HANDBOOK OF
MATHEMATICS FOR
ENGINEERS AND
SCIENTISTS
C5025_C000a.indd 1 10/16/06 2:53:21 PM
C5025_C000a.indd 2 10/16/06 2:53:21 PM
HANDBOOK OF
MATHEMATICS FOR
ENGINEERS AND
SCIENTISTS
Andrei D. Polyanin
Alexander V. Manzhirov
C5025_C000a.indd 3 10/16/06 2:53:21 PM
Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742
© 2007 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1
International Standard Book Number‑10: 1‑58488‑502‑5 (Hardcover)
International Standard Book Number‑13: 978‑1‑58488‑502‑3 (Hardcover)
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to
publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of
all materials or for the consequences of their use.
No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any informa‑
tion storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923,
978‑750‑8400. CCC is a not‑for‑profit organization that provides licenses and registration for a variety of users. For orga‑
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
and the CRC Press Web site at
C5025_C000a.indd 4 10/16/06 2:53:22 PM
CONTENTS
Authors xxv
Preface xxvii
Main Notation xxix
Part I. Definitions, Formulas, Methods, and Theorems 1
1. Arithmetic and Elementary Algebra 3
1.1. RealNumbers 3
1.1.1. IntegerNumbers 3
1.1.2. Real, Rational, and Irrational Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Equalities and Inequalities. Arithmetic Operations. Absolute Value . . . . . . . . . . . . . . . . 5
1.2.1. Equalities and Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2. Addition and Multiplication of Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3. Ratios and Proportions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4. Percentage 7
1.2.5. Absolute Value of a Number (Modulus of a Number) . . . . . . . . . . . . . . . . . . . . . . 8
1.3. PowersandLogarithms 8
1.3.1. PowersandRoots 8
1.3.2. Logarithms 9
1.4. BinomialTheoremandRelatedFormulas 10
1.4.1. Factorials. Binomial Coefficients.BinomialTheorem 10
1.4.2. RelatedFormulas 10
1.5. Arithmetic and Geometric Progressions. Finite Sums and Products . . . . . . . . . . . . . . . . . 11
1.5.1. ArithmeticandGeometricProgressions 11
1.5.2. Finite Series and Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6. Mean Values and Inequalities of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.1. Arithmetic Mean, Geometric Mean, and Other Mean Values. Inequalities for
MeanValues 13
1.6.2. Inequalities of General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7. Some Mathematical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7.1. ProofbyContradiction 15
1.7.2. Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7.3. Proof by Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7.4. Method of Undetermined Coefficients 17
ReferencesforChapter1 18
2. Elementary Functions 19
2.1. Power, Exponential, and Logarithmic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1. Power Function: y = x
α
19
2.1.2. Exponential Function: y = a
x
21
2.1.3. Logarithmic Function: y =log
a
x 22
2.2. Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1. Trigonometric Circle. Definition of Trigonometric Functions . . . . . . . . . . . . . . . 24
2.2.2. Graphs of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3. Properties of Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
v
vi CONTENTS
2.3. Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1. Definitions. Graphs of Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . 30
2.3.2. Properties of Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4. HyperbolicFunctions 34
2.4.1. Definitions. Graphs of Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2. Properties of Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5. InverseHyperbolicFunctions 39
2.5.1. Definitions. Graphs of Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . 39
2.5.2. Properties of Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ReferencesforChapter2 42
3. Elementary Geometry 43
3.1. PlaneGeometry 43
3.1.1. Triangles 43
3.1.2. Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1.3. Circle 56
3.2. SolidGeometry 59
3.2.1. StraightLines,Planes,andAnglesinSpace 59
3.2.2. Polyhedra 61
3.2.3. SolidsFormedbyRevolutionofLines 65
3.3. Spherical Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1. SphericalGeometry 70
3.3.2. SphericalTriangles 71
ReferencesforChapter3 75
4. Analytic Geometry 77
4.1. Points,Segments,andCoordinatesonLineandPlane 77
4.1.1. CoordinatesonLine 77
4.1.2. CoordinatesonPlane 78
4.1.3. PointsandSegmentsonPlane 81
4.2. CurvesonPlane 84
4.2.1. CurvesandTheirEquations 84
4.2.2. MainProblemsofAnalyticGeometryforCurves 88
4.3. StraightLinesandPointsonPlane 89
4.3.1. EquationsofStraightLinesonPlane 89
4.3.2. MutualArrangementofPointsandStraightLines 93
4.4. Second-Order Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.1. Circle 97
4.4.2. Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.3. Hyperbola 101
4.4.4. Parabola 104
4.4.5. Transformation of Second-Order Curves to Canonical Form . . . . . . . . . . . . . . . . 107
4.5. Coordinates, Vectors, Curves, and Surfaces in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5.1. Vectors.CartesianCoordinateSystem 113
4.5.2. CoordinateSystems 114
4.5.3. Vectors. Products of Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.5.4. Curves and Surfaces in Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123