Tải bản đầy đủ (.doc) (19 trang)

TIỂU LUẬN MÔN TOÁN CHUYÊN ĐỀ QUY HOẠCH TUYẾN TÍNH " Xây dựng một khẩu phần ăn đảm bảo được yêu cầu về m loại chất dinh dưỡng,với giá rẻ nhất " doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (196.79 KB, 19 trang )

TRƯỜNG ĐẠI HỌC CÔNG NGHIỆP TP.HỒ CHÍ MINH
KHOA CƠ BẢN


Bài tiểu luận
Môn:
QUI HOẠCH TUYẾN TÍNH
Đề tài: ĐỀ SỐ 1

GVHD: ThS Nguyễn Đình Tùng
Lớp học phần : 211301204
Nhóm : I
Năm học :2008-2009
TP.Hồ Chí Minh, ngày 22 tháng 5 năm 2009


TIỂU LUẬN MÔN TOÁN CHUYÊN ĐỀ
QUY HOẠCH TUYẾN TÍNH
Đề tài 1
1.Bài toán khẩu phần ăn:
1.1.Phát biểu và lập mô hình bài toán:
1.1.1.Phát biểu:
Có n loại thực phẩm TP
1
,TP
2
,…,TPn.Gía tiền của một đơn vị
khối lượng các loại thực phẩm này lần lượt là c
1
,c
2


,…,c
n
.Trong n loại
thực phẩm này có chứa m chất dinh dưỡng DD
1
,DD
2
,…,DD
n
.Lượng
chất dinh dưỡng loại i có trong một đơn vị khối lượng thực phẩm loại j
là a
ij
.Lượng chất dinh dưỡng loại i tối thiểu cần thiết cho một khẩu phần
ăn là b
i
.
Bài toán đặt ra là:Xây dựng một khẩu phần ăn đảm bảo được
yêu cầu về m loại chất dinh dưỡng,với giá rẻ nhất.
1.1.2.Lập mô hình :
Gọi xj là lượng thực phẩm loại j có trong khẩu phần.Khi đó:
Gía tiền phải trả cho khẩu phần này là f = c
1
x
1
+ c
2
x
2
+…+ c

n
x
n
.
Lượng chất dinh dưỡng loại I có trong khẩu phần này là:

=
n
j
j
j
i
xa
1
.
Từ đây ta có bài toán:Tìm giá trị nhỏ nhất của hàm
f = c
1
x
1
+ c
2
x
2
+…+ c
n
x
n
Với điều kiện:


=
=≥
n
j
jjij
njbxa
1
,1,
njx
j
,1,0 =≥
Thông thường bài toán này còn thêm ràng buộc về khối lượng khẩu
phần thức ăn không vượt quá một lượng nào đó,tức là:
x
1
+ x
2
+…+ x
n
≤ M
1.2.Xét ví dụ cụ thể:
Một nhà quản lý trại gà dự định mua 2 loại thức ăn để trộn ra khẩu phần
tốt và giá rẻ.
Mỗi đơn vị thức ăn loại 1 giá 2 đồng có chứa : 5g thành phần A.
4g thành phần B
0,5.thành phần C
Mỗi đơn vị thức ăn loại 2 giá 3 đồng có chứa : 10g thành phần A
3g thành phần B
Không có chứa thành phần
C

Trong một tháng một con gà cần tối thiểu 90g thành phần A,48g thành
phần B và 1,5g thành phần C.
Hãy tìm số lượng mỗi loại thức ăn cần mua để có thể đảm bảo đủ nhu
cầu tối thiểu về dinh dưỡng cho một con gà với giá rẻ nhất.
Lập mô hình bài toán:
Gọi x1,x2 lần lượt là số lượng đơn vị thực phẩm loại 1 và loại 2 cần
cho một con gà trong một tháng.
Hàm mục tiêu của bài toán này là hàm cực tiểu giá mua
Min f = 2x
1
+ 3x
2
Thành phần A: 5x
1
+ 10x
2
≥ 90
Thành phần B: 4x
1
+ 3x
2
≥ 48
Thành phần C: 0,5x
1
≥1,5
x
1
,x
2
≥ 0

1.3.Giải ví dụ trên bằng nhiều phương pháp khác nhau
1.3.1.Giải bằng phương pháp đồ thị
1.3.1.1.Phương pháp dùng đường đẳng lợi (iso-profit line)
hay đường đẳng phí (iso-cost line):
Hàm mục tiêu Min f = 2x
1
+ 3x
2
Ràng buộc
5x
1
+ 10x
2
≥ 90 (1)
4x
1
+ 3x
2
≥ 48 (2)
0,5x
1
≥ 1,5 (3)
x
1
≥ 0 (4)
x
2
≥ 0 (5)
Trong mặt phẳng tọa độ Ox1x2,ta vẽ các đường thẳng:
(D1): 5x

1
+ 10x
2
= 90
(D2): 4x
1
+ 3x
2
= 48
(D3): 0,5x
1
= 1,5
(D4): x
1
= 0
(D5): x
2
= 0
Dùng đường thẳng đề xác định fmin.Đường thẳng chi phí càng gần gốc
O,f càng nhỏ.
Đường thẳng phí qua điểm B cho ta fmin.Tọa độ điểm B là nghiệm của
hệ phương trình




=+
=+
4834
90105

21
21
xx
xx





=
=
8,4
4,8
2
1
x
x
f = fmin = 2 ×1 + 3 × 2 = 2 × 8,4 + 3,84 = 31,2
Vậy lời giải tối ưu là :



=
=
8,42
4,81
x
x
1.3.1.2.Phương pháp dùng điểm đỉnh (Corner Point,Extreme
Point):

-Các điểm đỉnh là giao điểm của các ràng buộc nằm trong không gian lời giải
gọi là các đỉnh của không gian lời giải.
-Một kết quả quan trọng trong lý thuyết qui hoạch tuyến tính là: Nếu bài toán
QHTT có lời giải tối ưu thì lời giải sẽ nằm trên các đỉnh của không gian lời
giải.
-Áp dụng kết quả này điểm tìm giá trị của hàm mục tiêu bằng cách so sánh giá
trị của các đỉnh của không gian lời giải.
Bài giải :
So sánh giá trị tại 3 đỉnh A,B,C:
Đỉnh A (18;0)

fminA = 2 × 18 + 3 × 0 = 36
Đỉnh B (8,4;4,8)

fminB = 2 × 8,4 + 3 × 4,8 = 31,2
Đỉnh C (3;12)

fminC = 2 × 3 + 3 × 12 = 42

fmin=fC=31,2




=
=
8,42
4,81
x
x

1.3.2.Gỉai bằng phương pháp đơn hình:
Nếu ta giải bài toán này theo phương pháp đơn hình thì phải có tới 8 ẩn,
thay vì vậy, ta sẽ biến đổi bài toán gốc về dạng bài toán đối ngẫu, sau đó giải
bài toán đối ngẫu đó theo phương pháp đơn hình, như thế sẽ dễ dàng và nhanh
hơn.
Cách giải như sau:
f(x) = 2x
1
+ 3x
2
→ min g(y) = 90y
1
+ 48y
2

+1.5y
3

max






≥+
≥+
5,15.0
4834
90105

1
21
21
x
xx
xx




≤++
≤++
30310
25.045
321
321
yyy
yyy
x
1
, x
2

0

y
1
, y
2


0

( bài toán gốc ) ( bài toán đối ngẫu )
Lúc này, ta giải bài toán đối ngẫu bằng phương pháp đơn hình:
g(y) =90y
1
+ 48y
2
+ 1.5y
3
+ 0y
4
+ 0y
5
→ max




=++
=+++
3310
25.045
521
4321
yyy
yyyy
y
1
, y

2

0

Ta có bảng đơn hình:

90 48 2 0 0

sở
Hệ số P.án y
1
y
2
Y
3
y
4
y
5
A
4
0 2 5 4
2
1
1 0
A
5
0 3 10 3 0 0 1
-90 -48 -
2

3
0 0
A
4
0
2
1
0
2
5

2
1
1 -
2
1
A
1
90
10
3
1
10
3
0 0
10
1
0 -21 -
2
3

0 9
A
2
48
5
1
0 1
5
1

5
2
-
5
1
A
1
90
25
6
1 0 -
50
3
-
25
3

25
4
0 0

10
27

5
42

5
24


phương án tối ưu của bài toán đối ngẫu: y = (
25
6
,
5
1
, 0 )
và giá trị tối ưu: g(y) = 90 ×
25
6
+ 4 ×
5
1
+ 1,5 × 0 =
5
156

phương án tối ưu của bài toán gốc: x = c.B
-1
x = ( 90, 48 ) ×







310
45
^-1
= ( 90, 48 ) ×
25
1

×








510
43

= ( 90, 48 ) ×













5
1
25
10
35
4
25
3
=






5
24
,
5
42



giá trị tối ưu của bài toán gốc: f(x) = 2 ×
5
42
+ 3 ×
5
24
=
5
156

Kết quả này phù hợp với kết quả của cách giải bài toán bằng phương pháp
giải trên.
2.Bài toán vận tải không cân bằng thu phát(cung lớn hơn cầu)
Trong toán học, Bài toán vận tải (tiếng Anh: transportation problem) là một
dạng của bài toán quy hoạch tuyến tính. Bài toán vận tải có thể biểu diễn như
một đồ thị hai phía, có hướng. Nó có thể ứng dụng vào nhiều vấn đề khác
nhau. Giải thuật đơn hình trên bài toán vận tải cũng đơn giản hơn.
Biểu diễn đồ thị của bài toán vận tải
2.1.Phát biểu và lập mô hình bài toán:
Có m kho hàng với lượng hàng dự trữ tương ứng là a
1
,a
2
, ,a
m
và n nơi tiêu thụ
với yêu cầu tương ứng là b
1
,b
2

,…,b
n
đơn vị hàng hóa.Đơn giá cước phí vận
chuyển từ kho i đến nơi tiêu thụ j là c
ij
(i=1…m, j=1…n) đơn vị tiền tệ.Hãy lập
kế hoạch vận chuyển hàng sao cho:
a)-Tổng chi phí vận chuyển nhỏ nhất.
b)-Các kho phát hết hàng .
c)-Các nơi tiêu thụ nhận đủ hàng
Gọi xij (i=1…m, j=1…n) là lượng hàng vận chuyển từ kho i đến nơi tiêu thụ j.
Tổng chi phí vận chuyển: f=

=
m
i 1
ij
n
j
ij
xc

=1
Lượng hàng phát từ kho i:

=
n
j
ij
x

1
, i=1…m.
Lượng hàng nhận về nơi tiêu thụ j:

=
m
i
ij
x
1
, j=1…n.
Như vậy ,bài toán vận tải được phát biểu như sau:
Tìm các số x
ij
(i=1…m, j=1…n) sao cho f=

=
m
i 1

=
n
j
ijij
xc
1

min
Trong đó










==≥
==
==


=
=
njmix
njbx
miax
ij
n
j
jij
n
j
iij
1, 1,0
1,
1,
1
1

(1-1)
Bài toán vận tải là bài toán Qui hoạch tuyến tính dạng chính tắc có m × n ẩn
số, m + n phương trình ràng buộc trong đó mỗi ẩn số xuất hiện đúng hai lần
với hệ số bằng 1.Sự khai triển chi tiết của hệ phương trình rang buộc trong (1-
2) cho rõ điều này.
i = 1: x
11
+x
12
+…+x
1n
= a
1
i = 2: x
21
+x
22
+…+x
2n
= a
2
… …
i = m: x
m1
+x
m2
+…+x
mn
= a
m (1-

2)
j = 1: x
11
+

x
21
+…+ x
m1
= b
1
j = 2: x
12
+ x
22
+…+ x
m2
= b
2
… … … …
j = n: x
1n
+ x
2n
+…+ x
mn
= b
n
Gọi A là ma trận có(m+n dòng, m×n cột) các hệ số của các ẩn x
ij

trong hệ
phương trình ràng buộc ta có:
Cột A
11
A
1n
A
21
A
2n
A
m1
A
m+n












A=



























1 00 1 001 00

0 10 0 100 10
0 01 0 010 01
1 11 0 000 00

0 00 1 110 00

0 00 0 001 11
nmdòng
mdòng
mdòng
dòng
+→
+→


1
1
(1-
3)
Ngoài ra, đặt A
ij
là cột hệ số của ẩn x
ij
(i=1…m,j=1…n) thì các thành phần của
A
ij
hầu hết bằng 0, trừ hai số 1 ở dòng thứ I và dòng thứ m+j:
Là các vecto trong không gian R
m+n
A
ij =

































0

1


0
0

1

0
nmdòng
jmdòng
mdòng
mdòng
idòng
dòng
+→
+→
+→



1
1
(1- 4)
Là các vecto trong không gian R
m+n
Mỗi phương án của bài toán vận tải là một ma trận cấp m×n : X =
[ ]
j
i
x
2.1.3. Cân bằng cung cầu

• Tổng số hàng dự trữ ở m điểm phát (cung) là , tổng số nhu cầu
của n điểm thu (cầu)là . Nếu "cung" và "cầu" bằng nhau ta nói
rằng cân bằng cung cầu.
• Nếu cung nhiều hơn cầu thì một số hàng hóa sẽ được
để lại ở các điểm phát. Ta biểu diễn việc này bằng cách bổ sung một
điểm thu giả B
n + 1
với cước phí c
i,n + 1
= 0 với mọi i=1, ,n.
• Như vậy bài toán vận tải luôn được đưa về bài toán thỏa mãn điều kiện
cân bằng cung cầu.
Ví dụ: Có 3 điểm phát và 4 điểm thu, số hàng ở các điểm phát, nhu cầu
ở các điểm thu, cước phí vận chuyển cho trong bảng sau:
Bảng dữ liệu và phương án X[i,j] của bài toán vận tải
Bảng trên đây được gọi là bảng vận tải
2.2.Xét ví dụ cụ thể:
Giải bài toán không cân bằng thu phát có

=
m
i
i
a
1
>

=
n
j

j
b
1

thu 85 75 70 60 45
phát
80 8 2 5 4 12
110 7 5 6 8 10
90 4 11 10 9 6
120 6 3 12 7 5
2.3.Gỉai ví dụ trên.Trong khi giải ví dụ này hãy lập nhiều phương án ban
đầu khác nhau
Bài tâp:
Cho bài toán vận tải không cân bằng thu phát.Đây là bài toán không
cân bằng thu phát, nên khi giải bài toán này ta thêm vào môt trạm thu giả.
Ta có bảng như sau;
Bảng 1:
85 75 70 60 45 65
80 8 2 5 4

12 0
110 7 5 6 8 10 0

90 4 11 10 9 6 0
120 6 3 12 7 5 0
Ta xây dựng phương án ban đầu như sau;
Bảng 2:
85 75 70 60 45 65
80 8 2
75

5 4
5
12 0
110 7 5 6
70
8 10 0
40
90 4
85
11 10 9 6
5
0
120 6 3 12 7
55
5
40
0
25
Bảng 3:
8 2
x
5 4
x
12 0 R1= 0
7 5 6
x
8 10 0
x
R2=-3
4

x
11 10 9 6
x
0 R3=-4
6 3 12 7
x
5
x
0
x
R4=-3
S1=0 S2=-2 S3=-3 S4=-4 S5=-2 S6=3
Bảng 4:
8 0
X
(4)
2

0

(3)x
10 3
4
0
0
x
1 5 0
x
0
x

5
3
1
0
x
-1
3
-2
*(1)

6

-
0

(2)x
0
x
0
x
Ta có:
V
c
={75;55}
V
l
= {5;0}
Xi*j* = min{55;75 } =55
X’
12

=75-55= 20
X’
14
= 5+55= 60
X’
42
= 0+55=55
X’
44
= 55-55=0
Bảng 5:
85 75 70 60 45 65
80 8 2
20
5 4
60
12 0
110 7 5 6
70
8 10 0
40
90 4
85
11 10 9 6
5
0
120 6 3
55
12 7 5
40

0
25
Bảng 6:
8 2
x
5 4
x
12 0 R1=0
7 5 6
x
8 10 0
x
R2=-1
4
x
11 10 9 6
x
0 R3=-2
6 3
x
12 7 5
x
0
x
R4=-1
S1=-2 S2=-2 S3=-5 S4=-4 S5=-4 S6=1
Bảng7:
6 0
x
0 0

x
8 1
4 2 0
x
3 5 0
x
0
x
7 3 3 0
x
(2)
-1

(1)*
3 0
x
2 2
0
X(3)

0

(4)x
Ta có:
V
c
= { 5;25 }
V
l
= {0;40 }

Xi*j* = min{5;25}= 5
X’
35
= 5-5 =0
X’
36
= 0+5 =5
X’
45
= 40+5 = 45
X’
46
= 25-5 =20
Bảng 8:
85 75 70 60 45 65
80 8 2
20
5 4
60
12 0
110 7 5 6 8 10 0
70 40
90 4
85
11 10 9 6

0
5
120 6 3
55

12 7 5
45
0
20
Bảng 9:
8 2
x
5 4
x
12 0 R1=0
7 5 6
x
8 10 0
x
R2=-1
4
x
11 10 9 6 0
x
R3=-1
6 3
x
12 7 5
x
0
x
R4=-1
S1=-3 S2=-2 S3=-5 S4=-4 S5=-4 S6=1
Bảng 10:
5 0

x
0 0
x
8 1
3 2 0
x
3 5 0
x
0
x
8 4 4 1 0
x
2 0
x
6 2 0
x
0
x
Tất cả các cij ≥ 0 suy ra; phương án tối ưu của bài toán là;
X= (0;20;0;60;0;0;0;0;70;0;0;40;85;0;0;0;0;5;0;55;0;0;45;20)
Giá trị Z = 20.2 + 60. 4 + 70.6 + 40.0 + 85.4 + 5.0 +55.3 + 45.5 + 20.0 =
1430

×