SỞ GD&ĐT BẮC NINH
TRƯỜNG THPT THUẬN THÀNH SỐ 1
NGÀY 05/01/2014
ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2013 – 2013
Môn : TOÁN, Khối A, B
Thời gian làm bài: 180 phút (không kể thời gian giao đề)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm)
Câu I (2,0 điểm). Cho hàm số:
2x 1
y
x 1
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Tìm m để đường thẳng y=
1
2
x m
cắt đồ thị (C) tại hai điểm A,B sao cho KA=KB với K(2;0).
Câu II (2,0 điểm).
1. Giải phương trình:
42
cos)sin2(
2
cos)
2
cos
2
(sin22
33
x
x
xxx
.
2. Giải phương trình :
2 2
27 2
1 2
8
x x x x x
Câu III (1,0 điểm). Tính: I=.
2 2
3 1
1
x x x
x
x e xe e
dx
xe
Câu IV (1,0 điểm).
Cho hình chóp S.ABCD có đáy ABCD là hình thoi,hai đường chéo AC =
2 3a
, BD = 2a và cắt nhau
tại O, hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm O
đến mặt phẳng (SAB) bằng
3
4
a
, tính thể tích khối chóp S.ABCD theo a, và góc giữa 2 mặt phẳng (SAB)
với (SBD).
Câu V:(1,0 điểm). Cho x,y,z > 0 thỏa mãn:
2 2
2
x y xz yz xy
.
Tìm giá trị nhỏ nhất của
4 4 4
4 4 4
1 1 1
4 4
P x y z
x y z
PHẦN RIÊNG (3,0 điểm). Thí sinh chỉ được làm một trong hai phần (phần A hoặc B)
A. Theo chương trình Chuẩn
Câu VI.a (2,0 điểm).
1. Trong mặt phẳng tọa độ Oxy cho 2 đường thẳng có phương trình lần lượt là d
1
: 3x-4y-24=0,
d
2
: 2x-y-6=0. Viết phương trình đường tròn(C ) tiếp xúc với d
1
tại A và cắt d
2
tại B, C sao cho BC = 4 5 và
sinA
=
2
5
. Biết tâm I của đường tròn (C ) có các tọa độ đều dương.
2. Giải hệ phương trình:
2 4
2
9 3
log log 2
log log 1
y xy
x x y
Câu VII.a (1,0 điểm).
Từ các chữ số 1,2,3,4,5,6 lập các số có 4 chữ số khác nhau. Lấy ngẫu nhiên một số trong các số được
lập, tính xác suất để số được lấy có 2 chữ số chẵn, 2 chữ số lẻ.
B. Theo chương trình Nâng cao
Câu VI.b (2,0 điểm).
1. Trong mặt phẳng tọa độ Oxy cho đường tròn
2 2
: 2 C x y .Viết phương trình tiếp tuyến của
đường tròn (C) biết tiếp tuyến đó cắt các tia Ox, Oy lần lượt tại A và B sao cho tam giác OAB có diện tích nhỏ
nhất.
2. Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(0;0;2), B(0;1;0), C(-2;0;0). Gọi H là
trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm H tiếp xúc với Oy.
Câu VII.b (1,0 điểm)Giải bất phương trình
2
2
2
log
log
2 4 20 0
x
x
2
.……….Hết………
Họ và tên thí sinh , Số báo danh
www.VNMATH.com
2
ĐÁP ÁN VÀ THANG ĐIỂM
Câu
-ý
Nội dung Điểm
I.1
*Tập xác định :
\ 1D
Tính
2
1
' 0
( 1)
y x D
x
Hàm số nghịch biến trên các khoảng ( ;1) và (1; )
*Hàm số không có cực trị
Giới hạn
1
x
lim y
1
x
lim y
2
x
lim y 2
x
lim y
Đồ thị có tiệm cận đứng :x=1 , tiệm cận ngang y=2
*Bảng biến thiên
x 1
y’ - -
y
2
2
*Vẽ đồ thị (Học sinh tự vẽ)
0.25
0.25
0.25
0.25
I.2
* PT hoành độ giao điểm của d
m:
y =
1
2
x m
với (C) là :
2 1 1
1 2
x
x m
x
2
1
5 2 2 2 0 1
x
x m x m
dm cắt © tại hai điểm khi (1) nghiệm phân biệt khác
2
4 12 17 0
1 2 5 2 2 0
m m
m m
m
* Gọi x
1
, x
2
là các nghiệm của PT(1):
1 2
5 2
x x m
. Toạ độ giao điểm của d
m
với (C):
1 1 2 2
1 1
; , ;
2 2
A x x m B x x m
.Gọi I là trung điểm của AB thì
5 2 5 2
;
2 4
m m
I
* KA=KB
3
2
m
KI d m
0.25
0.25
0.25
0.25
II.1
Pt(1)
2
sin
2
cossin2
2
cos
2
cos
2
sin1
2
cos
2
sin4
xx
x
xxxxx
2
sin
2
cossin2
2
cossin
2
1
1
2
cos
2
sin4
xx
x
x
x
xx
01
2
cos2
0sin2
0
2
sin
2
cos
01
2
cos2)sin2(
2
sin
2
cos
x
x
xx
x
x
xx
+)
x x x x
sin cos 0 sin 0 k x k2 (k )
2 2 2 4 2 4 2
+) 2xsin0xsin2 (vô nghiệm)
0.25
0.25
0.25
www.VNMATH.com
3
+) 2cos
1 4
1 0 cos 4
2 2 2 3
x x
x k
(t/mđk)
Vậy nghiệm của phương trình là:
4
x k2 ,x k4 k
2 3
0.25
II.2
III
ĐK: x 0 , Nhận xét x = 0 không là nghiệm của phương trình
Nhân hai vế của phương trình với 2 ta có:
*
2 2
27 27
2 2 2 2 2
4 4
x x x x x x x x x
2
2 27
1 (*)
4
x
x
x
VT(*) = f(x) có f’(x) =
2
1
0, 0
2
x
x
x
x
, f(x) là hàm nghịch biến trên khoảng
0;
VP(*) = g(x) có g’(x) =
27
0, 0 ( )
2
x x g x
là hàm đồng biến trên khoảng
0; .
phương trình (*) có không quá một nghiệm.
Mặt khác x =
2
3
là nghiệm của (*).Vậy phương trình đã cho có nghiệm duy nhất x =
2
3
.
2
1 1
1
1 1
ln 1 ln 1 ln 1
x x x x
x
x x
x x x x x x x x
xe e xe d xe
I dx xe dx
xe xe
x xd e xe x xe xe e dx x xe xe e C
0.25
0.25
0.25
0.25
0,5
0,5
IV
Từ giả thiết AC = 2 3a ; BD = 2a và AC , BD vuông góc với nhau tại trung điểm O của
mỗi đường chéo.Ta có tam giác ABO vuông tại O và AO =
3a
; BO = a. Gọi K là hình
chiếu của O trên AB, gọi I là hình chiếu của O trên SK.
Từ giả thiết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD) nên
giao tuyến của chúng là SO (ABCD).
Ta chứng minh được khoảng cách O tới (SAB) là đoạn OI
Ta có trong tam giác vuông AOB ta có:
2 2 2 2 2
1 1 1 1 1 3
3 2
a
OK
OK OA OD a a
.Tam giác SOK vuông tại O, OI là đường cao
2 2 2
1 1 1
2
a
SO
OI OK SO
.
Diện tích đáy
2
4 2. . 2 3
D
S
ABC ABO
S OAOB a
;
đường cao của hình chóp
2
a
SO .
Thể tích khối chóp S.ABCD:
3
.
1 3
.
3 3
D DS ABC ABC
a
V S SO
Ta có hình chiếu của tám giác SAB trên mf(SBD) là
Tam giác SBO . Gọi
là góc giữa hai mặt phẳng
(SAB) và (SBD) ta có os
SBO
SAB
s
c
s
Ta có :
2
2
1 1 1
. , os arccos
2 4 4 4
SBO SAB
a
s OB SO SK a s a c
0.25
0.25
0.25
0.25
A
B C
O
I
D
a
K
S
www.VNMATH.com
4
V
Áp dụng bất đẳng thức Cô-Si cho hai số dương và bất đẳng thức:
2
2 2
2
a b
a b
Ta có:
2
4
2 2
4 4
42 2 4 4
1 1 8 1
2 2 8
x y
x y
P z z
x y z z
x y
Đặt
4
4
0 1
x y
t
z
Khi đó ta có:
8 8
1 1 2
8 8
t t
P
t t
Xét hàm số
2
8 1 8
( ) 2 '( ) 0, 0;1
8 8
t
f t f t t
t t
Ta có f(x) nghịch biến trên
0;1
0;1
81
min (1)
8
t
P f
Khi đó x = y =
2
z
0.25
0.25
0.25
0.25
VIa.1 Gọi I(x;y), R lần lượt là tâm và bán kính đường tròn (C )
Áp dụng định lý sin trong tam giác ta có: R = d(I; d
1
) =5 ( do (C ) tiếp xúc với d
1
)
Gọi M là trung điểm của BC theo định lý Pitago ta có MI = d(I;d
2
) =
2 2
5R MB
.
Khi đó ta có hệ:
3 4 24 25
2 6 5
x y
x y
Giải hệ ta đươc 2 nghiệm thỏa mãn yêu cầu
TH1
1;1I ta có phương trình (x -1)
2
+(y-1)
2
=25
TH2 I(9;7) ta có phương trình (x -9)
2
+(y-7)
2
=25
0.25
0.25
0.25
0.25
VIa.2
Đk:
2
9 3
0
0 0 log log
2 0
x y
y x x x
xy
Khi đó ta có hệ
2
2
2
3
y xy
x xy
2
2
2
1( )
3
1
1
2
3
3
x y loai
x
x y
x y
y
x xy
x xy
(t/mđk)
0.25
0.25
0.5
VIIa
Từ 6 chữ số đã cho ta lập được
4
6
360A số có 4 chữ số khác nhau
Số cách chọn 2 chữ số chẵn từ 3 chữ số 2,4,6 là
2
3
3C
Số cách chọn 2 chữ số lẻ từ 3 chữ số 1,3,5 là
2
3
3C
Từ 4 chữ số được chọn ta lập số có 4 chữ số khác nhau, mỗi số lập được ứng với một hoán
vị của 4 phần tử. theo quy tắc nhân ta có số các số lập được thỏa mãn yêu cầu là:
2 2
3 3
. .4! 216C C
Xác suất để chọn được số có 4 chữ số khác nhau được chọn từ các chữ số 1,2,3,4,5,6 trong
đó có 2 chữ số chẵn 2 chữ số lẻ là:
216 3
360 5
P
0.25
0.25
0.25
0.25
VIa.1
+
Tâm : 0;0
Ban kính : 2
C O
C R
. Gọi tọa độ
;0 , 0;A a B b với 0, 0a b .
0.25
www.VNMATH.com
5
+ Phương trình AB:
1 1 0
x y x y
a b a b
AB tiếp xúc (C)
2 2
2 2
1
, 2 2 2
1 1
ab
d O AB
a b
a b
(***)
2 2 2 2
2 2
2
2a
OAB
a b a b
S
a b b
OAB
S
nhỏ nhất khi
a b
.
Từ
a b
và (***) suy ra
2a b
.
Kết luận: Phương trình tiếp tuyến là
1 0
2 2
x y
.
0.25
0.25
0.25
VIa.2
*Ta có
( )
AH BC
BC AOH BC OH
AO BC
.
Tương tự AB OH Suy ra ( )OH ABC .
*Phương trình mp (ABC):
1 2 2 0
2 1 2
x y z
x y z
*mp(ABC) có vtpt
1;2;1n
nên OH có vtcp
(1;2; 1)u n
*Phương trình đường thẳng OH:
1 2 1
2 ; ;
3 3 3
x t
y t H
x t
Khoảng cách từ H tới Oy là
2
3
R
Phương trình mặt cầu tâm H tiếp xúc với Oy là
2 2 2
1 2 1 2
3 3 3 9
x y z
0.5
0.25
0.25
VIIb
Điều kiện: x> 0 ; BPT
2
2
2
2
4log
log
2 4 20 0
x
x
Đặt.
2
2
log
4
x
y
, y 1
0.25
. BPT trở thành y
2
+ y- 20 0 - 5 y 4.Do y 1 nên ta có y 4
0.25
Khi đó ta có :
2
2
log 2
2 2
4 4 log 1 1 log 1
x
x x
1
2
2
x
0.25
0.25
Lưu ý : Nếu thí sinh làm cách khác đúng thì giám khảo chấm theo các bước làm của cách đó .
www.VNMATH.com