
i
n
i
t
i
a
ll
ocat
i
ons (top
l
e
f
t) an
d
ro
b
ot tra
il
sw
i
t
h
t
he
B
ID

S
UM
(top r
i
g
h
t) [
S
UM
=
182.50,
M
AX
=113.36 , A
VE
A
A
=
48.
6
1], B
ID
M
AX
(
b
ottom
l
e
f

t
)
[S
UM
=
218
.
12
,
M
AX
=93.87 , A
VE
A
A
=
4
6
.01], and
B
ID
A
VE
A
A
(b
ottom r
i
g
h

t) [
S
UM
=2
6
9.27
,
M
AX
=109.39 , A
VE
A
A
=
45.15] bidding rules.
5.2 Unknown Environments
W
e compare
d
t
h
e per
f
ormance o
f
t
h
et
h
ree

biddi
ng ru
l
es aga
i
nst eac
h
ot
h
e
r
f
or t
h
e same
l
arge mu
l
t
i
-ro
b
ot exp
l
orat
i
on tas
k
sas
i

nt
h
e prev
i
ous sect
i
on
b
ut
in
i
n
i
t
i
a
ll
y comp
l
ete
l
yun
k
nown env
i
ronments. In t
hi
s case, we mappe
d
our env

i-
r
onments onto four-connected uniform grids of size
51
×
5
1 and computed all
c
osts
b
etween
l
ocat
i
ons as t
h
es
h
ortest
di
stances on t
h
egr
id
.T
h
ese gr
id
s wer
e

al
so use
d
to s
i
mu
l
ate t
h
e movement o
f
t
h
ero
b
ots
i
n a coarse an
d
no
i
se-
f
ree
s
i
mu
l
at
i

on. (We cou
ld
not use e
i
g
h
t-connecte
d
gr
id
s
b
ecause
di
agona
l
move
-
ments are
l
onger t
h
an
h
or
i
zonta
l
an
d

vert
i
ca
l
ones, an
d
t
h
es
i
mu
l
at
i
on step
s
t
h
us wou
ld
nee
d
to
b
e muc
h
sma
ll
er t
h

an mov
i
ng
f
rom ce
ll
to ce
ll
.) T
h
ero
b
ot
s
sense a
ll bl
oc
k
ages
i
nt
h
e
i
r
i
mme
di
ate
f

our-ce
ll
ne
i
g
hb
or
h
oo
d
.Ta
bl
e3s
h
ow
s
12
T
ove
y
, et al.
T
able
1
.
P
er
f
ormance o
f biddi

ng ru
l
es aga
i
nst opt
i
ma
li
n
k
nown env
i
ronments
.
R
o
b
ots B
iddi
ng
U
nc
l
ustere
d
Cl
ustere
d
Ru
l

e
S
UM
M
AX
A
VE
AA
S
UM
M
AX
A
VE
AA
1B
ID
S
UM
1
99.9
51
99.95
103
.
08
1
4
3
.69 14

3
.6
9
7
8
.
65
1B
ID
M
AX
199.9
51
99.95
103
.
08
1
4
3
.69 14
3
.6
9
7
8
.
65
1B
ID

A
VE
A
A
214
.
93 214
.
93
98.66
155
.
50
1
55
.
50
6
3
.1
2
1
O
PTIMAL
1
99
.
9
51
99

.
9
5
9
8.3
7
1
43.
69
143.
69 6
3.1
2
2B
ID
S
UM
19
3
.5
0
168.50 7
9
.2
1
13
4.1
8
9
7.17

6
2.4
7
2B
ID
M
AX
2
1
9
.1
5
1
25
.84
6
1.3
9
144
.
84
90.
1
0
5
7.
38
2B
ID
A

VE
A
A
2
1
9
.16 128.4
5
59.
1
2
1
57.2
9
100.5
6
4
9.
15
2O
PTIMAL
18
9
.15 10
9
.34 55.4
5
13
2.
06 85

.
86
47.
63
T
able
2
.
P
er
f
ormance o
f biddi
ng ru
l
es aga
i
nst eac
h
ot
h
er
i
n
k
nown env
i
ronments
.
R

o
b
ots B
iddi
n
g
U
nc
l
ustere
d
Cl
ustere
d
Ru
l
e
S
UM
M
AX
A
VE
AA
S
UM
M
AX
A
VE

A
A
1B
ID
S
UM
5
54
.
4
0
554
.
4
0
281
.
11
43
7.25 4
3
7.2
5
212
.
81
1B
ID
M
AX

5
54
.
4
0
554
.
4
0
281
.
11
43
7.25 4
3
7.2
5
212
.
81
1B
ID
A
VE
AA
6
11.
50 6
11.
50

2
4
3
.
30
53
2.4
653
2.4
6
169.
2
0
5B
ID
S
UM
4
8
3
.8
9
210
.
30 80
.7
4
3
74.
33

1
86.50 66.
94
5B
ID
M
AX
5
4
8
.4
0
13
0.4
1
58
.7
0
450
.7
2
1
12
.
1
8
50
.
50
5B

ID
A
VE
AA
60
1.2
8
14
6
.1
8
5
5
.
1
9
5
00.05 132.
98
42
.
4
1
10
B
ID
S
UM
43
5.

30
136.70 45.8
9
3
18.5
2
10
2.1
535
.1
4
10 B
ID
M
AX
5
36.
90
7
7
.95
31
.
39
402
.
30
6
3
.8

9
2
5
.
88
10 B
ID
A
VE
A
A
56
4.7
388
.2
3
3
0.0
4
43
7.2
3
71.
52
22
.02
t
h
e per
f

ormance o
f
eac
h biddi
ng ru
l
e. Aga
i
n, eac
h biddi
ng ru
l
e resu
l
ts
i
n
a
b
etter per
f
ormance
f
or
i
ts team o
bj
ect
i
ve t

h
an t
h
eot
h
er two
biddi
ng ru
l
es, w
i
t
h
t
h
e except
i
on o
f
t
h
e unavo
id
a
bl
et
i
es an
d
two ot

h
er except
i
ons. T
h
e averag
e
num
b
er o
f
auct
i
ons
i
s2
8
.
3
7
wi
t
h
a max
i
mum o
f8
2 auct
i
ons

i
n one case. I
n
g
enera
l
,t
h
e num
b
er o
f
auct
i
ons
i
ncreases w
i
t
h
t
h
e num
b
er o
f
ro
b
ots. Note t
h

a
t
t
h
e
diff
erence
i
n per
f
ormance
b
etween
k
nown an
d
un
k
nown env
i
ronments
is
a
t most a
f
actor o
f
t
h
ree. It

i
s remar
k
a
bl
et
h
at our auct
i
on-
b
ase
d
coor
di
nat
i
o
n
system manages to ac
hi
eve suc
h
a goo
d
per
f
ormance
f
or a

ll
team o
bj
ect
i
ve
s
s
i
nce t
h
ere
h
as to
b
e some per
f
ormance
d
egra
d
at
i
on g
i
ven t
h
at we sw
i
tc

h
e
d
b
ot
hf
rom
k
nown to un
k
nown env
i
ronments an
df
rom e
i
g
h
t-connecte
d
to
f
our
-
c
onnecte
dg
r
id
s

.
6
. Conclusions and Future Work
In t
hi
s paper, we
d
escr
ib
e
d
an auct
i
on-
b
ase
d
coor
di
nat
i
on system an
d
t
h
e
n
p
ropose
d

a systemat
i
c met
h
o
df
or
d
er
i
v
i
ng appropr
i
ate
biddi
ng ru
l
es
f
or g
i
ve
n
T
he Generation of Bidding Rules for Auction-Based Robot Coordinatio
n
1
3
T

able
3
.
P
er
f
ormance o
f biddi
ng ru
l
es aga
i
nst eac
h
ot
h
er
i
nun
k
nown env
i
ronments
.
Ro
b
ots B
iddi
n
g

U
nc
l
ustere
d
Cl
ustere
d
R
u
l
e
S
UM
M
AX
A
VE
AA
S
UM
M
AX
A
VE
AA
1B
ID
S
UM

1459.90 1459.90 81
3
.4
0
1
1
3
9.20 11
3
9.2
0
6
72.1
4
1B
ID
M
AX
1459.90 1459.90 81
3
.4
0
1
1
3
9.20 11
3
9.2
0
6

72.1
4
1B
ID
A
VE
A
A
1
588
.
50
1
588
.
50 8
2
6
.
82
1
1
6
4.4
0
11
6
4.4
0
46

3
.1
4
5B
ID
S
UM
9
4
3
.6
0
5
86.
9
0 223.4
7
7
71
.
4
0
4
32.
9
01
66
.
60
5B

ID
M
AX
9
7
9
.
00
23
8.1
0
98
.
48
8
11.30 216.
9
0 86.5
8
5B
ID
A
VE
A
A
992
.
10 240
.
10

90.
5
4
838
.
30
2
14.10 79.
36
10
B
ID
S
UM
799.
5
0
3
12.20
9
3.
69
596.10
2
23.20 63.
95
1
0
B
ID

M
AX
885
.4
0
12
3
.6
0
48
.
43
6
77.
80
1
1
0.60
3
7.
92
1
0B
ID
A
VE
A
A
8
7

1
.
80 133
.
00
4
5
.
1
9
69
7.80 121.5
0
3
5.4
3
team o
bj
ect
i
ves. We t
h
en
d
emonstrate
di
t
b
y
d

er
i
v
i
ng
biddi
ng ru
l
es
f
or t
h
re
e
p
oss
ibl
e team o
bj
ect
i
ves o
f
amu
l
t
i
-ro
b
ot exp

l
orat
i
on tas
k
,t
h
at re
l
ate to m
i
n
i-
mi
z
i
ng t
h
e tota
l
energy consumpt
i
on, tas
k
-comp
l
et
i
on t
i

me, an
d
average target
-
vi
s
i
tt
i
me. (T
h
e
l
ast team o
bj
ect
i
ve
h
a
d
not
b
een use
db
e
f
ore
b
ut we s

h
owe
dit
to
b
e appropr
i
ate
f
or searc
h
-an
d
-rescue tas
k
s.) F
i
na
ll
y, we
d
emonstrate
d
exper
-
i
menta
ll
yt
h

at t
h
e
d
er
i
ve
d biddi
ng ru
l
es
i
n
d
ee
d
ex
hibi
t goo
d
per
f
ormance
f
o
r
t
h
e
i

r respect
i
ve team o
bj
ect
i
ves an
d
compare
f
avora
bl
ytot
h
e opt
i
ma
l
per
f
or
-
m
ance. In t
h
e
f
uture, we
i
nten

d
to a
d
apt our met
h
o
d
o
l
ogy to ot
h
er mu
l
t
i
-ro
b
o
t
c
oor
di
nat
i
on tas
k
s. For examp
l
e, we
i

nten
d
to stu
d
ymu
l
t
i
-ro
b
ot coor
di
nat
i
o
n
w
i
t
h
auct
i
on-
b
ase
d
coor
di
nat
i

on systems
i
nt
h
e presence o
f
a
ddi
t
i
ona
l
con
-
stra
i
nts, suc
h
as compat
ibili
ty constra
i
nts w
hi
c
hdi
ctate t
h
at certa
i

n targets ca
n
o
n
ly b
ev
i
s
i
te
dby
certa
i
nro
b
ots
.
R
eferences
Ber
h
au
l
t, M., Huang, H., Kes
ki
noca
k
, P., Koen
i
g, S., E

l
mag
h
ra
b
y, W., Gr
iffi
n, P., an
d
K
l
eywegt
,
A
. (2003). Robot exploration with combinatorial auctions. I
n
Proceedings of the Interna
-
tional Conference on Intelligent Robots and System
s
, pages 1957–1962
.
Dias, M. and Stentz, A. (2000). A free market architecture for distributed control of a multirobo
t
system. In
P
roceedings of the International Conference on Intelligent Autonomous System
s
,
p

ages 115–122
.
Dias, M. and Stentz, A. (2002). Enhanced negotiation and opportunistic optimization for market
-
b
ased multirobot coordination. Technical Report CMU-RI-TR-02-18, Robotics Institute
,
Carnegie Mellon University, Pittsburgh (Pennsylvania)
.
Gerkey, B. and Matari
´
c, M. (2002). Sold!: Auction methods for multi-robot coordination.
´
I
EE
E
Transactions on Robotics and Automatio
n
,
18
(
5
)
:758–768
.
Gerkey, B., Vaughan, R., Stoy, K., Howard, A., Sukhatme, G., and Matar
i
´
c, M. (2003). Most
´

v
aluable player: A robot device server for distributed control. I
n
Proceedings o
f
the Interna
-
tional Con
f
erence on Intelligent Robots and System
s
,pa
g
es 1226–1231
.
14
T
ove
y
, et al.
G
oldberg, D., Circirello, V., Dias, M., Simmons, R., Smith, S., and Stentz, A. (2003). Market
-
b
ased multi-robot planning in a distributed layered architecture. I
n
P
roceedings from th
e
I

nternational Workshop on Multi-Robot System
s
, pages 27–38
.
L
agoudakis, M., Berhault, M., Keskinocak, P., Koenig, S., and Kleywegt, A. (2004). Simpl
e
a
uctions with performance guarantees for multi-robot task allocation. I
n
P
roceedings of th
e
I
nternational Conference on Intelligent Robots and System
s
.
R
abideau, G., Estlin, T., Chien, S., and Barrett, A. (2000). A comparison of coordinated plan
-
n
ing methods for cooperating rovers. I
n
Proceedings of the International Conference o
n
A
utonomous Agent
s
,
pages 100–101

.
T
hayer, S., Digney, B., Dias, M., Stentz, A., Nabbe, B., and Hebert, M. (2000). Distribute
d
r
obotic mapping of extreme environments. In Proceedings o
f
SPIE: Mobile Robots XV an
d
Telemanipulator and Telepresence Technolo
g
ies VI
I
, volume 4195, pa
g
es 84–95
.
Z
lot, R., Stentz, A., Dias, M., and Tha
y
er, S. (2002). Multi-robot exploration controlled b
ya
m
arket econom
y
.I
n
Proceedings o
f
the International Con

f
erence on Robotics and Automa
-
t
io
n
,
pa
g
es 3016–3023
.
I
SSUES IN MULTI-ROBOT COALITION
FORMATION
Love
k
es
h
V
ig
El
ectrica
l
Engineering an
d
Computer Science Departmen
t
Vanderbilt University, Nashville TN 3721
2
l

ovekesh.vi
g@
vanderbilt.ed
u
J
u
li
eA.A
d
am
s
El
ectrica
l
Engineering an
d
Computer Science Departmen
t
Vanderbilt University, Nashville TN 3721
2
j
ulie.a.adams
@
vanderbilt.ed
u
Abs
tr
act
N
umerous coa

li
t
i
on
f
ormat
i
on a
l
gor
i
t
h
ms ex
i
st
i
nt
h
eD
i
str
ib
ute
d
Art
ifi
c
i
a

l
In
-
t
elligence literature. Algorithms exist that form agent coalitions in both supe
r
additive and non-super additive environments. The employed techniques var
y
f
rom negotiation-based protocols in Multi-Agent System (MAS) environment
s
t
o those based on computation in Distributed Problem Solving (DPS) environ
-
m
ents. Coalition formation behaviors have also been discussed in the game the
-
o
ry literature.
D
espite the plethora of multi-agent coalition formation literature, to the bes
t
o
f our knowledge none of these algorithms have been demonstrated with a
n
actual multiple-robot system. There exists a discrepancy between the multi
-
agent algorithms and their applicability to the multiple-robot domain. This wor
k
aims to correct that discrepanc

y
b
y
unearthin
g
issues that arise while attemptin
g
t
o tailor these al
g
orithms to the multiple-robot domain. A well-known multiple
-
a
g
ent coalition formation al
g
orithm has been studied in order to identif
y
th
e
n
ecessar
y
modifications to facilitate its application to the multiple-robot domain
.
K
e
y
words:
C

oalition formation
,
fault-tolerance
,
multi-robot
,
task allocation
.
1. Introduction
Mu
l
t
i
-agent systems o
f
ten encounter s
i
tuat
i
ons t
h
at requ
i
re agents to co
-
o
perate an
d
per
f

orm a tas
k
. In suc
h
s
i
tuat
i
ons
i
t
i
so
f
ten
b
ene

c
i
a
l
to ass
i
gn a
group o
f
agents to a tas
k
, suc

h
as w
h
en a s
i
ng
l
e agent cannot per
f
orm t
h
e tas
k
s
.
T
hi
s paper
i
nvest
i
gates a
ll
ocat
i
ng tas
k
sto
di
s

j
o
i
nt ro
b
ot teams, re
f
erre
d
to a
s
1
5
L
.E. Par
k
er et a
l
.(e
d
s.)
,
M
u
l
ti-Ro
b
ot S
y
stems. From Swarms to Inte

ll
i
g
ent Automata. Vo
l
ume III
,
1
5–26.

c
2
005
S
prin
g
er. Printe
d
in t
h
e Net
h
er
l
an
d
s
.
16
V

i
g
and Adams
c
oa
li
t
i
ons. C
h
oos
i
ng t
h
e opt
i
ma
l
coa
li
t
i
on
f
rom a
ll
poss
ibl
e coa
li

t
i
ons
i
san
i
n
-
tracta
bl
e
p
ro
bl
em
d
ue to t
h
es
i
ze o
f
coa
li
t
i
on structure s
p
ace (San
dh

o
l
meta
l
.
,
1999). A
l
gor
i
t
h
ms ex
i
st t
h
at y
i
e
ld
so
l
ut
i
ons w
i
t
hi
na
b

oun
df
rom t
h
e opt
i
ma
l
a
n
d
are tracta
bl
e. However t
h
ese a
l
gor
i
t
h
ms ma
k
eun
d
er
l
y
i
ng assumpt

i
on
s
t
h
at are not app
li
ca
bl
etot
h
emu
l
t
i
p
l
e-ro
b
ot
d
oma
i
n,
h
ence t
h
eex
i
stence o

f
adi
screpancy
b
etween t
h
emu
l
t
i
-agent an
d
mu
l
t
i
p
l
e-ro
b
ot coa
li
t
i
on
f
ormat
i
o
n

li
terature. T
hi
s paper
id
ent
ifi
es t
h
ese assumpt
i
ons an
d
prov
id
es mo
difi
cat
i
on
s
to t
h
emu
l
t
i
-agent coa
li
t

i
on
f
ormat
i
on a
l
gor
i
t
h
ms to
f
ac
ili
tate t
h
e
i
r app
li
cat
i
o
n
i
nt
h
emu
l

t
i
p
l
e-ro
b
ot
d
oma
i
n. Ger
k
ey an
d
Matar
i
c (Ger
k
ey an
d
Matar
i
c, 2004
)
i
n
di
cate t
h
at

d
esp
i
te t
h
eex
i
stence o
f
var
i
ous mu
l
t
i
-agent coa
li
t
i
on
f
ormat
i
o
n
al
gor
i
t
h

ms, none o
f
t
h
ese a
l
gor
i
t
h
ms
h
ave
b
een
d
emonstrate
di
nt
h
emu
l
t
i
p
l
e
-
r
o

b
ot
d
oma
i
n
.
Var
i
ous tas
k
a
ll
ocat
i
on sc
h
emes ex
i
st. T
h
e ALLIANCE
(
Par
k
er, 1998
)
ar
-
chi

tecture uses mot
i
vat
i
ona
lb
e
h
av
i
ors to mon
i
tor tas
k
pro
g
ress an
ddy
nam
i-
c
a
lly
rea
ll
ocate tas
k
s. T
h
e MURDOCH (Ger

k
e
y
an
d
Matar
i
c, 2002) an
d
BL
E
(
Wer
g
er and Mataric, 2000) s
y
stems use a Publish/ Subscribe method to al
-
l
ocate tasks that are hierarchicall
y
distributed. However, most current tas
k
a
llocation schemes assume that all of the s
y
stem robots are available for tas
k
e
xecution. These s

y
stems also assume that communication between robots i
s
a
lwa
y
s possible or that the s
y
stem can provide motivational feedback. Thes
e
a
ssumptions need not alwa
y
s hold, a set of tasks ma
y
be located at consider
-
a
ble distances from one another so that the best solution is to dis
p
atch a robo
t
team to each desi
g
nated task area and hope that the team can autonomousl
y
c
om
p
lete the task. The robots must then coalesce into teams res

p
onsible fo
r
e
ach task. The focus of this work is to investi
g
ate the various issues that aris
e
while attemptin
g
to form multiple-robot coalitions usin
g
existin
g
multi-a
g
en
t
c
oalition formation al
g
orithms. Some solutions are su
gg
ested and Shehor
y
an
d
K
rauss’ (Shehor
y

and Krauss, 1998) multi-a
g
ent task allocation scheme al
g
o-
r
ithm is modified to operate in the multiple-robot domain. This algorithm wa
s
c
hosen because it is designed for DPS Environments, has an excellent real-tim
e
r
es
p
onse and has been shown to
p
rovide results within a bound from o
p
timal.
T
hi
s paper
i
sorgan
i
ze
d
as
f
o

ll
ows. Sect
i
on 2 prov
id
es t
h
ere
l
ate
d
wor
k.
S
ect
i
on 3 presents an overv
i
ew o
f
S
h
e
h
ory an
d
Krauss’ a
l
gor
i

t
h
m. Sect
i
o
n
4
id
ent
ifi
es
i
ssues t
h
at enta
il
mo
difi
cat
i
on o
f
current coa
li
t
i
on
f
ormat
i

on a
l-
g
orithms. Experimental results are provided in Section
5
. Finally, Section
6
di
scusses t
h
e conc
l
us
i
ons an
df
uture
w
or
k
.
2. Related
W
ork
Sh
e
h
ory an
d
Krauss propose

d
avar
i
ety o
f
a
l
gor
i
t
h
ms
f
or agent coa
li
t
i
on
f
or
-
mat
i
on t
h
at e
ffi
c
i
ent

l
yy
i
e
ld
so
l
ut
i
ons c
l
ose to opt
i
ma
l
.T
h
ey
d
escr
ib
eaKer
-
ne
l
or
i
ente
d
mo

d
e
lf
or coa
li
t
i
on
f
ormat
i
on
i
n genera
l
env
i
ronments (S
h
e
h
or
y
I
ssues in Multi-Robot
C
oalition Formatio
n
17
and Krauss, 1996) and non-super additive environments (Shehory and Krauss,

1999). T
h
ey a
l
so prov
id
e
d
a computat
i
on
b
ase
d
a
l
gor
i
t
h
m
f
or non-super a
d-
di
t
i
ve env
i
ronments (S

h
e
h
ory an
d
Krauss, 1998). Broo
k
san
d
Dur
f
ee (Broo
k
s
an
d
Dur
f
ee, 2003) prov
id
eanove
l
a
l
gor
i
t
h
m
i

nw
hi
c
h
se
lfi
s
h
agents
l
earn t
o
f
orm congregat
i
ons. An
d
erson et a
l
. (An
d
erson et a
l
., 2004)
di
scuss t
h
e
f
or-

m
at
i
on o
fd
ynam
i
c coa
li
t
i
ons
i
nro
b
ot
i
c soccer env
i
ronments
b
y agents t
h
a
t
c
an
l
earn eac
h

ot
h
er’s capa
bili
t
i
es. Fass (Fass, 2004) prov
id
es resu
l
ts
f
or an
A
utomata-t
h
eoret
i
cv
i
ew o
f
agent coa
li
t
i
ons t
h
at can a
d

apt to se
l
ect
i
ng group
s
of
agents. L
i
an
d
So
h
(L
i
an
d
So
h
, 2004)
di
scuss t
h
e use o
f
are
i
n
f
orcement

l
earn
i
ng approac
h
w
h
ere agents
l
earn to
f
orm
b
etter coa
li
t
i
ons. Sor
b
e
ll
aeta
l.
(
Sor
b
e
ll
aeta
l

., 2004
)d
escr
ib
e a mec
h
an
i
sm
f
or coa
li
t
i
on
f
ormat
i
on
b
ase
d
o
n
apo
li
t
i
ca
l

soc
i
et
y.
3
.
S
hehory and Krauss’ Algorithm
S
h
e
h
ory an
d
Krauss (S
h
e
h
ory an
d
Krauss, 1998)
d
eve
l
ope
d
amu
l
t
i

-agent
a
l
gor
i
t
h
mt
h
at
i
s
d
es
i
gne
df
or tas
k
a
ll
ocat
i
on v
i
a agent coa
li
t
i
on

f
ormat
i
on
in
D
P
S
en
vi
ronments.
3
.1 Assum
p
tions
T
h
ea
l
gor
i
t
h
m
i
nc
l
u
d
es var

i
ous assumpt
i
ons. Assume a set o
f
n
agen
t
s,
N
=
A
1
,
A
2
,
A
n
.T
h
e agents commun
i
cate w
i
t
h
eac
h
ot

h
er an
d
are aware o
f
a
ll
tas
k
sto
b
e per
f
orme
d
. Eac
h
agent
h
as a vector o
f
rea
l
non-negat
i
ve capa
bil-
i
t
i

e
s
B
i
=
<
b
i
1
,
b
i
2
,
b
i
r
>
. Eac
h
capa
bili
ty quant
ifi
es t
h
ea
bili
ty to per
f

orm a
n
act
i
on. In or
d
er to assess coa
li
t
i
ons an
d
tas
k
execut
i
on
,
an eva
l
uat
i
on
f
unct
i
o
n
i
s attac

h
e
d
to eac
h
capa
bili
ty type t
h
at trans
f
orms capa
bili
ty un
i
ts
i
nto mone
-
tary un
i
ts. It
i
s assume
d
t
h
at t
h
ere

i
s a set o
f
m
i
n
d
epen
d
ent tas
ks
T
=
t
1
,
t
2
,
t
m
t
.
A
capa
bili
ty vecto
r
B
l

=
<
b
l
1
, ,
b
l
r
>
i
s necessary
f
or t
h
e sat
i
s
f
act
i
on o
f
eac
h
tas
k
t
l
.T

h
eut
ili
ty ga
i
ne
df
rom per
f
orm
i
ng t
h
e tas
kd
epen
d
sont
h
e capa
bili
t
i
e
s
r
equ
i
re
df

or
i
ts execut
i
on. A coa
li
t
i
on
i
s a group o
f
agents t
h
at
d
ec
id
e to coop
-
e
rate
i
nor
d
er to ac
hi
eve a common tas
k
. Eac

h
coa
li
t
i
on wor
k
sonas
i
ng
l
e tas
k.
A
coa
li
t
i
o
n
C
h
as a capa
bili
ty vector B
c
r
epresent
i
ng t

h
e sum o
f
t
h
e capa
bili
t
i
e
s
t
h
at t
h
e coa
li
t
i
on mem
b
ers contr
ib
ute to t
hi
ss
p
ec
ifi
c coa

li
t
i
on. A coa
li
t
i
o
n
C
c
an per
f
orm a tas
k
t
o
n
l
y
if
t
h
e capa
bili
ty vector necessary
f
or tas
kf
u

lfill
men
t
B
t
sat
i
s

es

0

i

r
,
r
r
b
t
i
<
b
c
i
.
3
.2 The algorithm
T

h
ea
l
gor
i
t
h
m cons
i
sts o
f
two pr
i
mary stages. T
h
e

rst ca
l
cu
l
ates coa
li
t
i
ona
l
v
a
l

ues to ena
bl
e compar
i
son o
f
coa
li
t
i
ons. T
h
e secon
d
stage enta
il
san
i
tera
-
t
i
ve gree
d
y process t
h
roug
h
w
hi

c
h
t
h
e agents
d
eterm
i
ne t
h
e pre
f
erre
d
coa
li-
t
i
ons an
df
orm t
h
em. Stage one
i
st
h
e more re
l
evant to t
hi

swor
k
. Dur
i
ng t
his
stage t
h
e eva
l
uat
i
on o
f
coa
li
t
i
ons
i
s
di
str
ib
ute
d
amongst t
h
e agents v
i

a exten
-
18
V
i
g
and Adams
s
i
ve message pass
i
ng, requ
i
r
i
ng cons
id
era
bl
e commun
i
cat
i
on
b
etween agents
.
Af
ter t
hi

s stage, eac
h
agent
h
as a
li
st o
f
coa
li
t
i
ons
f
or w
hi
c
hi
tca
l
cu
l
ate
d
coa
li-
t
i
on va
l

ues. Eac
h
agent a
l
so
h
as a
ll
necessary
i
n
f
ormat
i
on regar
di
ng t
h
e coa
li-
t
i
on mem
b
ers
hi
ps’ capa
bili
t
i

es. In or
d
er to ca
l
cu
l
ate t
h
e coa
li
t
i
on va
l
ues, eac
h
a
gent t
h
en
:
1 Determ
i
nes t
h
ee
li
g
ibl
e coa

li
t
i
ons
f
or eac
h
tas
k
execut
i
o
n
t
i
b
y compar
-
i
ng t
h
e requ
i
re
d
capa
bili
t
i
es to t

h
e coa
li
t
i
on capa
bili
t
i
es
.
2
Ca
l
cu
l
ates t
h
e
b
est-ex
p
ecte
d
tas
k
outcome o
f
eac
h

coa
li
t
i
on (coa
li
t
i
o
n
we
i
g
h
t) an
d
c
h
ooses t
h
e coa
li
t
i
on y
i
e
ldi
ng t
h

e
b
est outcome
.
4. Issues in Multi
p
le-Robot
Sy
stems
T
h
ea
l
gor
i
t
h
m
d
escr
ib
e
di
n Sect
i
on 3 y
i
e
ld
s resu

l
ts t
h
at are c
l
ose to opt
i
ma
l.
T
h
e current a
l
gor
i
t
h
m cannot
b
e
di
rect
l
y app
li
e
d
to mu
l
t

i
p
l
e-ro
b
ot coa
li
t
i
o
n
f
ormat
i
on. T
hi
s sect
i
on
id
ent
ifi
es
i
ssues t
h
at must
b
ea
dd

resse
df
or mu
l
t
i
p
l
e
-
r
o
b
ot
d
oma
i
ns.
4.1 Com
p
utation vs. Communication
Sh
e
h
ory an
d
Krauss’s a
l
gor
i

t
h
m(S
h
e
h
ory an
d
Krauss, 1998) requ
i
res ex-
tens
i
ve commun
i
cat
i
on an
d
sync
h
ron
i
zat
i
on
d
ur
i
ng t

h
e computat
i
on o
f
coa
li-
t
i
on va
l
ues. W
hil
et
hi
s may
b
e
i
nexpens
i
ve
f
or
di
sem
b
o
di
e

d
agents,
i
t
i
so
f
te
n
d
es
i
ra
bl
etom
i
n
i
m
i
ze commun
i
cat
i
on
i
nmu
l
t
i

p
l
e-ro
b
ot
d
oma
i
ns even at t
he
e
xpense o
f
extra computat
i
on. T
hi
swor
ki
nvest
i
gates eac
h
agent assum
i
ng re
-
spons
ibili
ty

f
or a
ll
coa
li
t
i
ons
i
nw
hi
c
hi
t
i
s a mem
b
er an
d
t
h
ere
b
ye
li
m
i
nat
i
n

g
t
h
e nee
df
or commun
i
cat
i
on. It
i
s necessary to ana
l
yze
h
ow t
hi
swou
ld
a
ff
ec
t
e
ac
h
ro
b
ots computat
i

ona
ll
oa
d
.Ana
dd
e
d
assumpt
i
on
i
st
h
ataro
b
ot
h
as
a
p
r
i
or
ik
now
l
e
d
ge o

f
a
ll
ro
b
ots an
d
t
h
e
i
r capa
bili
t
i
es. Ro
b
ot capa
bili
t
i
es
d
ono
t
typ
i
ca
ll
yc

h
ange; t
h
ere
f
ore t
hi
s
i
s not a pro
bl
em un
l
ess a part
i
a
l
or tota
l
ro
b
o
t
f
a
il
ure
i
s encountere
d

(U
l
am an
d
Ar
ki
n, 2004). Suppose t
h
ere ar
e
N
id
ent
i
ca
l
r
o
b
ots an
d
w
i
t
h
a per
f
ect computat
i
ona

ll
oa
ddi
str
ib
ut
i
on, t
h
en t
h
e num
b
er o
f
c
oa
li
t
i
ons eac
h
ro
b
ot must eva
l
uate w
i
t
h

commun
i
cat
i
on
i
s
:
η
w
it
h
=
k

r
=
0
(
n
r
)
/
n
(1
)
T
h
ea
l

gor
i
t
h
m
di
str
ib
utes coa
li
t
i
ons
b
etween agents as a rat
i
oo
f
t
h
e
i
r compu
-
tat
i
ona
l
capa
bili

t
i
es, a
ddi
ng unwante
d
comp
l
ex
i
ty. It
i
sun
lik
e
l
yt
h
at t
h
e
l
oa
d
w
ill b
e per
f
ect
l

y
di
str
ib
ute
d
, rat
h
er some agents w
ill
comp
l
ete t
h
e
i
r computa
-
t
i
ons
b
e
f
ore ot
h
ers an
d
rema
i

n
idl
e unt
il
a
ll
computat
i
ons are comp
l
ete
d
.T
he
worst case commun
i
cat
i
ona
ll
oa
d
per agent
i
sO
(
n
k

1

)d
ur
i
ng t
h
eca
l
cu
l
at
i
on-
di
str
ib
ut
i
on stage. I
f
eac
h
agent
i
s respons
ibl
e
f
or on
l
y computat

i
on o
f
coa
li-
t
i
ons
i
nw
hi
c
hi
t
i
s a mem
b
er
,
t
h
en t
h
e num
b
er o
f
coa
li
t

i
ons eva
l
uate
d
w
i
t
h
n
o
I
ssues in Multi-Robot
C
oalition Formatio
n
19
c
ommun
i
cat
i
on
b
ecomes:
η
w
it
h
out

=
k

1

r
=
0
(
n

1
r
)
(
2)
Eq
uat
i
on 1 re
q
u
i
res
f
ewer com
p
utat
i
ons to eva

l
uate
b
ut t
hi
s
i
s not an or
d
e
r
of
magn
i
tu
d
e
diff
erence. In
b
ot
h
cases, t
h
e agent’s computat
i
ona
ll
oa
dis

O(
n
k
)p
er tas
k
.T
h
e commun
i
cat
i
ona
ll
oa
dp
er ro
b
ot
i
s O(1)
i
nt
h
eca
l
cu
l
at
i

on
-
di
str
ib
ut
i
on stage. T
h
ea
ddi
t
i
ona
l
computat
i
on may
b
e compensate
df
or
by
r
educed communication time. The Section
5
experiments demonstrate thi
s
p
o

i
nt. A
d
es
i
ra
bl
es
id
ee
ff
ect
i
sa
ddi
t
i
ona
lf
au
l
tto
l
erance. I
f
Ro
b
ot A
f
a

ils
d
ur
i
ng coa
li
t
i
on
li
st eva
l
uat
i
on, va
l
ues
f
or coa
li
t
i
ons conta
i
n
i
ng Ro
b
ot A ar
e

l
ost an
d
t
h
ose coa
li
t
i
ons are no
l
onger cons
id
ere
d
.T
h
us a ro
b
ot
f
a
il
ure
d
oe
s
n
ot requ
i

re
i
n
f
ormat
i
on retr
i
eva
lf
rom t
h
at ro
b
ot. However, t
h
eot
h
er ro
b
ot
s
m
ust
b
e aware o
f
t
h
e

f
a
il
ure so t
h
at t
h
ey can
d
e
l
ete a
ll
coa
li
t
i
ons conta
i
n
i
ng t
he
f
a
il
e
d
ro
b

ot
.
4
.2 Task Format
Current mu
l
t
i
-agent coa
li
t
i
on
f
ormat
i
on a
l
gor
i
t
h
ms assume t
h
at t
h
e agent
s
h
ave a capa

bili
ty vector,
<
b
i
1
, ,
b
i
r
>
.Mu
l
t
ipl
e-ro
b
ot ca
p
a
bili
t
i
es
i
nc
l
u
de
sensors (camera,

l
aser, sonar, or
b
umper) an
d
actuators (w
h
ee
l
sorgr
i
pper)
.
S
h
e
h
ory an
d
Krauss’s a
l
gor
i
t
h
m assumes t
h
at t
h
e

i
n
di
v
id
ua
l
agents’ resources
are co
ll
ect
i
ve
l
yava
il
a
bl
e upon coa
li
t
i
on
f
ormat
i
on. T
h
e
f

orme
d
coa
li
t
i
on
f
ree
ly
r
e
di
str
ib
utes resources amongst t
h
e mem
b
ers. However, t
hi
s
i
s not poss
ibl
e
in
amu
l
t

i
p
l
e-ro
b
ot
d
oma
i
n. Ro
b
ots cannot autonomous
l
yexc
h
ange capa
bili
t
i
es
.
Correct resource
di
str
ib
ut
i
on
i
sa

l
so an
i
ssue. T
h
e
b
ox-pus
hi
ng tas
k
can
b
e
use
d
to
ill
ustrate t
hi
spo
i
nt (Ger
k
ey an
d
Matar
i
c, 2002). T
h

ree ro
b
ots cooperat
e
to per
f
orm t
h
e tas
k
, two pus
h
ers (one
b
umper, one camera) an
d
one watc
h
e
r
(
one
l
aser, one camera). T
h
e tota
l
resource requ
i
rements are: two

b
umpers
,
t
h
ree cameras, an
d
one
l
aser. However t
hi
s
i
n
f
ormat
i
on
i
s
i
ncomp
l
ete, as
it
d
oes not represent t
h
e constra
i

nts re
l
ate
d
to sensor
l
ocat
i
ons. Correct tas
k
ex
-
e
cut
i
on requ
i
res t
h
e
l
aser an
d
camera res
id
eonas
i
n
gl
ero

b
ot. S
i
m
il
ar
ly i
t
is
n
ecessar
y
t
h
at t
h
e
b
umper an
dl
aser res
id
eon
diff
erent ro
b
ots. T
hi
s
i

mp
li
e
s
t
h
at s
i
mp
ly
possess
i
n
g
t
h
ea
d
equate resources
d
oes not necessar
ily
create
a
m
ultiple-robot coalition that can perform a task, other locational constraint
s
have to be represented and met.
A
matrix-based constraint representation is proposed for the multiple-robot

domain in order to resolve the problem. The task is represented via a capabilit
y
m
atrix called a Task Allocation Matrix (TAM). Each matrix entr
y
corresponds
to a capabilit
y
pair (for example [sonar, laser]). A 1 in an entr
y
indicate
s
that the capabilit
y
pair must reside on the same robot while a 0 indicates tha
t
the pair must reside on separate robots. Finall
y
an X indicates a do not car
e
c
ondition and the pair ma
y
or ma
y
not reside on the same robot. Ever
y
coalitio
n

×