Tải bản đầy đủ (.pdf) (56 trang)

Microelectronic Circuit Design Third Edition - Part III Solutions to Exercises doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (6.11 MB, 56 trang )

1
Microelectronic Circuit Design
Third Edition - Part III
Solutions to Exercises

CHAPTER 10

Page 509


V
o
= 2P
o
R
L
= 2 20W
( )
16Ω
( )
= 25.3 V A
v
=
V
o
V
i
=
25.3V
0.005V
= 5.06x10


3
I
o
=
V
o
R
L
=
25.3V
16Ω
= 1.58 A I
i
=
V
i
R
S
+ R
in
=
0.005V
10kΩ + 20kΩ
= 0.167
µ
A A
i
=
I
o

I
i
=
1.58 A
0.167
µ
A
= 9.48x10
6
A
P
=
P
o
P
S
=
25.3V 1.58A
( )
0.005V 0.167
µ
A
( )
= 4.79x10
10
Checking : A
p
= 5.06x10
3
( )

9.48x10
6
( )
= 4.80x10
10

Page 510


i
( )
A
vdB
= 20 log 5060
( )
= 74.1 dB A
idB
= 20 log 9.48x10
6
( )
= 140 dB A
PdB
= 10 log 4.80x10
10
( )
= 107 dB
ii
( )
A
vdB

= 20 log 4x10
4
( )
= 92.0 dB A
idB
= 20 log 2.75x10
8
( )
= 169 dB A
PdB
= 10 log 1.10x10
13
( )
= 130 dB

Page 511


i
( )
The constant slope region spanning a maximum input range is between 0.4 ≤ v
I
≤ 0.65,
and the bias voltage V
I
should be centered in this range : V
I
=
0.4 + 0.65
2

V = 0.525 V .
v
i
≤ 0.65 − 0.525 = 0.125 V and v
i
≤ 0.525 − 0.40 = 0.125 V. For v
I
= 0.8V, the slope is 0. A
v
= 0.
(ii) v
O
= V
O
+ v
o
For v
i
= 0, v
I
= V
I
= 0.6, V
O
= 14V and A
v
= +40. V
o
= A
v

V
i
= 40 0.01V
( )
= 4V
v
O
= 14.0 + 4.00sin1000
π
t
( )
volts V
O
= 14 V

2
Page 519


g
11
=
1
20kΩ + 76 50kΩ
( )
= 0.262
µ
S g
21
= 0.262

µ
S 76
( )
50kΩ
( )
= 0.995
g
22
=
1
50kΩ
+
1
20kΩ
+
75
20kΩ
= 3.82 mS g
12
= −
1
g
22
20kΩ
( )
= −
1
3.82mS 20kΩ
( )
= -0.0131

R
in
=
1
g
11
= 3.82 MΩ A = g
21
= 0.995 R
out
=
1
g
22
= 262 Ω

Page 520


i
( )
P = A
v
A
i
= A
v
2
R
S

+ R
in
R
L
ii
( )
V
o
= 2 100W
( )

( )
= 40 V 40 = 0.001
50kΩ
5kΩ + 50kΩ






A

0.5Ω + 8Ω







→ A = 46,800
P =
I
o
2
R
L
2
=
0.5Ω
2
40V







2
= 6.25 W A
i
=
40V








5kΩ + 50kΩ
0.001V






= 2.75 x 10
8
iii
( )
40 = 0.001
5kΩ
5kΩ + 5kΩ






A

8Ω + 8Ω







→ A = 160,000
P =
I
o
2
R
L
2
=

2
40V







2
= 100 W! A
i
=
40V








5kΩ + 5kΩ
0.001V






= 5.00 x 10
7

Page 521


A
v
s
( )
=
300s
s + 5000
( )
s +100
( )
Zeros at s = 0 and s = ∞; Poles at s = -5000 and s = −100.

Page 523



A
v
s
( )
= −
2
π
x 10
6
s + 5000
π
=
−400
1+
s
5000
π
→ A
mid
= −400 f
H
=
5000
π
2
π
= 2.50 kHz
BW = f
H

− f
L
= 2.50 kHz − 0 = 2.50 kHz GBW = 400
( )
2.50kHz
( )
= 1.00 MHz

3
Page 524


i
( )
A
v
j5
( )
= 50
5
2
− 4
5
2
− 2
( )
2
+ 4 5
2
( )

= 41.87 20 log 41.87
( )
= 32.4 dB
∠A
v
j5
( )
= ∠ 5
2
− 4
( )
− tan
−1
−2 5
( )
5
2
− 2








= 0 − −23.5
o
( )
= 23.5

o
A
v
j1
( )
= 50
1
2
− 4
1
2
− 2
( )
2
+ 4 1
2
( )
= 67.08 20 log 41.87
( )
= 36.5 dB
∠A
v
j1
( )
= ∠ 1
2
− 4
( )
− tan
−1

−2 1
( )
1
2
− 2








= 180
o
− −63.43
o
( )
= 243
o
= −117
o

Page 524


ii
( )
A
v

j
ω
( )
=
20
1+ j
0.1
ω
1−
ω
2
A
v
j0.95
( )
=
20
1
2
+
0.1
( )
2
0.95
2
( )
1− 0.95
2
( )
2

= 14.3 ∠A
v
j0.95
( )
= ∠20 − tan
−1
0.1 0.95
( )
1− 0.95
2








= 0 − 44.3
o
( )
= −44.3
o
A
v
j1
( )
=
20
1

2
+
0.1
( )
2
1
2
( )
1−1
2
( )
2
= 0 ∠A
v
j1
( )
= ∠20 − tan
−1
0.1 1
( )
1−1
2









= 0 − 90
o
( )
= −90.0
o
A
v
j1.1
( )
=
20
1
2
+
0.1
( )
2
1.1
2
( )
1−1.1
2
( )
2
= 17.7 ∠A
v
j1.1
( )
= ∠20 − tan
−1

0.1 1.1
( )
1−1.1
2








= 0 − −27.6
o
( )
= 27.6
o

Page 526


f
H
=
1
2
π
1
1kΩ 100kΩ
( )

200 pF
( )
= 804 kHz

Page 527


A
v
s
( )
=
250
1+
250
π
s
A
o
= 250 f
L
=
250
π
2
π
= 125 Hz f
H
= ∞ BW = ∞ −125 = ∞
4

Page 528


f
L
=
1
2
π
1
1kΩ 100kΩ
( )
0.1
µ
F
( )
= 15.8 Hz

Page 529


i
( )
A
v
s
( )
=
−400
1+

100
s






1+
s
50000






A
o
= 400 or 52 dB
f
L
=
100
2
π
= 15.9 Hz f
H
=
50000

2
π
= 7.96 kHz BW = 7960 −15.9 = 7.94 kHz
ii
( )
∠A
v
j0
( )
= −90 − 0 − 0 = −90
o
∠A
v
j100
( )
= −90
o
− tan
−1
100
100






− tan
−1
100

50000






= −90 − 45 − 0.57 = −136
o
∠A
v
j50000
( )
= −90
o
− tan
−1
50000
100






− tan
−1
50000
50000







= −90 − 89.9 − 45 = −225
o
∠A
v
j∞
( )
= −90 − 90 − 90 = −270
o

Page 531


The numerator coefficient should be 6 x10
6
.
A
v
s
( )
= 30
2x10
5
s
s
2

+ 2x10
5
s +10
14
A
o
= 30
f
o
=
1
2
π
10
14
= 1.59 MHz Q =
10
7
2x10
5
= 50 BW =
1.59 MHz
50
= 31.8 kHz

Page 533


The transfer fucntion should be A
v

s
( )
=
6.4x10
12
π
2
s
s + 200
π
( )
s + 80000
π
( )
2
.
A
v
s
( )
=
1000
1+
200
π
s







1+
s
80000
π






2
A
o
= 1000 or 60 dB
f
L
=
200
π
2
π
= 100 Hz f
H
= 0.644
80000
π
2
π







= 25.8 kHz BW = 25800 −100 = 25.7 kHz

5
CHAPTER 11

Page 545


v
id
=
10V
100
= 0.100V =100 mV v
id
=
10V
10
4
= 0.001 V = 1.00 mV v
id
=
10V
10

6
= 1.00x10
−5
V = 10.0
µ
V

Page 547


A
v
= −
360kΩ
68kΩ
= −5.29 v
O
= −5.29 0.5V
( )
= −2.65 V i
S
=
0.5V
68kΩ
= 7.35
µ
A i
O
= −i
2

= −i
S
= −7.35
µ
A

Page 549


I
S
=
2V
4.7kΩ
= 426
µ
A I
2
= I
S
= 426
µ
A A
v
= −
24kΩ
4.7kΩ
= −5.11 V
O
= −5.11 2V

( )
= −10.2 V

Page 551


A
v
= 1+
36kΩ
2kΩ
= +19.0 v
O
= 19.0 −0.2V
( )
= − 3.80 V i
O
=
−3.80V
36kΩ + 2kΩ
= −100
µ
A

Page 552



i
( )

A
v
= 1+
39kΩ
1kΩ
= +40.0 A
vdB
= 20log 40.0
( )
= 32.0 dB R
in
= 100kΩ ∞ =100kΩ
v
O
= 40.0 0.25V
( )
= 10.0 V i
O
=
10.0V
39kΩ + 1kΩ
= 250
µ
A
ii
( )
A
v
= 10
54

20
= 501 1+
R
2
R
1
= 501
R
2
R
1
= 500 i
O
=
v
O
R
2
+ R
1

10
R
2
+ R
1
≤ 0.1 mA
R
1
+ R

2
≥ 100kΩ 501R
1
≥ 100kΩ → R
1
≥ 200 Ω There are many possibilities.
(R
1
= 200 Ω, R
2
= 100 kΩ ), but ( R
1
= 220 Ω, R
2
= 110 kΩ ) is a better solution since
resistor tolerances could cause i
O
to exceed 0.1 mA in the first case.

Page 554


Inverting Amplifier : A
v
= −
30kΩ
1.5kΩ
= −20.0 R
in
= R

1
= 1.5 kΩ
v
O
= −20.0 0.15V
( )
= −3.00 V i
O
=
v
O
R
2
=
−3.00V
30kΩ
= −100
µ
A
Non - Inverting Amplifier : A
v
= 1+
30kΩ
1.5kΩ
= +21.0 R
in
=
v
S
i

S
=
0.15V
0 A
= ∞
v
O
= 21.0 0.15V
( )
= 3.15 V i
O
=
v
O
R
2
+ R
1
=
3.15V
30kΩ + 1.5kΩ
= 100
µ
A

6
Page 555


V

o1
= 2V −
3kΩ
1kΩ






= −6V V
o2
= 4V −
3kΩ
2kΩ






= −6V v
O
= −6sin1000
π
t − 6sin 2000
π
t
( )
V

The summing junction is a virtual ground : R
in1
=
v
1
i
1
= R
1
= 1 kΩ R
in2
=
v
2
i
2
= R
2
= 2 kΩ
I
o1
=
V
o1
R
3
=
−6V
3kΩ
= −2mA I

o2
=
V
o2
R
3
=
−6V
3kΩ
= −2mA i
O
= −2sin1000
π
t − 2sin2000
π
t
( )
mA

Page 559


i
( )
I
2
=
3V
10kΩ + 100kΩ
= 27.3

µ
A
ii
( )
A
v
= −
100kΩ
10kΩ
= −10.0 V
O
= −10 3V − 5V
( )
= 20.0 V I
O
=
V
O
− V

100kΩ
=
V
O
− V
+
100kΩ
V
+
= V

2
R
4
R
3
+ R
4
= 5
100kΩ
10kΩ + 100kΩ
= 4.545V I
O
=
20.0 − 4.545
100kΩ
= 155
µ
A I
2
=
5V
10kΩ + 100kΩ
= 45.5
µ
A
iii
( )
A
v
= −

36kΩ
2kΩ
= −18.0 V
O
= −18 8V − 8.25V
( )
= 4.50 V I
O
=
V
O
− V

36kΩ
=
V
O
− V
+
36kΩ
V
+
= V
2
R
2
R
1
+ R
2

= 8.25
36kΩ
2kΩ + 36kΩ
= 7.816V I
O
=
4.50 − 7.816
36kΩ
= −92.1
µ
A

Page 560


I =
V
A
−V
B
2R
1
=
5.001V − 4.999V
2kΩ
= 1.00
µ
A
V
A

= V
1
+ IR
2
= 5.001V +1.00
µ
A 49kΩ
( )
= 5.05 V
V
B
= V
2
− IR
2
= 4.999V −1.00
µ
A 49kΩ
( )
= 4.95 V
V
O
= −
R
4
R
3







V
A
−V
B
( )
= −
10kΩ
10kΩ






5.05 − 4.95
( )
= −0.100 V

Page 564


i
( )
A
v
= −
R

2
R
1
= −10
26
20
= −20.0 R
1
= R
in
= 10kΩ R
2
= 20R
1
= 200kΩ
C =
1
2
π
3kHz
( )
200kΩ
( )
= 265 pF Closest values : R
1
= 10kΩ R
2
= 200kΩ C = 270 pF
7
Page 564



ii
( )
R
in
= R
1
= 10 kΩ ΔV = −
I
C
ΔT C =
5V
10kΩ
1
10V






1ms
( )
= 0.05
µ
F
t (msec)
v
O

2
4
6
8
-10V

Page 567


v
O
= −RC
dv
S
dt
= − 20kΩ
( )
0.02
µ
F
( )
2.50V
( )
2000
π
( )
cos2000
π
t
( )

= −6.28cos2000
π
t V

Page 569


i
( )
A
vA
= A
vB
= A
vC
= −
R
2
R
1
= −
68kΩ
2.7kΩ
= −25.2 R
inA
= R
inB
= R
inC
= R

1
= 2.7 kΩ
The op - amps are ideal : R
outA
= R
outB
= R
outC
= 0
ii
( )
A
v
= A
vA
A
vB
A
vC
= −25.2
( )
3
= −16,000 R
in
= R
inA
= 2.7 kΩ R
out
= R
outC

= 0

Page 570


A
v
= −25.2
( )
3
2.7kΩ
R
out
+ 2.7kΩ






2
≥ 0.99 25.2
( )
3

2.7kΩ
R
out
+ 2.7kΩ







2
≥ 0.99
2.7kΩ
R
out
+ 2.7kΩ
≥ 0.9950 R
out
≥13.6 Ω

Page 574


i
( )
A
v
0
( )
= +1 A
v
s
( )
=
ω

o
2
s
2
+ s 2
ω
o
+
ω
o
2
A
v
j
ω
( )
=
ω
o
2
j
ω
2
ω
o
+
ω
o
2


ω
2
A
v
j
ω
H
( )
=
1
2

ω
o
2
ω
o
2

ω
H
2
( )
2
+ 2
ω
H
2
ω
o

2
=
1
2
→ 2
ω
o
4
=
ω
o
4
+
ω
H
4

ω
o
=
ω
H
ii
( )

1
2
=
C
1

C
2
R
2
2R
→ C
1
= 2C
2
→ C
2
=
1
2 2.26kΩ
( )
20000
π
( )
= 4.98nF
C
2
= 0.005
µ
F C
1
= 0.01
µ
F
8
Page 574



iii
( )
To decrease the cutoff frequency from 5kHz to 2 kHz, we must increase the
resistances by a factor of
5kHz
2kHz
= 2.50 → R
1
= R
2
= 2.50 2.26kΩ
( )
= 5.65 kΩ
iv
( )

1
2
=
C
C
R
1
R
2
R
1
+ R

2
→ R
1
2
+ 2R
1
R
2
+ R
2
2
= 2R
1
R
2
→ R
1
2
= −R
2
2
- - can't be done!
Q =
R
1
R
2
R
1
+ R

2

dQ
dR
2
=
1
R
1
+ R
2
( )
2
R
1
R
1
+ R
2
( )
2 R
1
R
2
− R
1
R
2









= 0 → R
2
= R
1
→ Q
max
=
1
2

Page 575


S
C
1
Q
=
C
1
Q
dQ
dC
1

=
C
1
Q
1
2 C
1
C
2
R
1
R
2
R
1
+ R
2








=
C
1
Q
Q

2C
1
= 0.5
S
R
2
Q
=
R
2
Q
dQ
dR
2
R
1
= R
2
→ Q =
1
2
C
1
C
2
→ S
R
2
Q
= 0


Page 577


i
( )
A
v
j
ω
o
( )
= K

ω
o
2

ω
o
2
+ j 3 − K
( )
ω
o
2
+
ω
o
2

=
K
3 − K
A
v
j
ω
o
( )
=
K
3 − K
∠90
o
ii
( )
f
o
=
1
2
π
10kΩ 20kΩ
( )
0.0047
µ
F
( )
0.001
µ

F
( )
= 5.19 kHz
Q =
10kΩ
20kΩ
4.7nF +1.0nF
4.7nF 1.0nF
( )
+ 1− 2
( )
20kΩ 1.0nF
( )
10kΩ 4.7nF
( )








−1
= 0.829
iii
( )
S
K
Q

=
K
Q
dQ
dK
Q =
1
3 − K

dQ
dK
=
−1
3 − K
( )
2
−1
( )
= Q
2
S
K
Q
=
K
Q
dQ
dK
= KQ
Q =

1
3 − K
→ KQ = 3Q −1 S
K
Q
= 3Q −1 =1.12

Page 578


R
th
= 2kΩ 2kΩ =1kΩ f
o
=
1
2
π
1kΩ 82kΩ
( )
0.02
µ
F
( )
0.02
µ
F
( )
= 879 Hz Q =
1

2
82kΩ
1kΩ
= 4.53

9
Page 582


ii
( )
A
BP
j
ω
o
( )
= KQ =
R
2
R
1
10 =
294kΩ
R
1
→ R
1
= 29.4 kΩ
iii

( )
f
o
=
1
2
π
RC
=
1
2
π
40.2kΩ
( )
2nF
( )
= 1.98 kHz BW =
1
2
π
R
2
C
=
1
2
π
402kΩ
( )
2nF

( )
= 198 Hz
A
BP
j
ω
o
( )
= −
R
2
R
1
= −
402kΩ
20.0kΩ
= −20.1
iv
( )
Blindly using the equations at the top of page 580 yields
f
o
min
=
1
2
π
RC
=
1

2
π
1.01
( )
29.4kΩ
( )
1.02
( )
2.7nF
( )
= 1946 Hz
f
o
max
=
1
2
π
RC
=
1
2
π
0.99
( )
29.4kΩ
( )
0.98
( )
2.7nF

( )
= 2067 Hz
BW
min
=
1
2
π
R
2
C
=
1
2
π
1.01
( )
294kΩ
( )
1.02
( )
2.7nF
( )
= 195 Hz
BW
max
=
1
2
π

R
2
C
=
1
2
π
0.99
( )
294kΩ
( )
0.98
( )
2.7nF
( )
= 207 Hz
A
BP
min
= −
R
2
R
1
= −
294kΩ 1.01
( )
14.7kΩ 0.99
( )
= −20.4 A

BP
max
= −
R
2
R
1
= −
294kΩ 0.99
( )
14.7kΩ 1.01
( )
= −19.6
The W/C results are similar if R and C are not the same for example where
ω
o
=
1
R
A
R
B
C
A
C
B
.

Page 583



i
( )
- a
( )
R
1
= R
2
= 5 2.26kΩ
( )
= 11.3 kΩ C
1
=
0.02
µ
F
5
= 0.004
µ
F C
2
=
0.01
µ
F
5
= 0.002
µ
F

f
o
=
1
2
π
11.3kΩ
( )
11.3kΩ
( )
0.004
µ
F
( )
0.002
µ
F
( )
= 4980 Hz
Q =
11.3kΩ
11.3kΩ
0.004
µ
F
( )
0.002
µ
F
( )

0.004
µ
F + 0.002
µ
F
= 0.471
b
( )
R
1
= R
2
= 0.885 2.26kΩ
( )
= 2.00 kΩ C
1
=
0.02
µ
F
0.885
= 0.0226
µ
F C
2
=
0.01
µ
F
0.885

= 0.0113
µ
F
f
o
=
1
2
π
2.00kΩ
( )
2.00kΩ
( )
0.0226
µ
F
( )
0.0113
µ
F
( )
= 4980 Hz
Q =
2.00kΩ
2.00kΩ
0.0226
µ
F
( )
0.0113

µ
F
( )
0.0226
µ
F + 0.0113
µ
F
= 0.471
10
Page 583


ii
( )
f
o
=
1
2
π
1kΩ
( )
82kΩ
( )
0.02
µ
F
( )
0.02

µ
F
( )
= 879 Hz Q =
82kΩ
1kΩ
0.02
µ
F
( )
0.02
µ
F
( )
0.02
µ
F + 0.02
µ
F
= 4.53
The values of the resistors are unchanged. C
1
= C
2
=
0.02
µ
F
4
= 0.005

µ
F
f
o
=
1
2
π
1kΩ
( )
82kΩ
( )
0.005
µ
F
( )
0.005
µ
F
( )
= 3520 Hz Q =
82kΩ
1kΩ
0.005
µ
F
( )
0.005
µ
F

( )
0.005
µ
F + 0.005
µ
F
= 4.53

Page 585


The diode will conduct and pull the output up to v
O
= v
S
= 1.0 V. v
1
= v
O
+ v
D
= 1.0 + 0.6 =1.6 V
For a negative input, there is no path for current through R, so v
O
= 0 V . The op - amp
sees a -1V input so the output will limit at the negative power supply : v
O
= −10 V .
The diode has a 10 - V reverse bias across it, so V
Z

> 10 V .

Page 587


i
( )
v
S
= 2 V : Diode D
1
conducts, and D
2
is off. The negative input is a virtual ground.
v
1
= −v
D2
= −0.6 V . The current in R is 0, so v
O
= 0 V .
v
S
= −2 V : Diode D
2
conducts, and D
1
is off. The negative input is a virtual ground.
v
O

= −
R
2
R
1
v
S
= −
68kΩ
22kΩ
−2V
( )
= +6.18 V v
1
= v
O
+ v
D1
= 6.78 V .
v
S
=
15V
−3.09
= −4.85 V v
1
= v
O
+ v
D1

= 6.78 V . When v
O
= 15 V , v
D2
= -15.6 V , so V
Z
= 15.6 V .
ii
( )
v
O
=
20kΩ
20kΩ
10.2kΩ
3.24kΩ






2V
π
= 2.00 V

Page 589


V


= −
R
1
R
1
+ R
2
V
EE
= −
1kΩ
1kΩ + 9.1kΩ
10V = −0.990 V V
+
=
1kΩ
1kΩ + 9.1kΩ
10V = +0.990 V
V
n
= 0.990V − −0.990V
( )
= 1.98 V

Page 591


T = 2 10kΩ
( )

0.001
µ
F
( )
ln
1+ 0.5
1− 0.5






= 21.97
µ
s f =
1
T
= 45.5 kHz

11
Page 594


β
= −
22kΩ
22kΩ + 18kΩ
= 0.550 T = 11kΩ
( )

0.002
µ
F
( )
ln
1+
0.7
5
1− 0.550










= 20.4
µ
s
T
r
= 11kΩ
( )
0.002
µ
F
( )

ln
1+ 0.55
5V
5V






1−
0.7
5












= 13.0
µ
s

12

CHAPTER 12

Page 612


i
( )
A
ideal
=
1
β
= 100 A
v
=
A
1+ A
β
=
10
5
1+ 10
5
0.01
( )
= 99.90
v
o
= 99.9 0.1V
( )

= 9.99 V v
id
=
v
o
A
=
9.99V
10
5
= 99.9
µ
V
ii
( )
Values taken from OP - 27 specification sheet (www.jaegerblalock.com or www.analog.com)
(iii) Values taken from OP - 27 specification sheet

Page 613


A
v
=
−R
2
R
1
A
β

1+ A
β
FGE =
−R
2
R
1







−R
2
R
1
A
β
1+ A
β






−R
2

R
1






= 1−
A
β
1+ A
β
=
1
1+ A
β

Page 614


FGE =
1
1+ A
β
=
1
1+ 10
4
1kΩ

1kΩ + 39kΩ






= 3.98x10
−3
or 0.398 % FGE ≅
1
A
β
= 0.40 %

Page 615


Values taken from OP - 77 specification sheet (www.jaegerblalock.com or www.analog.com)

Page 616


A ≅
R
o
β
R
out
=

50Ω
0.025
( )
0.1Ω
( )
= 20,000

Page 617


i
( )
A
v
=
A
1+ A
β
=
10
4
1+ 10
4
0.025
( )
= +39.8
ii
( )
A
v

max
=
39kΩ +1kΩ
( )
1.05
( )
1kΩ 0.95
( )
= 44.2 A
v
max
=
39kΩ +1kΩ
( )
0.95
( )
1kΩ 1.05
( )
= 36.2
GE = 44.2 − 40.0 = 4.20 FGE =
4.20
40
= 10.5 % GE = 36.2 − 40.0 = −3.80 FGE =
−3.80
40
= −9.5 %

13
Page 618



A ≅
R
o
β
R
out
=
200Ω
0.01
( )
0.1Ω
( )
= 200,000 A
dB
= 20 log 2x10
5
( )
= 106 dB

Page 619


Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)

Page 620


R
in

= R
id
1+ A
β
( )
= 1MΩ 1+ 10
4
10kΩ
10kΩ + 390kΩ












= 251 MΩ
i

= −
v
s
R
in
= −

1V
251 MΩ
= −3.98 nA i
1
=
β
v
o
R
1
=
A
β
1+ A
β
v
s
R
1







1V
10kΩ







= 100
µ
A i
1
>> i

More exactly, i
1
=
β
v
o
R
1
=
A
β
1+ A
β
v
s
R
1







=
10
4
0.025
( )
1+ 10
4
0.025
( )
1V
10kΩ






= 99.6
µ
A

Page 621


R
in
= R

1
+ R
id
R
2
1+ A
= 1kΩ +1MΩ
100kΩ
1+ 10
5
= 1001 Ω R
in
ideal
= R
1
= 1000 Ω 1 Ω or 0.1 %

Page 622


Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)

Page 626


v
o
= A v
id
+

v
ic
CMRR







v
o
min
= A v
id
+
v
ic
CMRR






= 2500 0.002 −
5.000
10
4







= 3.750 V
v
o
max
= A v
id
+
v
ic
CMRR






= 2500 0.002 +
5.000
10
4







= 6.250 V

Page 627


A
v
=
A 1+
1
2CMRR






1+ A 1−
1
2CMRR






=
10
4

1+
1
2x10
4






1+ 10
4
1−
1
2x10
4






= 1.000 A
v
=
10
3
1+
1
2x10

3






1+ 10
3
1−
1
2x10
3






= 1.000

14
Page 628


GE = FGE A
v
( )
≤ 5x10
−5

1
( )
= 5x10
−5
Worst case occurs for negative CMRR : GE ≅
1
A
+
1
CMRR

If both terms make equal contributions: A = CMRR =
1
2.5x10
−5
= 4x10
4
or 92 dB
For other cases : CMRR = 5x10
−5

1
A






−1

or A = 5x10
−5

1
CMRR






−1
A = 100dB CMRR = 5x10
−5

1
10
5






−1
= 2.5x10
4
or 88 dB
CMRR = 100dB A = 5x10
−5


1
10
5






−1
= 2.5x10
4
or 88 dB

Page 630


Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)

Page 631


i
( )
V
O
≤ 50 0.002V
( )
→ −0.100 V ≤ V

O
≤ +0.100 V
ii
( )
Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)

Page 633


Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)

Page 634


i
( )
R = 39kΩ 1kΩ = 975 Ω
ii
( )
v
O
t
( )
= V
OS
+
V
OS
RC
t +

I
B2
C
t 1.5mV +
1.5mV
10kΩ 100 pF
( )
t +
100nA
100 pF
t =15V → t = 6.00 ms

Page 636


Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)

Page 637


Values taken from op - amp specification sheets (www.jaegerblalock.com or www.analog.com)

15
Page 638


R
EQ
= R
L

R
2
+ R
1
( )

20V
5mA
= 4kΩ R
1
+ R
2

1
4kΩ

1
5kΩ






−1
= 20kΩ
Including 5% tolerances, R
1
+ R
2

≥ 21kΩ A
v
= 10 → R
2
= 9R
1
A few possibilities : 27 kΩ and 3 kΩ, 270 kΩ and 30 kΩ, 180 kΩ and 20 kΩ, etc.

Page 640


i
( )
A
o
= 10
100
20
= 10
5

ω
B
=
ω
T
A
o
=
2

π
5x10
6
( )
10
5
=
10
7
π
10
5
= 100
π
f
B
=
100
π
2
π
= 50 Hz A
v
s
( )
=
10
7
π
s +100

π
ii
( )
A
v
s
( )
=
ω
T
s +
ω
T
A
o
=
2
π
x 10
6
s +
2
π
x 10
6
2x10
5
=
2
π

x 10
6
s +10
π

Page 643


i
( )
A
o
= 10
90
20
= 31600 f
B
=
f
T
A
o
=
5x10
6
31600
= 158 Hz A
v
s
( )

=
2
π
5x10
6
( )
s + 2
π
158
( )
=
10
7
π
s + 316
π
f
H

β
f
T
= 0.01 5MHz
( )
= 50 kHz A
v
s
( )
=
2

π
5x10
6
( )
s + 2
π
5x10
4
( )
=
10
7
π
s +10
5
π
ii
( )
For
ω
H
>>
ω
B
: A
β
=
ω
T
s +

ω
B
β

βω
T
j
ω
H
=
1
j
= − j1 since
ω
H
=
βω
T

Page 645


i
( )
A
o
= 10
90
20
= 31600 f

B
=
f
T
A
o
=
5x10
6
31600
= 158 Hz A
v
s
( )
=
2
π
5x10
6
( )
s + 2
π
158
( )
=
10
7
π
s + 316
π

f
H

β
f
T
=
5MHz
1+ 10
50
20
= 15.8 kHz A
v
s
( )
=
2
π
5x10
6
( )
s + 2
π
15.8x10
3
( )
=
10
7
π

s + 3.16x10
4
π
ii
( )
f
H

β
f
T
= 1 5MHz
( )
= 5 MHz f
H

β
f
T
=
1
2
5MHz
( )
= 2.5 MHz

16
Page 647



A
v
0
( )
= 50 25
( )
= 1250 A
v
ω
H
( )
=
1250
2
= 884
1+
ω
H
2
10000
π
( )
2









1+
ω
H
2
20000
π
( )
2








= 2 →
ω
H
2
( )
2
+ 4.935x10
9
ω
H
2
− 3.896 x10
18

= 0
ω
H
2
= 6.925x10
8

ω
H
= 26.3x10
3
→ f
H
=
26.3x10
3
2
π
= 4190 Hz

Page 648


i
( )
A
v
0
( )
= −100 66.7

( )
50
( )
= −3.34x10
5
A
v
ω
H
( )
=
−3.34x10
5
2
= −2.36x10
5
1+
ω
H
2
10000
π
( )
2









1+
ω
H
2
15000
π
( )
2








1+
ω
H
2
20000
π
( )
2









= 2
ω
H
6
+ 7.156x10
9
ω
H
4
+ 1.486x10
10
ω
H
2
− 8.562x10
27
= 0
Using MATLAB,
ω
H
= 21.7x10
3
→ f
H
=
21.7x10

3
2
π
= 3450 Hz
ii
( )
A
v
0
( )
= −30
( )
3
= −2.70x10
4
f
H
= 33.3kHz
( )
2
1
3
−1 = 17.0 kHz

Page 653


V
M


SR
ω
=
5x10
5
V / s
2
π
20kHz
( )
= 3.98 V f
M
=
SR
2
π
V
FS
=
5x10
5
V / s
2
π
10V
( )
= 7.96 kHz

Page 657



A
v1
= 1+
130kΩ
22kΩ
= 6.909 v
O1
= 0.001 6.909
( )
= 6.91 mV v
O2
= 0.001V 6.909
( )
2
= 47.7 mV
v
O3
= 0.001 6.909
( )
3
= 330 mV v
O 4
= 0.001V 6.909
( )
4
= 2.28 V v
O5
= 0.001V 6.909
( )

5
= 15.7 V
v
O5
> 15V → v
O5
= 15 V v
O6
= 15V 6.909
( )
= 104 V v
O6
> 15V → v
O6
= 15 V

17
CHAPTER 13

Page 671


i
( )
(a) At the Q - point :
β
F
=
I
C

I
B
=
1.5mA
15
µ
A
= 100 (b) I
S
=
I
C
exp
V
BE
V
T






=
1.5mA
exp
0.700V
0.025V







= 1.04 fA
(c) R
in
=
v
be
i
b
=
8mV
5
µ
A
= 1.6 kΩ (d) With the given applied signal, the smallest value of v
CE
is
v
CE
min
= 5V − 0.5mA 3.3kΩ
( )
= 3.35 V which exceeds v
BE
= 0.708 V.
ii
( )

(a) v
DS
= 10 − 3300i
DS

(b) Using the peak - to - peak voltage swings, A
v
=
v
ds
v
gs
=
2.7 - 6.7
4.0 - 3.0
V
V
= −4.0.
Note that there is some distortion in this amplifier since the negative output voltage excursion is
larger than the positive output change.
(c) v
DS
min
= 2.7V with v
GS
−V
TN
= 4 −1 = 3V , so the transistor has entered the triode region.
(d) Choose two points on the i - v characteristics. For example,
1.56mA =

K
n
2
3.5 −V
TN
( )
2
and 1.0mA =
K
n
2
3.0 − V
TN
( )
2
.
Solving for K
n
and V
TN
yields 500
µ
A
V
2
and 1 V respectively.

Page 673



i
( )
V
EQ
=
10kΩ
10kΩ + 30kΩ
12V = 3.00V R
EQ
= 10kΩ 30kΩ = 7.5kΩ
I
C
=
β
F
I
B
=
β
F
V
EQ
−V
BE
R
EQ
+
β
F
+ 1

( )
R
4
= 100
3.0V − 0.7V
7.5kΩ + 101
( )
1.5kΩ
( )
= 1.45 mA
V
CE
= 12 − 4300I
C
−1500I
E
= 12 − 4300 1.45mA
( )
−1500
101
100






1.45mA
( )
= 3.57 V

ii
( )
v
C
t
( )
= V
C
+ v
C
= 5.8 −1.1sin 2000
π
t
( )
V v
E
t
( )
= V
E
+ 0 = 1.45mA 1.5kΩ
( )
= 2.2 V
i
c
=
1.1V
4.3kΩ
= 0.256mA ∠i
c

= 180
o
i
c
t
( )
= −0.26sin 2000
π
t mA
iii
( )
X
C
=
1
ω
C
=
1
2000
π
500
µ
F
( )
= 0.318 Ω

Page 676



R
B
= 20kΩ 62kΩ = 15.1 kΩ R
L
= 8.2kΩ 100kΩ = 7.58 kΩ

18
Page 680


i
( )
r
d
=
V
T
I
D
+ I
S
r
d
=
0.025V
1 fA
= 25.0 TΩ r
d
=
0.025V

50
µ
A
= 500 Ω
r
d
=
0.025V
2mA
= 12.5 Ω r
d
=
0.025V
3A
= 8.33 mΩ
ii
( )
r
d
=
0.025V
1.5mA
= 16.7 Ω
kT
q
= 8.62x10
−5
V
K







373K
( )
= 0.0322 V r
d
=
0.0322V
1.5mA
= 21.5 Ω

Page 685


i
( )
g
m
= 40I
C
= 40 50
µ
A
( )
= 2.00 mS r
π
=

β
o
g
m
=
75
2mS
= 37.5 kΩ
r
o
=
V
A
+ V
CE
I
C
=
60V + 5V
50
µ
A
= 1.30 MΩ
µ
f
= g
m
r
o
= 2mS 1.30 MΩ

( )
= 2600
ii
( )
g
m
= 40I
C
= 40 250
µ
A
( )
= 10.0 mS r
π
=
β
o
g
m
=
50
10mS
= 5.00 kΩ
r
o
=
V
A
+ V
CE

I
C
=
75V +15V
250
µ
A
= 360 kΩ
µ
f
= g
m
r
o
= 10mS 360kΩ
( )
= 3600
iii
( )
The slope of the output characteristics is zero, so V
A
= ∞ and r
o
= ∞.
β
FO
=
β
F
1+

V
CE
V
A
=
β
F
=
I
C
I
B
=
1.5mA
15
µ
A
= 100 g
m
=
Δi
C
Δv
BE
=
0.5mA
8mV
= 62.5 mS
β
o

=
Δi
C
Δi
B
=
500
µ
A
5
µ
A
= 100 r
π
=
β
o
g
m
=
100
62.5mS
= 1.60 kΩ

Page 692


A
vt
= −g

m
R
L
= −9.80mS 18kΩ
( )
= −176

19
Page 695


Assume the Q - point remains constant.
a
( )
R
L
max
= 19.8kΩ R
L
min
= 16.2kΩ R
E
max
= 3.30kΩ R
L
min
= 2.70kΩ
R
iB
max

= 10.2kΩ + 101 3.3kΩ
( )
= 344kΩ R
iB
min
= 10.2kΩ + 101 2.7kΩ
( )
= 283kΩ
A
v
min
= −
9.80mS 16.2kΩ
( )
1+ 9.80mS 3.30kΩ
( )
104kΩ 344kΩ
1kΩ + 104kΩ 344kΩ








= −4.70
A
v
max

= −
9.80mS 19.8kΩ
( )
1+ 9.80mS 2.70kΩ
( )
104kΩ 283kΩ
1kΩ + 104kΩ 283kΩ








= −6.98
b
( )
r
π
=
125
9.80mS
= 12.8kΩ R
iB
= 12.8kΩ + 126 3.0kΩ
( )
= 391kΩ
A
v

= −
9.80mS 18kΩ
( )
1+ 9.80mS 3.00kΩ
( )
104kΩ 391kΩ
1kΩ + 104kΩ 391kΩ








= −5.73
c
( )
V
CE
= 12V − 22kΩI
C
−13kΩI
E
= 12V − 0.275mA 22kΩ +
101
100
13kΩ







= 2.34 V
g
m
= 40 0.275mA
( )
= 11.0mS r
π
=
100
11.0mS
= 9.09kΩ
R
iB
= 9.09kΩ + 101 3.0kΩ
( )
= 312kΩ A
v
= −
11.0mS 18kΩ
( )
1+ 11.0mS 3.00kΩ
( )
104kΩ 312kΩ
1kΩ + 104kΩ 312kΩ









= −5.75

Page 697


i
( )
R
iB
max
= 10.2kΩ + 101 1kΩ
( )
= 111kΩ R
E2
= 13kΩ −1kΩ = 12 kΩ
A
v
= −
9.80mS 18kΩ
( )
1+ 9.80mS 1.00kΩ
( )
104kΩ 111kΩ
1kΩ + 104kΩ 111kΩ









= −16.0
ii
( )
The reference to C
2
should be C
3
. A
v
= −159 as calculated in the Ex. 13.4.
iii
( )
V
T
=
1.38x10
−23
1.602x10
−19
V
K







273K + 27K
( )
= 25.84mV I
S
=
I
C
exp
V
BE
V
T






=
245
µ
A
exp
0.700V
0.02584V







= 0.421fA
iv
( )
From Ex. 13.3, R
iB
= 313 kΩ, and r
π
= 10.2kΩ.

20
Page 700


i
( )
R
iC
= 320kΩ 1+
100 2kΩ
( )
1kΩ 104kΩ
( )
+ 10.2kΩ + 2kΩ









= 4.85 MΩ
µ
f
R
E
= 3140 2kΩ
( )
= 6.28 MΩ
R
iC
<
µ
f
R
E
R
out
= 4.85MΩ 22kΩ = 21.9 kΩ
ii
( )
lim R
iC
R

E
→∞
= lim
R
E
→∞
r
o
1+
β
o
R
E
R
th
+ r
π
+ R
E






= r
o
1+
β
o

R
E
R
E






=
β
o
+ 1
( )
r
o

Page 704


i
( )
a
( )
g
m
= 2K
n
I

D
1+
λ
V
DS
( )
= 2 1mA/V
2
( )
0.25mA
( )
1+ 0.02 5
( )
[ ]
= 1.73 mS
r
o
=
1
λ
+ V
DS
I
D
=
50V + 5V
250
µ
A
= 220 kΩ

µ
f
= g
m
r
o
= 0.742mS 220kΩ
( )
= 163
g
m
= 2K
n
I
D
1+
λ
V
DS
( )
= 2 1mA/V
2
( )
5mA
( )
1+ 0.02 10
( )
[ ]
= 3.46 mS
r

o
=
1
λ
+ V
DS
I
D
=
50V + 10V
5mA
= 12 kΩ
µ
f
= g
m
r
o
= 3.46mS 12kΩ
( )
= 41.5
b
( )
The slope of the output characteristics is zero, so
λ
= 0 and r
o
= ∞.
For the positive change in v
gs

, g
m
=
Δi
D
Δv
GS

2.1V
3.3kΩ
0.5V
= 1.3 mS
ii
( )
v
gs
≤ 0.2 V
GS
− V
TN
( )
= 0.2
2I
D
K
n
= 0.2
2 25mA
( )
2.0mA/V

2
= 1.00 V v
be
≤ 0.005 V

Page 705


η
=
γ
2 V
SB
+ 2
φ
F
=
0.75
2 0 + 0.6
= 0.48
η
=
0.75
2 3+ 0.6
= 0.20

21
Page 713



i
( )
V
EQ
=
1.5MΩ
1.5MΩ + 2.2 MΩ
12V = 4.87V R
EQ
= 1.5MΩ 2.2 MΩ = 892kΩ
Neglect
λ
in hand calculations of the Q - point.
4.87 = V
GS
+ 12000I
D
4.87 = V
GS
+ 12000
5x10
−4
2






V

GS
−1
( )
2
3V
GS
2
− 5V
GS
−1.87 = 0 → V
GS
= 1.981V I
D
= 241
µ
A
V
DS
= 12 − 22000I
D
−12000I
D
= 3.81 V Q - point : 241
µ
A, 3.81 V
( )
ii
( )
A
vdB

= 20 log 4.50
( )
= 13.1 dB

Page 714


V
DS
≥ V
GS
− V
TH
= 1.981V −1V = 0.981 V

Page 717


V
GS
− V
TN

2 241
µ
A
( )
2x10
−3
= 0.491V A

v
CS
≅ −
12V
0.491V
= −24.4 M =
K
n2
K
n1
=
2x10
−3
5x10
−4
= 4

Page 720


R
in
CS
= 680kΩ 1.0 MΩ = 405 kΩ V
EQ
=
680kΩ
680kΩ + 1MΩ
12V = 4.86 V


Page 725


The gain is proportional to R
L
: R
L
= 10kΩ 220kΩ = 9.57kΩ A
v
CE
= −36.1
9.57kΩ
9.540kΩ






= −36.8

Page 726


i
( )

µ
f
= g

m
r
o
= 9.56mS 225kΩ
( )
= 2150
ii
( )
v
be
= v
i
R
in
CE
R
I
+ R
in
CE






1
1+ g
m
R

E






v
i
≤ 5mV
0.33kΩ +14.2kΩ
14.2kΩ






1+ 9.56mS 0.15kΩ
( )
[ ]
= 12.4 mV
v
o
≤12.4mV 36.1
( )
= 0.450 V
iv
( )
R

in
CE
= 100kΩ 6.8kΩ = 6.37 kΩ R
out
CE
= 10kΩ 225kΩ = 9.57 kΩ
A
v
CE
= −g
m
R
L
R
in
CE
R
I
+ R
in
CE






= -9.56mS 9.57kΩ 220kΩ
( )
6.37kΩ

0.33kΩ + 6.37kΩ






= −83.4

22
Page 730


i
( )
The gain is proportional to R
L
.
R
L
= 300kΩ R
out
CS
= 300kΩ 28.4kΩ = 25.9kΩ A
v
CS
= −6.85
25.9kΩ
27.3kΩ







= −6.50
The corrected gain agrees more closely with thevalue from SPICE.
ii
( )

µ
f
= g
m
r
o
= 0.515mS 258kΩ
( )
= 133
iii
( )
v
gs
= v
i
R
in
CS
R
I

+ R
in
CS






1
1+ g
m
R
S






v
gs
≤ 0.2 V
GS
−V
TN
( )
v
i
≤ 0.2 1V

( )
10kΩ +1MΩ
1MΩ






1+ 0.515mS 2kΩ
( )
[ ]
= 410 mV v
o
≤ 410mV 6.85
( )
= 2.81 V
iv
( )
A
v
CS
= −
R
in
CS
R
I
+ R
in

CS






g
m
R
L
1+ g
m
R
S






= −
1MΩ
10kΩ + 1MΩ







0.515mS 30kΩ 300kΩ
( )
1+ 0.515mS 32kΩ
( )








= −0.796
The calculation is slightly larger than the SPICE value since it neglects R
out
CS
.

Page 734


i
( )
P
D
= I
C
V
CE
+ I

B
V
BE
= 239
µ
A 3.67V
( )
+
239
µ
A
65
0.7V
( )
= 0.880 mW
P
S
= I
C
V
CC
+ I
E
V
EE
= 239
µ
A 5V
( )
+ 239

µ
A 1+
1
65






5V
( )
= 2.41 mW
i
( )
P
D
= I
D
V
DS
= 250
µ
A 4.5V
( )
= 1.13 mW
P
S
= I
D

V
DD
+ I
S
V
SS
= 250
µ
A 10V
( )
+ 250
µ
A 10V
( )
= 5.00 mW

Page 735


a
( )
V
M
≤ min I
C
R
C
, V
CE
− V

BE
( )
[ ]
= min 239
µ
A 10kΩ
( )
, 3.67 − 0.7
( )
V
[ ]
= 2.39 V
Limited by the voltage drop across R
C
.
b
( )
V
M
≤ min I
D
R
D
, V
DS
− V
DSSAT
( )
[ ]
= min 250

µ
A 30kΩ
( )
, 4.50 −1
( )
V
[ ]
= 3.50 V
Limited by the value of V
DS
.

23
CHAPTER 14

Page 754


R
B
= 160kΩ 300kΩ =104 kΩ R
E
= 3.00 kΩ R
L
= 100kΩ 22kΩ =18.0 kΩ
R
G
= 1.5MΩ 2.2 MΩ = 892 kΩ R
S
= 2.00 kΩ R

L
= 100kΩ 22kΩ = 18.0 kΩ

Page 761


i
( )
A
v
CE
= −
0.838V
0.150
= −5.59
ii
( )
R
iB
= 10.2kΩ + 101 1.0kΩ
( )
= 111kΩ
A
v
CE
= −
9.80mS 18kΩ
( )
1+ 9.80mS 1kΩ
( )

104kΩ 111kΩ
2kΩ +104kΩ 111kΩ








= −15.8 R
4
= 13kΩ −1kΩ =12 kΩ
A
v
CS
= −
0.491mS 18kΩ
( )
1+ 0.491mS 1kΩ
( )
892kΩ
2kΩ + 892kΩ






= −5.91 R

4
= 12kΩ −1kΩ =11 kΩ
iii
( )
R
iB
= 10.2kΩ
A
v
CE
= −9.80mS 18kΩ
( )
104kΩ 10.2kΩ
2kΩ +104kΩ 10.2kΩ








= −145
A
v
CS
= −0.491mS 18kΩ
( )
892kΩ
2kΩ + 892kΩ







= −8.82
iv
( )
V
T
=
1.38x10
−23
1.602x10
−19
V
K






273K + 27K
( )
= 25.84mV I
S
=
I

C
exp
V
BE
V
T






=
245
µ
A
exp
0.700V
0.02584V






= 0.421 fA
v
( )
g
m

R
L
= -9.80mS 18kΩ
( )
= −176, A
v
CE
≅ −
18kΩ
3kΩ
= −9.00
g
m
R
L
= -0.491mS 18kΩ
( )
= −8.84, A
v
CE
≅ −
18kΩ
2kΩ
= −9.00
vi
( )
The exercise should refer to Fig. 14.2. R
iB
= 10.2kΩ + 101 3.0kΩ
( )

= 313kΩ
R
in
CE
= R
B
R
iB
= 104kΩ 313kΩ = 78.1 kΩ R
in
CS
= R
G
= 892kΩ R
in
CE
> r
π

24
Page 761


i
( )
A
vt
=
2kΩ + 892kΩ
892kΩ

0.956 = 0.958
0.491ms
( )
R
L
1+ 0.491ms
( )
R
L
= 0.958 → R
L
= 46.5kΩ
R
6
100kΩ = 46.5kΩ → R
6
= 86.9kΩ
ii
( )
R
iB
= 10.2kΩ + 101 13kΩ
( )
= 1.32 MΩ R
in
CC
= 104kΩ 1.32 MΩ = 96.4kΩ
A
v
CE

= −
9.80mS 13kΩ
( )
1+ 9.80mS 13kΩ
( )
96.4kΩ
2kΩ + 96.4kΩ






= +0.972
A
v
CS
= −
0.491mS 12kΩ
( )
1+ 0.491mS 12kΩ
( )
892kΩ
2kΩ + 892kΩ







= +0.853
iv
( )
BJT : g
m
R
L
= 9.80mS 11.5kΩ
( )
= 113 FET : g
m
R
L
= 0.491mS 10.7kΩ
( )
= 5.25

Page 767


v
i
≤ 0.005V 1+ g
m
R
L
( )
R
I
+ R

B
R
iB
R
B
R
iB
= 0.005V 1+ 9.8mS 11.5kΩ
( )
[ ]
2kΩ + 95.4kΩ
95.4kΩ
= 0.580 V
v
i
≤ 0.2 V
GS
− V
TN
( )
1+ g
m
R
L
( )
R
I
+ R
G
R

G
= 0.2 0.982
( )
1+ 0.491mS 10.7kΩ
( )
[ ]
2kΩ + 892kΩ
892kΩ
= 1.23 V

Page 769


R
out
CD
= R
6
1
g
m
12kΩ
1
g
m
= 120Ω → g
m
= 8.25mS 8.25mS = 2 500
µ
A/V

2
( )
I
D
→ I
D
= 68.1 mA
g
m
=
2I
D
V
GS
− V
TN
V
GS
− V
TN
=
2 68.1mA
( )
8.25mS
= 16.5 V
If one neglects R
6
, I
D
= 69.4 mA and V

GS
− V
TN
= 16.8 V

Page 774


BJT : v
i
≤ 0.005V 1+ g
m
R
I
( )
R
I
+ R
6
R
6
= 0.005V 1+ 9.8mS 2kΩ
( )
[ ]
2kΩ + 13kΩ
13kΩ







= 119 mV
Neglecting R
6
, v
i
≤ 0.005V 1+ g
m
R
I
( )
= 0.005V 1+ 9.8mS 2kΩ
( )
[ ]
= 103 mV
FET : v
i
≤ 0.2 V
GS
−V
TN
( )
1+ g
m
R
I
( )
R
I

+ R
6
R
6
= 0.2 0.982
( )
1+ 0.491mS 2kΩ
( )
[ ]
2kΩ + 12kΩ
12kΩ
= 454 mV
Neglecting R
6
, v
i
≤ 0.2 V
GS
−V
TN
( )
1+ g
m
R
I
( )
= 0.2 0.982
( )
1+ 0.491mS 2kΩ
( )

[ ]
= 389 mV

25
Page 775


R
iC
= r
o
1+
β
o
R
th
R
th
+ r
π






= 219kΩ 1+
100 1.73kΩ
( )
1.73kΩ +10.2kΩ









= 3.40 MΩ
Or more approximately, R
iC
= r
o
1+ g
m
R
th
[ ]
= 219kΩ 1+ 9.8mS 1.73kΩ
( )
[ ]
= 3.93 MΩ
R
iD
= r
o
1+ g
m
R
th

[ ]
= 223kΩ 1+ 0.491 1.71kΩ
( )
[ ]
= 4.10 MΩ

Page 778


i
( )
A
v
CB
= g
m
R
L
R
6
1
g
m






R

6
+
1
g
m
R
I
+
R
6
1
g
m






R
6
+
1
g
m
= g
m
R
L
R

6
R
6
+
1
g
m
g
m
R
I
+
R
6
R
6
+
1
g
m
= g
m
R
L
R
6
R
6
1+ g
m

R
I
( )
+ R
I
A
v
CB
= g
m
R
L
R
6
R
6
+ R
I
1
1+
g
m
R
I
R
6
R
6
+ R
I

=
g
m
R
L
1+ g
m
R
th
R
6
R
6
+ R
I






ii
( )
The voltage gains are proportional to the load resistance
A
v
CE
= +8.48
22kΩ
18kΩ







= +10.4 A
v
CG
= +4.12
22kΩ
18kΩ






= +5.02
iii
( )
CB : A
v
CB
≤ g
m
R
L
= 176 A
v

CB

R
L
R
th
=
R
L
R
I
R
6
=
18kΩ
1.73kΩ
= 10.4 8.48 < 10.4 <<176
CG : A
v
CG
≤ g
m
R
L
= 8.84 A
v
CB

R
L

R
th
=
R
L
R
I
R
6
=
18kΩ
1.71kΩ
= 10.5 4.11 < 8.84 < 10.5

Page 786


i
( )
Since we need high gain, the emitter should be bypassed, and R
in
CE
= R
B
r
π
= 250kΩ.
If we choose R
B
≅ r

π
, I
C
=
β
o
40r
π

100
40 500kΩ
( )
= 5
µ
A
ii
( )
R
in
CG

1
g
m
I
C

1
40 2kΩ
( )

= 12.5
µ
A

×