Tải bản đầy đủ (.pdf) (134 trang)

Design B total 202

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (9.24 MB, 134 trang )

DESIGN NOTES
FOR
STATE ROUTE 45 (OLD HICKORY BLVD.) OVER 1-65
DAVIDSON

COUNTY

BRIDGE ID NUMBER: 19100650081
FEDERAL. PROJECT NUMBER: IM-65-3(108)
STATE CONSTRUCTION NUMBER: 19012-3154-44
CONSTRUCTION CONTRACT NUMBER: A049
DESIGN SPECIFICATIONS: LRFD (2004, 3
SPANS:

EDITION)

165'0” ~ 168'0”

OUT TO OUT WIDTH:

860”

WELDED STEEL PLATE GIRDER
BEAM SPACING:
BRIDGE RAIL:

(54" WEB)

10”

STD-1-1



Date: August 24, 2004

DESIGNED BY:
TENNESSEE

WHP

DEPARTMENT OF TRANSPORTATION

DIVISION STRUCTURES DIRECTOR:

EDWARD P. WASSERMAN


INDEX OF SHEETS
SUBJECT

Preliminary Design, vertical clearance
and bridge length

SHEET NUMBERS

1 thru 6

Preliminary loadings , Live Load Distribution factors,

And Prel. Plate Girder Sizes, cut-offs, and Design moments and shears------- 7 thru 44

Concrete Slab Design


45 thru 49

Positive Moment Girder Design

50 thru 61

Negative Moment Girder Design

62 thru 78

Flange Lateral Bending Stresses

79 thru 81

Constructibility

82 thru 96

Service Limit State Check

97 thru 98

Fatigue Design

99 thru 102

Shear Design (Stiffener Spacing)

103 thru 106


Shear Connector Design

107 thru 109

Transverse Intermediate Stiffeners, Bearing Stiffeners,
and Cross-frame Stiffener Design

110 thru 112

Bolted Field Splice Design

113 thru 127

Detailed Bridge Plans

Appendix A


|
j

1002

ALNNOD _NOSQIAVGa
Ob b6+EZ NOILVIS
XXXX 'ON 'Œ1

Tse,


NOTLY1MƠJGNYMI,
LN3N18Yd30

© vis

20

Sb 3inow Sivis

390108
"....

|

i

a 334$ N91S30
43dYuYd IeI-G1S HIIA LYAOYOL 0-r8
đ 10Y 1202
+

PBS

|

\
oS
â 2142/0171 3SYNg

0k2 =.0.2i B SGANY| ế

oO
„Ê»,Py = NI. XMTSNOO Ï SSYHd

a
be

ee

'+UP9





ee

bị

„Ð-.£

i
ro

.
1}
|

ns

Geely & OLSSVEL DF ZSYNg


Đ~.y x NG2MISNGOT SSYHd
i
~0-, "0,2 8 SANVT|

mend

oo+sz

1

GS

0A1

`

M

3

đ

t
\

Tell
+

wm


(ABAYUNS

NO

OYWMYOS

DNINOO)

x2

NOI123S TY2T4AL
(^1
,

-

osecz

|

oT

4

L

200

~


N

:

5

.

9Z°Lr9 =— 'Vz
30t-2L+22 VIS
390108
4Ð 2NIN939—/

=

|

|

ing 2.

Ww

I

:

#


taR
$

inane
i-1-Q1s

ws

"|

--

(AAO 7.9 04 2
ave fd NDA
"!8Y OL SEENY
1834016FZ

.t
29 ST
Shee aH

(OOZ1
32yos
-(Q0Z1_31v2S)
NOILVAS3 doc;

eat

ˆ




9M11SDC3 31WPIXOHddY

suns

“0A7G
AUONIOTH
M0
>114
ABAUNS 9
`—
_Ь
_tW; zựO
Lain
80-81 8 SVT SOS
OD
We

An

va

t



‘=“

oJ) 691


ev

Xu
S9-I
A3A
y3
HOEEE3I0MEGAVV
,0=,Yễ vu.0<,ETĐS3NY) SALONSO IZ¥
]
3.00 3 ..9-.TTOSENYT ở£ °S3L0N30
TY
+
=
ans |
w
W

FOS

rite

et
8S.

WO

pot

Ta]

sa Đen

G150 317807 2Mng

a)

LPSOtt2viS

anes
sera



RoE

x

vie |
Q
(HAm dỌL
gle uf
dob aS

Fs-pP

oP

ip

SUVDION S3NIT GBHSYO


| whl

$9-1 15'0f+d9y *Y1S
AUOXOIH ƠM 02°P6+tt YLS

"0A3%_ LUOXOIH 0Ô

L2442

La

MNS

ZF Lbg » cad /
Ov"
TH
si Ị

W

2WNWVZE TOiLU3A MNMINDY 4Ô LNOd

18-91
201-,8{= sOBUINOSY
"YTU2Y
SONVUVSO TYOLLV3A PPUMD 40 LNIOd

—-


ade

5
\
\
{
l\
\-§$-a----~----- 2~-~~~~~~———~

4
rrrrzrrrrr rrr
39-1 07/909 v6

99'Sr9 = “T3 "903

Osesz

X2320 31312M02 'SNY2-ì 313 2MGO
NYS +

2 WOLUSOd USIRVE NVICIN STBVLUOd (LYHOCI S3|0N3G sẽ
T NOLLISOd UBRUYE NYICRN JIGV1UOd AUYWOUTEL *S3LONBO ©

ONY “SLNBMLLNGY 9
29.24 ZL SE

“SAN36 ONY SINPLLIGY LV JTI0Ud THIS NO ORSYS 30 TIVHS NÓ[LYAY2X3 (2T
“IZALS SMDIFHLV3a 3G OL SI 7331S WwunLomUs Tat
19081) 31THa Œ3LNIYd
3M 0L 2V HOEN “134YYd 3O dO) ONY 32Y4 2XISMI 1432X3 SS2YZW1S

31
NQ2 TY H2 (09C A39) NIVINTOM 38 01 ONLLYOO SUNLGL (Ot

HAI
X3 C4 ƠVý GV G5WNSYA 3E >$¿ GỐ35ˆ30-60/
NOLLXHISNGÓ AYROYOM
200108
GY 0X MO4 SMOIIYOI4i23dSTìne
GUYDMY1S SHI 30 602 NộL1235
49 §UMGĐITSM
3Ú 132
ATDrUOdINT Mĩ .ÿ 0ì.3
3 TÍYHS NOLLISLOUd 340%3W MO4GAƠYMO
dYt-dĩJ 02 QHOYH T71
tdYu-di GINDOYH (6
'SOLIVOI41234S 0WYONYVLS 3U 4° CTrot 712':vy
MỊ .. BLON KLIN SOMVOMOSIV
ME SE Ol MOINES Sor suis MUad DG (Œ

LNSPLLHYd30 23553 (3)

TYM3N39

%ssz

13dYtrYd I-1-015 3ST
S XJ230
conSOR! 1UOXOH G1)
31190292 ONY SLN38 15Ód Y HUIA (Q382t -?6)
M3GMID313⁄2NG)

3y
CBOE “BLS SIOYMIINO) MVdS Z 40 1SISNỢO
TIYHS 31121531 (9
‘3 ony
'SMOLLY914133dS GUYONY1S
3H JO 106 ONY F09 HOIL23S 335 3SÌAUSUO
GAIỊN



SST 9 BOVE ST9Y PUSY 39 TIVES “ERIS SNIIWOINISY (S
TẾ 000y + 0,2 ",0, SSYT) XO3XI 390106
Wd COOL
= 04 12V SSYT
36 01 /2LSDNGO (
“S00 INIT I909 WOLLYET TROY HS .V,
1M093LY9
ZVTOjM34
'S220188 AYEHOIH 4Ó KOIS2Q
JPSISS
SNOLIYOII23đ$ QMYOMIS2INSI3)
3U
SPUOTTOML YONBOGY HALIM NOLLICR S661MO3 OLNSYY
ISNOLLVOISTO3GS NOISO (C
CAYTRGAO 3MWĨ1714 003 :L4⁄/81 Cí 3JTEOMI 0¡ SOVOT OY20 “bb-OZSH PONIOVOT
WZ
%XNOILIJ3 S6E1"T HOIYTD NOILYLUOVSNYUL
SSL0N

BAL 30 SMGLIY314072d5 220186 GMY 0YOU OMVOMYIS PSNQI(V2I123đ5

————

\

30'95+SZ VIS
220106 40 ONG
HOt


"COO

COUNTY: LewiclS&¥)

Thre
lb idge
es, noe
Bridge No.1

zo"

Nome

2n"

(19- mc “e% told 14

Pit
Ba

2.


5 Lancs œ12 0" z œ©@'Q '/
aie
<<
Gurvey
a Fey, 2.92

4o"

H

Tera@

+

NOTES

2 Fetaining vals

ec" c9

tT

với.

sce Be

ŒtcìcvS

Old Wickow


Typicaksechion

vote

ie

CROSSING: FoR

N'2" = -ra'2"

WR

Srew)
®ea*t

_ l€ oi
Peay

=

I

HR:

°3 Go's! '87" =
cees

N*48\S"e


. 31"

Øhc¿Ð 4s T6, 337 °

section CI-6S)
'úPpicak
IZ’o"gnoulder~ 12'0" Ramp-

AE D23 934
PP
.|.Êl9È, 64B.86||
|: chon

2Lanes@ 120"- 3ianes@ 116" Fo"medion-7
Blanes eG" ~ Ztanes@ Zo" - Za" Ramp -12'o"shouder
:PVIƑ 243438.0

:¡'::|:Heý

cot

65.44

YC (one)
PI.

fete
fs = + fe

4-3: BELES(


Cle . 664,44

PC: 20488,00

UTH PHONE LENES Sa =k

ng tí

J:IN BE Q ONOUT-T- - T=
3 -AT TACHED: T6 |B81 DỆE

tài

2443.00

ev:

419.44

SE taœ
Sta 24 + 93,34 NC
Bed trans

L

PIs 27+ 88,00

Sia 29+ 43.34


Gls +2.50 4%
GZ’ -4,.23%

InkrsccHi

(Q:.07 0)

AN
+ 634,69

VEL: oo. 00

Đìm%X
ye

bE

a

Por.

2344.37)

ond

460+ 34.507 I-65

U2 1124 2102) 4510.9) #9
DIN
Me .337


X= 44.679"

DESIGNIDATE

=o

= =

Ea
Suh

=1

ẪN

=

oe ‘

_—

dua

ee

oo FFG Sue)

CHECK


|DATE

CHECK

|DATE

PAGE


***x*x

Bridge

Length

JOB DESCRIPTION...OHB
p.c.

Station

.

.

.

Program

Input


Data

****

/ I-65

6.

6

ôâ

6

â

cv

cu

cu

ew

ew

20.8800

E . Elevation...


..

ee

ee

eae

645.490

Grade

1

ô6

6

ew

ew

ww

we

ees

2.560


Grade

2

2.

2.

2.

ew

we

Length

of

ww
6

6

6

vertical
.

.


curve

.

2.

â

ew

in

Skew

angle

6

2

ee

Left

slope...

..

.


.

2.

Left

slope

break

station

Left

slope

break

elevation

station.

Right

slope

break

elevation.


slope

intersection

Structure

depth

Bearing

ôâ

depths

Program

depth

width

of

bridge

bridge

2,00

.


.

2.00
25.0760

used

619.030

Data

****

25.6450

in

calculations

4.4.4.4...
4.4...

****

4...

9,50

+...


1,500

inches

0.250

inches

............

.

Abutment

ô

......4.-.

point.

width

depth.

ôâ

76.3370

22.2088


Berm

Abutment

â

ew

.........

..........
.....

ôâ

..

.........

device

we

Output

point

........

depth


ew

7.00

......

depth

of

ôâ

...

.......

Beam

3eginning
tnd

Length

intersection

slope

Filler


ôâ

74.230

618.7300

break

Slab

ew

ww

.......

slope

we RK

we

..........4.

Bridge

ew

22.8120


Right

Rignt

ww

........

slope

Left

ew

stations

6

Right

****x

ew

2.

ô6

ôâ


4...
â

ôâ

ôâ

ôâ

...........
...........

.

..

ôâ



ôâ

-

63.000

ô6

64.000


feet

#3.000

feet

3.000

feet

4...
4...

inches

.

inches

.........

.

Station

2232.5857

............

.


Station

2552.7937

Copyright

1989

Region

IV

Software


VERTICAL

CURVE

-

VERSION

1.0

-

04/13/88


Old Hickory Blvd.
over I-65
STATION Station 23+94.397

Pavidson
a

COUNTY

‘URED

BY

whp

STA.
EL.

=
=

20.88000
645.490

PC
PC
Gl
G2
v
K


DATE

03-15-2001

2.56000
~4.23000
7.00000
-0.48500

STA.

22.32586

FG.

EL.

=

648.177

"of

STA.

23.81772

FG.


EL.

=

648.825

fant3

STA.

23.94397

FG.

EL.

=

648.781

¢@Pet

STA.

24.26024

FG.

EL.


=

648.602

owt+

STA.

25.52794

FG.

EL.

=

646.911

Fos

STA.

27.88000

FG.

EL.

=


639.645

TY

CB Aaa ie, > 0.0OF
IPVeemna = 2.013


GA.
COUNTY: Davicksgt CROSSING: Mi astgesg tow ek ¬
"Scdse ce
tr 3%

hi

NOTES

Min yerr Clearance
}

ON!

Ske

234+94,397(SP + (Behan) 2 2543)02

IGS:

Stee


ADE

At

AS,825 - 5.08(0,02)= 648,043

eley
Np

Pe

rs

Stucke

8 007 + (Mm nan) - GF” Hane gn) = 400+73502

depth.

=

A8,.O¥3-624.0

Point

OMB! Sta 2B+A4 IIe

-)b,S

=


1943

(GY?) 4(BM. cea reared

eley 648.602 TƯ,
oaC47, B20
Sta 46043850)+ (O49
a 977) + (4-54!
331}
©c©w
24/2

)
Zemes)
eB Supe
brvchre clei = A).42-(24.2-Kc.Š+

J-GS:

PPX,



Ori

ox, Grice

OWB!


ai,
in

OMG:

4004 38.507 ~ (68:5

;

4¿O+893.4%+
3
7,2 $4

HS?

23494,397- 94.679- 18,52)

TOS}

tx

22+ 81.19)

VY pan 37) = 40+ 14,563

GLAS - ( 3011,5
~ 24 00%)
)0.
0%)
- 12(0.04)3,.0 =


23+99,397 + 44.679 419.52) =

@iÐ.n3

295407,59)

TGS: 40439 567+ (68,9430
Aan 16.53)
) = 460 +62 .95|
@rey ! ©25.G- ($150.02) 24 (61625 12.(0104)- 3.0 = 14..63

span kensths:

‘TOR Stew
22+32,23242
.5859
3
EG

wm

⁄2©+S©“22,

Ter Sten Z2)

S%%n4đìz

S0


M2

feaucc€) S%per-%xrucfUr€ Ẵ&p+h=
=

amaunt Grade

z

a

“5

(MA

oe
~

. 27):

ủi

\%8.4°

đ2r|5r5⁄‡t3< GBin
9,667 $4-

canoe wered = 2112. -S.460 = 1,453!

DESIGNID4TE


CHECK

(DATE

CHECK

|O4ATE

PAGE


COUNTY:

OI

TDexidson

S682 'SIvet

CROSSING: Quer i

NOTES

3(12) $2.33 = 84

Wt2+S = 260"
fak.

Bar Co wplets

bolt b c7

rZ2/0/ eck

STO

gu" Ye

TT1I

4oo"

1⁄15 + 30/2)12.3

2582Q I2" <28 9*

= 401"

BS
Use Double
On

L


Yorn"

TT

hose Garg}


+

psn"
,

He wor hao

Ð/%scd/ SHuckÝt

DESIGNIDATE

CHECK

|DATE

CHECK

|DATE

PAGE


$9

ALNNOD

al

TOOZ

NOSOIAVG

JLVLSYSLNI

Y3SA0

See eat oN
CO REPTPa

NOLLVIUOdSNYUL 40 1N3LLMV430
» Œ33đ4$ H01530
434YWfd †1-01S HIIA AYRUYOH 0-58
© LOV 10S

2 NOLLISOd USDRYE NYIOII FIGV1NOd AUVUOEPEAL S3LONBG se
T WOLLISOd UGRRIVE NYIOIN TIGVLUOT AUYUOUMAL SBLONN «

tg

ma +

Sd ONY

Hh oe

\

--—-—
ee


\

nam

aaea

ma...

TY2L1M3A

00+5#

nO

3SOMYUYTĐ

CƯ.

sẽ. a4

390108 40 03

th

osesz






“SINSG_iS0d $ 3LRONOD
ONY “SLNGHLLNGY BALLS 030 ALSUONDS “SPrYSE-1 31SYON0D
NS 95 STL STL 98S) NYdS P 4O SISISNQO 390100 ONLISIXG

te
(

“SLNGG ONY SUNGMLNGY LY ZT2OMd TYNI4 NO 035Y6 36 TÍYNS NOTLYAY2X3 (Z1
“31S 9NIHEHIYäR 36 01 SĨ T331 TYWUL2BIS TT MT
19091) 31IH8 GINIYd
3% 0L_ 3% HOIHA °13dYUYd 20 di ONV 32Y4 301SMI 1dZ7X3 S2OYĐấS
3L3NG) TIY O4 (00YSC) A309 NIYLNIOH 39 01 MONTLVOD SUNLXGL (OT

"NÓI G0220-6
NGII AYAOYON
0/
XAOMT O4 GiV4 OWV ŒHEESYSĐ 3 TWHS
ONY NOLLOMLLSNOD 3920101
2
sie
4 SOLVIT
, Ids (NVONVI
3U 9 S§ỐU NĨI

“SNOLLYDLSIOSGS GHYONY1S
106 ONY PO9 HOIL27S 135 '2SIASHIO 03I0N

TYH3N39

a¿4


02W) 1MOYXOIH 0XP EY us

4l TÍYHS NG1123i0M. 3901 BĨ4 dYt-diV GANHOYN lởYt- di GONHIOYVH (6

HL 30

“SHOLLYOISTO3ES GUVONYIS BLL 40 C7V09
MI ¿3 SUƠM HUỊS ZSMVOĐGOUP
RỊ 34 04 TENH3 SoY AI NO 31OLlUY
Stoo
13dYdYd EI-1LS 350
3132902
BLISOUNOD ONY ‘SINDG 150d k HIIR “03828YTS„vVS)3930
V309
SÌV 1M
GE0T34 TIS SIOTNLIMOO
NYdS Ở 20 ISISWOD TIVIS 2W112/MICVAgS

S3LON

CAYRGAO SULA HÓ4 s14/0T1 CC 2YTTONi 0L SOVOT GY3G*rr-0ESH *OMIOYOT (2

cc

ay

"0111 03 SEE1"EHUY) NOLLYLU0, jSMVML 40
13L Mvd30 33SS3WWN5:
3U. 20 9ILYSI2022đ5 SodDM 0V OY0U 4ÔGVONVIS

TULIPS a

24

iw

JH')SNGO.

QA

AVON

SOI IS eC+dey “Vis
OW 0t YE+t2 Y1S:

ŒO Jtˆ9O+rt'YLS

$#1 00£1309t IS

.._.)',

“CATE OKO

CsrtE

4Ð INiod

©

`.


trẻ

|
Winky

"

mỹ
Ak

=

vẽ

Mu

Ẳhà

=

“OA
33

OH

-0-,z2

bE


old

© DTD

a


t

„.

~

OL 10)

'S310N30
!S310N30
1S31ON3O
PSSLONAD



T

be

Ones

© SHNYTâ


~2

rm.

Toe

T

I

JT

ẹ~.T

+0Y't+zi

92119 xo

Board 30 ONT

+

7

$

i

as


IS.

| wap
|
et

.

(GLDORIAL ô8? 09 OL z

9NISYUO JT1401d 9NLLSIX3 NY
330 OF1VIS SYN S0 102 3Yu9

T—-—

eT

gan „ƑS HIỊA oe

.0-.99

1y
!CV
IV
IY

sọc;

SUIS
9WL1SDV3 3LYNIXOMddY


VAT H3

_fO071 33YyAS
NỔI

1K, 200

REST EST
OTH O10
ABAUNS 9

UNO

¡ 2MY1jNWU|
SOD”
OD

MG B00
SVT

-

osecze

S3IOTNOHS
NY1G3
0.42 = Oe ZTBSENV] ở
of ¥E = 9 TTBSINTT C


an

G

uo!

Pome

orb
t2y
Bia
ove dtd Cannon
[ee TP se
9-.PE "0-,ZTSAMY]
đ.#-.1T9S3WYT â*S310N30
S3LONG
TV
|
=
18V 0L SETONY
se Danes 97

Lanes |
lw) TTS
JNB3d0TS FZ
Wp
eee
¥
We
HN TRO =ế

a

2ZOMYAYVZL TGLIE3A HYNNI 30 Ltd
Ss

„Ũ†-,3Y
ø TYTUOV

HPƯNH

#

#0F'r6+Cở YIS

ties = 594d

Form

Ton waa" 3
CRIONTT


DESIGNED
CHECKED

45 (Old Hie)
TT
lean

BY DATE | P


1100 J. K. POLK OFFICE.

37213

Pro posed bac
ss

E

TENNESSEE



ng

{| SUBJECT

DATE

BY

“(8
LRIFD Design

7250*

TES




3360".



},If9TAL SRIDCE LENGTHY

125722

NASHVILLE.

——

reetta\
——



`

70° 2013"

ị =

>

H

Tt




omer


aa

Stub ‘Integral aleviments:

interscchon ©io-Hov) © 23194 40 bid Hickory ve!)
nt

COUNTY

2 (Fram Prem inowe, CalcodaHơ)

arr

MMos

OF

PAGE

Fixed - Pres

:

i

`

86'-0"" (OUT TO OUT)

STRUCTURES

reg |
sri —1)
PRAFỆT TT

p-o

2 LANES © 12°"2 24°-0" | 6-0", 6-0"| 2 LẠNES @ 12-0^+ 24-07
12°-9"
0"
|
`
truant ane Í
:
0.02 He .
heyteaser
“We Tor {Ị
đ wf

UIT
SOULE

eae]

[4

Tes



|

1 eh 1-0" SO”
>



| WEB

|

h

22'-0”:

I

22'-0"


OF

Lư) 1

DỊ.”


CON COMPRES

€amnpos› ve:

Opprax. Read

e

ay

le-o'f

22-0”

17-0"

lào"

1-0”

cre)

[ire

rye)

N

Sở


ae i

Ae SESTION vex.

(8œ.o'X.n# ')(.'SO3⁄4 Gyders

L‡s-s-

=

=

2

2

nearing Surface :

Bridge tail:

*4/¢4)( 2? Cfhy (Or 150 hoe 2/8 Greeters = Ou

Grid, or Partially Filled

oe

Beams;

Concrete T-


&
~

Beams, T- and Double T-

Sections

TENNES

O34

3#pp,rd,5 §

led }eHO Hee = auth
`

yrcor
=
eat

Concicke

wu

Applicable

`

@s.


Range of

i,j

connected to

act as a unit

Applicabili

7

:

Two or More Design Lanes Loaded:

cos () (aI
9.5

L

K

12011

45N, 2 4

8


0.2

3.6
< 16.0

12.0

20
12.0Lt3

L

14

Vo

K

00s „ Í -Š. 14/8192

.

-

k and also | One Design Lane Loaded:

if sufficiently


.

Becks

Distribution Factors

Cross-Section

04

ccle/

2 O45 K/ep “gicdef

lane for moment interigy” girder

0.6

T=4412

er il oe

4/FE eyeler

SH" x 6"

Vu -Girciey + Out Miragsedee

4.6.2.2.1-4


Grid on Steel or Concrete

|

| l2 "Sự

from Table

Concrete Deck, Filled

Gicder

(0.033 4/4
)( 8~ I1%6(2))/8 Grders = 0:34 "YL oieder

( Oe

inlerior Beoms

Type of Beams

¥

LZ) circles = Capprex:)

OG FS ‘Est ho"yg Bor fe. 1@"y 195" , aaub

2b


y

Slalo! 1,24 K/-l@weler

compe wetgnt =

ath 4.6, 22

“Ye

(a"XhS")
N44) (0.180) = _0, 03 “A Ginter
totaL

TơFd Non Co Cas:le weynhe

“rar



AB 13a

Ae

.,32+./Ịz,4217% (40, Tưuệc Oross sectoral Onesyr: An 128) 4g x OAD (AS x
MOG aforre
Cross-frumes, splice lates, ad
.
Ÿ, Qwetew weisn Ff
bishb allowac <

eta’ Khen he
Go “ ay Y Og 4 /Éy Outer

oat

DEPARTMENT OF TRANSPORTATION

Filer:

T-0”

i

aE

Wi fern laadis:

—]

_

fable

%

'4.@,2.2.2b `}
;

‘aay?



DESIGNED BY

DATE

S.

Sag



COUNTY

DATE

“CHECKED BY

DF___—

PAGE

ae TS

———=

An

Ke

ea


om

unt

an

~
wm

ha Span oF Bedin

(P+)
ty = clepth of Gnerete Sla
b wo

©
ome Lat
ta bad
ww

on

Cg = Sra

wu

ws
at
Ow


1100 J. K.
NASHVILLE

arf

ue

Merhea

of Bear;

lạ: 2(T+A€?)

ở3



E6= Modulus of clasticrihy of Beram a4

32: A86. 22723825
ary
6

-

na

Az arca of Girder


befeucen Canter

a

Ta

lee

£e+ Meodlus afelashiiky o8 cdecErna¿z

(4)

nz

=e, <9

Grder Inerha icolahy2⁄ (đelercacc he a‡ œna/eoPcocb,)

V2

Cc
“2D

Component

48x15"

Area

Bunge


54x 006" wel



WY

2aT141

hs2

-2788

- 818/22

222448

Mien”

L_
©

2

TD beam *

fae (SA (Ove) + Lỗi #250

Wy


TENNESSE “DEPARTMENT OF TRANSPORTATION

DIVES

one

o

“ZEEE

S)85O.&

Design Lane loadect:

($e) (oy) (ta
|

AMOF2 095 + { oh)

vn

“ee

“A

166) C5



eae


aa ag

sen

|

Fer)


:

26796,8

øo4

24,992.8

6&l

2

656)

$l, 850.6

6|,685,T

int


also:i, j

ms;

ie

of

"

|

=

Loaded

_

| Twovor- More: ‘Design
kanes: Loaded

Lever Rule _

:

:

ˆ

Range. of

Applicability.
Sa

8€ 8y

-1.0
e=077+ ay

connécted to act

: Double T Sections

nh,

ae

if sufficiently

ll Concrete T- Beams, T and

:

4

5

Applicable Cross- | One Design
‘ Section from
Lane


Table
4:6.2.2.1-1
:

.

ms, "



a, e, kand
:

(St)

-

= 0/908 bas
beamsQuy
fr manent? exterrer

of hue Pees 4D
$7

85,5

Leet

6.06


gp eos. -11 + 85.5 (H4,81)")= 1,381,330 int

+ l@S

fade ae more. Design tay dpesed
is

ae

-

Ze

O

¥ :0(00S)= W.Slin

=: 85,5 in®

=
a)

Age

T4125

4 = W289
Fi /gs, %e-58/n




AC

2075

Z10

18°x 78" Plange

C2

œ

g

21.0

.

as a unit

9.1

4 It -

ia
⁄#iabLc

1


M46

khu

lJ J



9

2.2, Zel4
Gr by

_-

px

"

a

teace¿ beeen “fie.
1 carey: oF exteriov bean cand interior esse

one

oP Curly. or †roffic barrre/

lane 'loaded,


arg rule)

WEBS

oR
421

mul

gO
c\ìez-4.4 -} 34x 2/5

DT-1412



gi: Bisteee facto,

Lọ

Re (OF SAH)= 1, 523 nresehiolees
rẻ e(
LLDF= LS2a
YE AN NZ)= 314 ‹e^9
2 ey


"DESIGNED BY


S4 ECT

DATE

———Ễ———

CHECKED

BY

“eS

“a2FD

1,

LA

DATE | SUBJECT

iaAs OF

Desian


OUNTY

= © (interior)

b6


C=O.

~~

du

-

t de 20.774 2S _ 1,098
—ae

<1,

25

Skewed Bridges:

STRUCTURES

Type of Superstructure

=x

oe

`

9 = G0°- 16,337°= 13.068 °
Applicabl


Any

Cross-Section
from Table

Deck, Filled Grid,

Steel or Concrete Beams;

bong Tem
T-B

Number of Design

iT

Applicability

e, kand

if nu.

| am

head Disr; ,U hà?

kK)

aos


-

9

Ss}

On

46.2.2,

Dis

,

.

Soho of live /oac!s

for Shear

“kets

$cx⁄L$

b

li

7⁄9 <42°, ,en C.*0,o lherckwe I~ toulfanitccs)'= ho

Arh.

ra

Moment
19
song, Beams

a : h s 240

| 52944 enl (Ệ

ac

Fachirs

30° ° < 8 < 60 °
3.5< S < 16.0

taney"!

1 ey (tane

4.6.2.2, %e-]

Reduction of

.

nh ij


necte

Table

Range of

Y lanes Loaded

If8 < 30° then c, = 0.0
If 8 > 60° use
6 = 60°



DIV, šIDN

1rL1.¿.2.2,2e

-

on Partially Filled Grid on

(72%, Go

20 2lxJờy

)

Table 4.6.2.2.3a-1 - Distribution of Live

Load per Lane for Shear in interior Beams

ON

“DEPARTMENT OF TRANSPORTATI

6, 759 hanesfeircler

4.6.2.2.1-1

OF

=3

_

%,}

g = 1072 (0.708) =

ac Ls
~

hư,

.

¬

+WO or More lanes loadedl




í

ID vi

Dist button of jive loads ccont,) Cromept.gn'y )

woh q2

“2

l

Type of

Applicable

Superstructure

One Design Lane |

Cross-Section
from Table

Two or More Design

Loaded


Range of

Lanes Loaded

Applicability

4.6.2.2.1-1

Concrete Deck,

Filled Grid, or

Partially Filled Grid
on Steel or Concrete
Bearns; Concrete TBeams, T- and
Double T-Sections

Ene

@

e, k and also i,

j

if sufficiently
connected to act
as a unit

§


8 / se

0.38 * 355

20 < L < 240

4.5 st, < 12.0
10,000 < K, <
7,000,000
N, 2 4


co

lane loadecl:
LEDF? 0.136+ 325,90

two hanes Joacleck:

= O.36+

,

"LLDF: OnE A2~ Cs)? 0,2 +
4,0,2.2.

Ort.

3.5


0.2 "Š{ 3

3b Exterior Beans, Shear

ÌÌ. O/23.0

:
2

O, 00 6an¢3/Gircley

|

- ("Yap )*2 \.O1R Lanes/@irdlot

Table 4.6.2.2.3b-1 - Distribution of Live Load per Lane for
Shear in Exterior Beams
Type of Superstructure

|
:
|
|

Lat
<=

Concrete Deck, Filled Grid,


or Partially Filled Grid on

Steel or Concrete Beams.
Concrete T-Beams, T- and



Double T-Beams


DT~1412

Applicable
Cross-Section
from Table
4.6.2.2.1-1
, K and

also i, j

if sufficiently
connected to

act as a unit

One Design
Lane
Loaded
Lever Rule


Two or More
Design Lanes
Loaded
F = © Dinterior

d

Range of
Applicability

-1.0 < d,«< 8.5

e=06+—2%
-

“si



\ oO


a
DESIGNED

PAGE

DATE

BY


————_

1100 J. K.
NASHVILLE.

DIV‘s1ON OF STRUCTURES

BION

one 2 lane

(cant) § Ghear, cx. Gircter)

loaclec!

¢ lever rule2)

4= 27/4 lans/GuweEr

+W0 or moreCog?

TENNES

37219

POLK 0FFICE
BÉ _
SEE


NSIT

(same as 3 far rrament)

lanes loachack

ink

2ees ay art AchO - et

2.9510

= 0.825
37 = 2/ữ25( 00/89)- 0,89 lanes/„vo7

Oth 4.o,2:2,.3e Skewes Bridges—
— Ð= 3,663?

|

Table 4.6.2.2.3¢-1 - Correction Factors for Load
Distribution Factors for Support Shear of the Obtuse
Corner

Type of Superstructure

Applicable
Cross-Section
from Table
4.6.2.2.1-1


Correction Factor

or Partially Filled Grid on

Steel or Concrete Beams;

Concrete T-Beams, T- and
Double T Section

C

ij

if sufficiently

1.0+ oa.

connected to
act as a junit

rrection factor+ 04LO+ 0,0120

12.0Lt
9

3ì 03

J


0°<8<60
3.5
tan 8

20 N, 24

te0 G5
es) }” (Mr 13,663)==f hOe/

Semn )/2/ Of 1e LuncÊ_ Dolobu y2 factors
+,

OF TRANSPORTATION

Bean

_

one lune hades

2,

2.804%/)2 ô8f4 —

14 effechue

Pits


Bean

eentraiinRe ine

`

`

OF#(h0E)=0970

|

Fatigucard

AF (/106/) 2 O, 948

;o/0(14)+ 08

(Art. 4.0.2.0)

do UY tu

11:00 (12) 24132 wn
Won

ence:

exh

Crh 36.3)


Beary, Cees wane

Ye (eFfechic spar + Ye} 2) sean
oP es
sary

con, ‘Beau

US H7\n far effechue Sal lel

achorefe Limit Stade

All other levirk States:

DT-1412

two ar mare lanes fog

3+2 uidlh dê nọ tạ x 16): 18,3 Jfn “vs si
-

Pedocrion,

01708

earn

HA


(84/2) BevdersX 15) 2,564

awe merctanesloudeck

0,40 |

ext,

(LuDFofdebiecHiMA,
Avsate,

onctens loaded

int,

SỔ

Range of
Applicability

_

¡ || Concrete Deck, Filled Grid, | đổ e, k and also

⁄2 2

TENNESSE... DEPARTMENT

COUNTY


DATE

BY

CHECKED

272: l5

Z2:

/.?3

tr!
NI =2)» Sa
n

W05)48
8 8S
Flin


Live Load Distribution for Exterior Beam
Oid Hickory Bivd. SR-45 over I-65
Davidson County
Date: July 30, 2003

Article 4.6.2.2.2d_ Exterior Beams
The additional investigation is required because the distribution factor fo girders in a multi-girder cross-section,
Type “a’,"e", and "k" in table 4.6.2.2.1-1, was determined without consid eration of diaphragm or cross-frames.
The recommended


procedure is an interim provision until research provi des a better solution
The procedure outlined in this section is the same as the conventiona | approximation for loads on piles.

R = (NL / Nb) +((Xext}(sum e))lanes / ((sum x*2))beams

where: R = reaction on exterior beam

in terms of lanes

NL = number of loaded lanes under consideration
e = eccentricity) of a design truck or a design lane load from the center of gravity
of the pattern of girders (FT)

x = horizontal distance from the center of gravity of the pattern of girders to each girder (FT)

Xext. = horizontal distance from the center of gravity of the pattern of girders to the exterior girder (FT)

one loaded:
3.75

ree

|

|



30.75


` ‘

2775 __

center-tine of bridge

Muliti-presense factor for one lane loaded:

i

cH

LH

1100 —-gÌ4— 11.00 _"

7

R = (NL / Nb) +((Xext)(sum e)jlanes / ((sum x*2))beams
Beams:

a

k 4.50 má—

1

number of beams:


Lanes: ((Xext}(sum e}):

co

1.2

number of lanes:

one lane loaded:

11.00 —

therefore: R =

((sum X^2)):

NL /Nb:
0.531

1014.750

3388.000

0.143

lanes per beam

Xext.= 33.000 —————..
1#


4®————————



k—

1100—*

22.00 ———————>

33.00 ————————-+

two janes loaded:

18.6 ————>

4P
hon
ca ry
12.00
2

ieee

4———

1250 —

Ò


75

T4
A

=—

12.00

<<

6. 1T

number of beams:
7
R = (NL / Nb) +((Xext}(sum e))lanes / ((sum x*2))beams

41.00 —p



33.00

Beams: ((sum X^2)):
NL /Nb.
two lanes loaded:
therefore: R =

0.765


1625.250

3388 000
0.286
janes per beam

11.00—*

4.50 po *4——

i

1200—*

3075-~

«“_- 6. ¬

1100 —y+—

6.00
|

TTI

#—””

|

18.80—————\


12.00
„—

J

in

1
2

22.00 —————*

*F—”
{
4£———-

3.75

Là. r

|

——— |

three lanes loaded:
1.0

Multl-presense factor for one lane loaded:
number of lanes:


Xext.= 33.000 ——————
#£—

|

TL

Lanes: ((Xext}(sum e)):

l 4.50 xá — 11.00 —ple— 11.00 re
,

enter-line of bridge



0.500

ccsrne
|

+

ch

1100 —y|4—— 1:06 — |

of bridge


Multi-presense factor for one lane loaded:
number of lanes:

number of beams:

0.85
3

7

R = (NL / Nb) +((Xext)(sum e))lanes / ((sum x*2))beams
Lanes: ((Xext)(sum e)):
1839.750
Beams: ((sum X^2)):
3388.000
NL/Nb:
0.429
three lanes loaded:
therefore. R =
0.826 lanes per beam

Xext.= ——
33.000
k—- 11.00—*


22.00

———————*-


33.00 ———————>>

iz


Washington State Department of Transportation
Bridge and Structures Office
QConBridge 1.1 Release Date: Oct 1, 1999

| Supporting Component: Stee! Beam
Deck Type
: CIP/Precast Concrete
Supporting Component Description
Interior Girder
Top Flange t= 1.5 inch w= 18 inch
Web t=0.5 inch h= 54 inch
Bottom Flange t= 1.75 inch w= 18 inch
Unit Wgt = 490 pcf
Mod. E = 2.9e+07 psi
Span Length = 162.5 feet
Girder Spacing = 11 feet
Num. Beams = 8

November 12, 2006 6:38:12 am
Page 1

(in. Girder

Deck Description


Slab Depth = 9 inch
Pad Depth = 1.5 inch
Sacrificial Depth = 0 inch
Unit Wot = 150 pef
fic = 3000 psi
Eff. Span Length = 162.5 feet
Design Lane Width = 12 feet
Skew Corrections
Distribution factors for moment are corrected for skew
Distribution factors for shear are corrected for skew

Skew Angle = 13.663 deg
Girder Properties
Ax = 85.500e+00 inch^2
Iz = 51.647e+03 inch^4

CG = 27.243e+00 inch
Slab Properties
Eff. Flange Width = 117.000e+00 inch
Mod. E = 3.340e+06 psi
Composite Properties
Ax = 209.912e+00 inch*2
Iz = 117.771e+03 inch*4
CG = 48.506e+00 inch
Unit Wot = 971.334 pcf
Mod. E = 29.000e+06 psi
n= 8.68081
Distribution Factors
eg = 36.006e+00 inch
Kg = 1.410e+06 inch*4

Strength/Service Limit State

Moment
1 Loaded Lane = 0.463275
2+ Loaded Lanes = 0.711177
Shear
1 Loaded Lane = 0.840199
2+ Loaded Lanes = 1.08349

ae

oa

iy

Fatigue Limit State
gMoment = 0.386063
gShear = 0.700166


Washington State Department of Transportation

November 12, 2006 6:50:49 am

Bridge and Structures Office
QConBridge 1.1 Release Date: Oct 1, 1999

|

Page 1


Supporting Component: Steel Beam

Deck Type

-

: CIP/Precast Concrete

`

eC Xf,

G um d en

Supporting Component Description
Exterior Girder
Top Flange t= 1.5 inch w= 18 inch
Web t= 0.5 inch h=54 inch
Bottom Flange t= 1.75 inch w= 18 inch
Unit Wgt = 490 pcf
Mod. E = 2.9e+07 psi

Cross Frames are present

Span
Girder
Num.
Num.


Length = 162.5 feet
Spacing = 11 feet
Beams = 8
Lanes = 3

Deck Description

Slab Depth = 9 inch
Pad Depth = 1.5 inch
Sacrificial Depth = 0 inch
Overhang = 54 inch
de = 33 inch
Unit Wgt = 150 pcf

fic = 3000 psi

Eff. Span Length = 162.5 feet
Design Lane Width = 12 feet

Skew Corrections
Distribution factors for moment are corrected for skew
Distribution factors for shear are corrected for skew

Skew Angle = 13.667 deg

Girder Properties
Ax = 85.500e+00 inch*2
Iz = 51.647e+03 inch*4
CG = 27.243e+00 inch
Slab Properties

Eff. Flange Width = 112.500e+00 inch
Mod. E = 3.340e+06 psi
Composite Properties
Ax = 205.246e+00 inch^2
lz = 116.702e+03 inch^4
CG = 48.171e+00 inch
Unit Wgt = 963.815 pcf
Mod. E = 29.000e+06 psi
n = 8.68081
Distribution Factors

eg = 36.006e+00 inch
Kg = 1.410e+06 inch^4

¬

__,

Strength/Service Limit State

Moment

"4 Loaded Lane = 0.963135

2+ Loaded Lanes = 0.788737
Shear

|




Shea

-

1LoadedLane

2+L

= 1.01008

aded Lanes ==( 0.962838

Fatigue Limit State
gMoment = 0.802613

gShear = 0.841737

|
:

|


Section 1 - Introduction

COMMENTARY

SPECIFICATIONS
1.3 DESIGN PHILOSOPHY

1.3.1

C1.3.1

General

Bridges shall be designed for specified limit states to
achieve ise objectives of constructibility, safety, and
serviceability, with due regard to issues of inspectability,
economy, and aesthetics, as specified in Article 2.5.
Regardless of the type of analysis used, Equation
1.3.2.1-1 shall be satisfied for all specified force effects
and combinations thereof.

1.3.2
1.3.2.1

The

behavior, although the
using elastic analysis.
most current bridge
incomplete knowledge

cases,

on

the


and

connections

basis

is

of inelastic

force effects are determined by
This inconsistency is common to
specifications as a result of
of inelastic structural action.

C1.3.2.1

GENERAL

Equation 1 is the basis of LRFD methodology.
Assigning resistance factor @ = 1.0 to all nonstrength
limit states is a temporary measure; development work
is in progress.
Ductility, redundancy, and operational importance
are significant aspects affecting the margin of safety of
bridges. Whereas the first two directly relate to physical
strength, the last concerns the consequences of the
bridge being out of service.
The grouping of these
aspects on the load side of Equation 1 is, therefore,


component
and connection shall satisfy
1 for each limit state, unless otherwise
For service and extreme event limit states,

resistance factors shall be taken as 1.0, except for bolts,

for which the provisions of Article 6.5.5 shall apply.
limit states shall be considered of equal importance.

All

(1.3.2.1-1)

PRR,

ZNHVYQ<
for which:

arbitrary.

NoNane

(1.3.2.1-2)

0.95

For loads for which a minimum value of y, is appropriate:
1


n=
<1.0
_ Tpnạn,

1.3.2.1-3

)

where:
Y

=

load factor:
a statistically
applied to force effects

based

@

=

resistance factor: a statistically based multiplier
applied to nominal resistance, as specified in

multiplier

Sections 5, 6, 7, 8, 10, 11, and 12


nN;

=

load modifier:
a factor relating to ductility,
redundancy, and operational importance

No

=

a factor relating to ductility, as specified in Article
1.3.3

Nr

=

a factor relating to redundancy

Article 1.3.4

However,

it

constitutes


a

first

effort

at

codification. In the absence of more precise information,
each effect, except that for fatigue and fracture, is
estimated as +5 percent, accumulated geometrically, a
clearly subjective approach.
With time, improved
quantification of ductility, redundancy, and operational
importance, and their interaction and system synergy,
may be attained, possibly leading to a rearrangement of
Equation 1, in which these effects may appear on either
side of the equation or on both sides. NCHRP Project
12-36 is currently addressing the issue of redundancy.
The influence of n on the reliability index, B, can be
estimated by observing its effect on the minimum values
of 8 calculated in a database of girder-type bridges. For
discussion purposes, the girder bridge data used in the
calibration of these Specifications was modified by
multiplying the total factored loads by n = 0.95, 1.0, 1.05,
and 1.10. The resulting minimum values of B for 95
combinations of span, spacing, and type of construction
were determined to be approximately 3.0, 3.5, 3.8, and
4.0, respectively... _
A further approximate representation of the effect of

n values can be obtained by considering the percent of
random normal data less than or equal to the mean
value plus A o, where A is a multiplier, and ơ is the
standard deviation of the data. If A is taken as 3.0, 3.5,

For loads for which a maximum value of y, is appropriate:
=

in many

Limit States

Each
Equation
specified.

Nn

resistance of components

determined,

as specified in

3.8, and 4.0, the percent of values less than or equal to

the mean value plus A o would be about 99.865 percent,
1-3

1s


-


Section 1 - Introduction

COMMENTARY

SPECIFICATIONS
=

1.00 for conventional designs and
complying with these Specifications

details

>

0.95 for components and connections for which
additional ductility-enhancing measures have
been specified beyond those required by these
Specifications

For all other limit states:

No =

1.00

can be considered ductile. Such ductile performance

shall be verified by testing.
In order to achieve adequate inelastic behavior the
system should have a sufficient number of ductile
members and either:
e
e

Joints and connections that are also ductile and can
provide energy dissipation without loss of capacity;
or
Joints and connections that have sufficient excess
strength so as to assure that the inelastic response
occurs at the locations designed to provide ductile,
energy absorbing response.

Statically
ductile,
but
dynamically
nonductile
response characteristics should be avoided. Examples
of this behavior are. shear.and bond failures in concrete
members and loss of composite action in flexural
components.

Past experience indicates that typical components

designed in accordance with these provisions generally
exhibit adequate ductility. Connection and joints require
special attention to detailing and the provision of load

paths.
The Owner may specify a minimum ductility factor as

an assurance that ductile failure modes will be obtained.
The factor may be defined as:
š
A,

H “A,

.

.

-

(€1.3.3-1)

where:

A, - deformation at ultimate

A, - deformation at the elastic limit
The ductility capacity of structural components or
connections may either be established by full- or largescale testing or with analytical models based on
documented material behavior. The ductility capacity for
a structural system may be determined by integrating
local deformations over the entire structural system.
The special requirements for energy dissipating
devices are imposed because of the rigorous demands

placed on these components.
1.3.4

Redundancy

Multiple-load-path and continuous structures should
be used unless there are compelling reasons not to use
them.

C1.3.4

For each load cor›5ination anc limit state under
classification
redundancy
member
consideration,
(redundant or nonredundant)

member

1-5

contribution

to

the

should


bridge

be based

safety.

upon the

Several


Section 1 - Introduction
REFERENCES
Frangopol, D. M., and R. Nakib. "Redundancy in Highway Bridges." Engineering Journal, AISC, Vol. 28, No. 1, 1991,
pp. 45-50.

&

od

"
„.„


lable

Load Combination

3.4.1-1


- Load

Combinations

Factors

LL
IM
CE
BR
PL
LS

WA | WS

STRENGTH-I
(unless noted)

Vp

1.75

1.00

-

-

1.00


10.50/1.20 | Vịạc

STRENGTH-II

Vp

4.35

1.00

-

-

STRENGTH-III

Yo

-

1.00 | 1.40

STRENGTH-IV
EH, EV, ES, DW
DC ONLY

Yo
4.5

-


1.00

STRENGTH-V

Vp

1.35

1.00 | 0.40]

EXTREME
EVENT-I

Yp

Veo

1.00

EXTREME
EVENT-II

Vp

0.50

4.00

SERVICE-I


1.00

1.00

1.00 | 0.30)

SERVICE-II

1.00

1.30

1.00

-

SERVICE-IH

1.00

0.80

1.00

-

-

-


0.75

-

-

-

FATIGUE-LL,
CE ONLY

FR

Load

DC
DD
DW
EH
EV
ES
EL

Limit State

[| WL

and


TU
CR
SH

TG

IM &

:

|Ysg|

-

-

-

-

4.00 | 0.50/1.20 | Vie

|Vsel

-

-

-


-

-

1.00

[Vsel

-

-

-

ˆ

-

1.00 | 0.50/1.20

-

-

-

-

|Ysel


-

-

-

-

-

-

{1.00

-

-

-

-

-

-

lYse|l

-


-

-

-

-

-

-

-

-

|Vsel

-

-

-

-

-

-


-

-

-

'99

'00

|0.50/1.20 | V+c

1.00

-

1.00

-

-

4.00

TỔ

-

==
CT | CV


IC

1.0

-

Use One of These ata
Time
EQ

-

|SE}|

1.0

|0.50/1.20 | Vrc

¬

1.00 | 1.00/1.20 | Vịc

"

1.00

|1.00/120|

-


4.00 | 1.00/1.20 | Yres
-

-

-

-

4.00 | 1.00 | 1.00

|.

Table 3.4.1-2 - Load Factors for Permanent Loads, y,
Load

Factor

Type of Load

Maximum

Minimum

DC:

Component and Attachments

1.25


0.90

DD:

Downdrag

1.80

0.45

DW:

Wearing Surfaces and Utilities

1.50

0.65

1.50
1.35

0.90
0.90

1.0

1.0

1.35

1.30
1.35
1.95

1.00
0.90
0.90
0.90

1.50

0.90

1.50

0.75

EH: Horizontal Earth Pressure
®
Active
e
At-Rest
EL:

Locked-in

EV:
e
e
e

@

Vertical Earth Pressure
Retaining Walls and Abutments
Rigid Buried Structure
Rigid Frames
Flexible Buried Structures other

@
ES:

Erection Stresses

than Metal Box Culverts

Flexible Metal Box Culverts
Earth Surcharge

.

3-11

\a



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×