Tải bản đầy đủ (.pdf) (62 trang)

Bài giảng: Phương pháp tính pdf

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (952.8 KB, 62 trang )







TR
: 


















: 
 : 17201
TRÌNH : 
DÙNG CHO SV NGÀNH : 















- 2008


11.1.    2
    
CNTT
 : 3







60
45
15

0
0
0


Sinh 




 




 







TS
LT
TH/Xemina
BT
KT

10

8
2

0
1.1

1



1.2

2



1.3

2
1




2
1





1
1


. 
15
10
4

1
2.1

1



2.2

1



2.3

2
1





2
1


2.5. 

2
1




2
1


3. 
12
9
3

0
3.1

2



3.2


2
1


3.3

2
1




3
1


4. 
12
8
3

1
4.1

4
1


4.2


4
2


5. 
11
7
3

1


1



5.

3
2


5.-Kutta

3
1








TS
LT
TH/Xemina
BT
KT

60
42
15

3







-  
- 
- 


-  
- 






1

: 


1.1. 












1.


































. 

, . 













. 





. 



Aa 


 ( 










). 
, 








a. 





 


a











Aa 
:
Aa 
 
a
(1.1)

a








 . 
a















a







. 
a
 
 (1.1)
















a





A = a  
a
(1.2)




( 1.1) 



:
a - 
a  A 
a + 
a
(1.3)
2. 



:


a
Aa 

A
Aa 
(

). 












.




:

a
=

a
a

( 1.4)
.

a
=
a

a
( 1.5)

2

(1.4) (1.5) 








. 
a
( 1.4) 


a

, 
a
( 1.5) 




a
.
Do ( 1.5) nên ( 1.2) :
A= a ( 1  
a
) (1.6)





a

a

.
3. 















, 










. 



: 


= 10 


a

= 0,05 

= 2


b
= 0,05m.  








. 












, :


a

10
05,0
= 0,5% < 
b
=
2
05,0
= 2,5%
1.2. 
1. 





















, 




.






2,74 3 

, 0,0207 .
2. 






:
A = 
10
s
s
a


(1.7)


:
a
s
0 9, 



65,807 :
65,807 = 6.10
1
+ 5.10
0
+ 8.10
-1
+ 0.10
-2
+ 7.10
-3







( 1.7) 


:

1
= 6, 
o
= 5,
-1
= 8,
-2
= 0,
-3
= 7
 




a
. 







s
. 
a

 0,5 .10
s

s





, 
a
> 0,5 .10
s

s




.

3
























.
: Cho a = 65,827 


a
6, 5, 8, 2 , 
7, 4 . 
a
= 0,0067 6, 5, 8, 







2, 7, 4 .

s


s

.
3. 






























a
.


. 

 




(1.2)


( 1.6) . 

: .























không















. ,
v v 









.
1.3. 




1. 














.
































, 











. 





















 








. 


, 

: 


, 


5 








, , 



iên

5 














,  tiên < 5
.
: 62,8274 










(























) 62,827; 
62,83; 






(















a) 62,8.
2. 










.

4


a
. 







aa '









. 


a
:

aa '
 

( 1.8)
, 


.


. 

:
- - a + a - A


:

Aa '

aa '
+
Aa 
 



a









a

a
+ 

(1.9)





a

















.
3. 








: = (
2
- 1 )
10
. 
(Newton) 






:
(
2
- 1)
10
= 3363 - 2378
2
( 1.10)


:
2
= 1,41421356






(1.10) 


2








(

1.1):
Bng 1.1

2







1,4
0,0001048576
33,8
1,41
0,00013422659
10,02
1,414
0,00014791200
0,508
1,41421
0,00014866399
0,00862
1,414213563
0,00014867678
0,0001472
























. 


(1.10) , 





(1.10) .

5

1.4. 
1. 



.




:
u = f( x,y) (1.11)


, .























:
, , 





, y, u
Dx, dy, 





, y, u

x

y


u
, y, u. 



(1.1) ta


:
x
 
x
;
y
 
y
(1.12)





u
 

u
 
u
2. Sai 






= x + y



Ta suy ra:
u

x
+
y



( 1.12) 

:
u
 
x

y


:


x+y

x

y
(1.13)



:
u
 
u
. 



:


( 



)  






(


) .
. = x- 





.
:

u
=
u
u

=
yx
yx




yx 











. 




.

6


3. 





= xy


 du = ydx + xdy  

u

y


x
+
x

y

y

x
+
x

y


u
=
y

x
+
x

y



: 
u

=
u
u

=
xy
xy
yx


=


x
x
y
y








:

xy
= 
x

+ 
y
( 1.14)




: (



) 
(



) . :

(x
n
)
= n
x ;

4. 















:




 












 :

x/y

= 
x
+
y
( 1.16)
5. 





:
Cho : u = f( x
1
, x
2
, ,x
n
)





u
=
x
i
n
n

f



1

i
( 1.17)

u




(1.4)
: (



) (



) 
:
V=
6
1

3






= 3,7  0,05 

= 3,14.
 . 







, theo (1.14) (1.15) 

:

v
= 

+ 3
d

7




d
= 0,05/3,7 =0,0135
Suy ra: 
V
= 0,0005 + 3.0,0135 = 0,04




: V=
6
1

3
= 26,5 cm
3





V
= 26,5 .0,04 = 1,06  1,1cm
3
V= 26,5  1,1 cm
3

1.5. 














1. 
























































. 
















 

. 













. 








ng, 








. 

















. 



















.
2.

a) :

A =
3
1
1
-
3
2
1
+
3
3
1
-
3
4
1
+
3
5
1
-
3
6

1


. 





6 . 












. . 










:

3
1
1
=
1
1
= 1,000 


1

= 0

3
2
1
=
8
1
= 0,125 


2

= 0


8


3
3
1
=
27
1
= 0,037 


3

= 4.
4
10



3
4
1
=
64
1
= 0,016 


4


= 4.
4
10



3
5
1
=
125
1
= 0,008 


5

= 0


3
6
1
=
216
1
= 0,005 



6

= 4.
4
10






a =1,000 - 0,125 + 0,037 - 0,016 + 0,008 - 0,005 = 0,899
aA
=






1
1
1
3
-







 125,0
2
1
3
+






 037,0
3
1
3

-






 016,0
4
1
3
+







 008,0
5
1
3
-






 005,0
6
1
3



aA



1
1
1

3

+
125,0
2
1
3


+
037,0
3
1
3

+
016,0
4
1
3

+
008,0
5
1
3


+
005,0

6
1
3




1

+
2

+
3

+
4

+
5

+
6

= 9.
4
10







a = 0,899 9.
4
10

:

= 0,899

9.
4
10

( 1.18 )

b) `

B =
3
1
1
-
3
2
1
+
3
3

1
- 
 
1
1


n
3
1
n










5.
3
10



 . 










. 











, ta













. 










,  n s:


9


n
B
=
3
1
1
-
3
2
1


 
1
1


n
3
1
n



n
B








. 
n
BB 

, 
5.10
-3
. 


:

n
BB
=
     
333
1
1

2
1
1
1




 nnn


(



), 

= 6 :


3
3
6
10.3
334
1
7
1

 BB






6
B
= 





(xem 1.18):


6
B
= A = 0,899

4
10.9











.899,0






:

B - 0,889 = B -
6
B
+ A - 0,899

899,0899,0
6
 ABBB



343
10.410.910.3899,0

B











,0
899 







4.
3
10



 : 














, 




.


1.6. 1

















1. 





(





) 


. 



























.






















.


10








. 





















.

































, 












, 




















.

2.


y

1i
=qy
i
, ( 1.19 )
y
0
.

i





i

(


), 
i






y
i
~

. :
y
y
i
i

( 1. 20 )



i+1



y
~
i + 1


:
y
~
i + 1
= q
y
~
i
= > 0
( 1.21) 


(1.19) 



:
y
~
i + 1
- y
i+1
=
q
yy
ii
q

y
~
i + 1
- y
i+1
=
q
(
)
~
yy
ii





:
y
i
~
2
= q
y
i
~
1


y
i 2
= q
y
i 2









:
y

i
~
2
-
y
i 2
= q(
y
i
~
1
-
y
i 1
)
= q
2
(
y
i
~
-
y
i
)












:

11


y
ni
~

-
y
ni
= q
n
(
y
i
~
-
y
i
)

yy

nini 

~
=
q
n

yy
ii

~
`


, 






y
y
1
~

=  
+ 




yy
nini 

~
=
q
n








;
1. 




q
 1 
q
n


yy
nini 


~
  




( 

). 












.
2.




q
 1 - 

q
n



q
n
 , 

yy
nini 

~
  khi n  















, 














, 












 , 
















































.


1. 











: a = 21
o


o













2. 




:
a = 13267 ; 
a
= 0,1%
b = 2,32 ; 
b
= 0,7%
3. 



:
a = 0,39410;

a
= 0,25 .10
-2


12

b = 38,2543 ;

b
= 0,25 .10
-2
4. 
sau:
a = 1,8921 ; 
a
= 0,1.10
-2
b = 22,351; 
b
= 0,1.
5. (



) 















  :
a) 2,1514; b)0,16152;
c)0,01204; d) - 0,0015281.
6. 




























:
a) u = ln ( x + y
2
) ; x = 0,97 ; y = 1,132
b) u = (x + y
2
)/z ; x = 3,28; y= 0,932 ; z= 1,132.
7. :
S =
11
1
+
12
1
+
13

1
+
14
1
+
15
1
+
16
1
+
17
1

8. : e = 1 +
!1
1
+
!2
1
+ +
!
1
n
+







10
-4


1. 
a
= 0,13.10
-4
; 
b
= 0,28.10
-3

2. 
a
= 0,13.10
2
; 
b
= 0,16.10
-1

3. a) 2; b) 4.
4. a) 3; b)1.
5. a)2,15;  = 0,14.10
-2
;  = 0,65.10
-3


b) 0,162;  = 0,48.10
-3
;  = 0,3.10
2

c) 0,0120;  = 0,4.10
-4
;  = 0,33.10
-2

d) -0,00153;  = 0,19.10
-5
;  = 125. 10
-2

6. a) u = 0,81; 
u
= 0,27. 10
-2
; 
u
= 0,33. 10
-2

b) u = 3,665; 
u
= 0,7. 10
-2
; 
u

= 0,20. 10
-2

7. S = 0,511.

13

8. e = 2,7183  0,0001.

14

: 
2.1. 



1. 












:

f(x) = 0 (2.1)


: 









.
Ngh







(2.1)  (2.1) 




 :
f() = 0 (2.2)
2. 





:
y= f(x) (2.3)











(2-1). 



= 0 = . 


:
0 = f() (2.4)












2-1







 
(2.1)
















(2.1) 



g(x) = h(x) (2.5)






2 (2-2)
y = g(x),
y = h(x) (2.6)
=  :
g() = h() (2.7)
M

x
y


2.2

x
y
M
f

g


15







 2 

(2.6) 
(2.5), 





(2.1).
3. 














(2.1)


















(2.1) 




. 













2 trên. 











:




2.1 - 


2 



(a<b) sao cho f(a) (b) 
f(a).f(b) < 0 (2.8)


(x) 

[a, b] [a, b]  








(2.1).












(2 - 3). = f(x)
 x 










, 



, 




, 





 












b. 



(2.1) 








[a, b].










2-3

4. (








)




2.1 - [a, b] 


(2.1) 




















.














:
y

a
B
b
x
A

16





2.2 - [a, b] (x) 





,


(a) (b) , 





(2.8) [a, b] 







(2.1).
( 2 - 4).

= f(x) 



[a, b]. 

[a, b] 

















(2.1).
(x) 











 








. ta
:




2.3 - [a, b] 
(x) 


, 


(x) 

 

(a), f(b)
[a, b] 






(2.1)














2-4













(2.1) 












= f(x) 








2.3.
5. 



f(x) = x
3
- x - 1 = 0 (2.9)



.
 : 









(x). 
, 



y
a
b
x
A
B

17


2
- 1 = 0 = 
3
1




x
-

-1/
3


1/
3



+


+
0
-
0
+

f(x)

-

M


m

+


: M = f (-
3
1
) = -
33
1
+
3
1

- 1 <0















(h. 2-5), 



(2.9) 






, 
.




f(1) = 1
3
- 1 - 1 < 0
f(2) = 2
3
- 2 - 1 > 0


[1, 2] 








(2.9)












2-5






















trong [1, 2].
, 

(2. 9) 

, 



[1, 2].

y
x

31
31

18

2.2. 


1. 




(2.1) 












 




[a, b]. 


x
 [a, b]  


< b - a. 

















 . 




[a, b], 



= (a + b)/2. 








[a, c] hay [c, b]. 

(c). (c) = 0 
ngh



. 




(c)  0. (c) 




f(a) . (c) (a) 






[a, c]. (c) (a) ng phân ly






[c, b]. 



[ a, b] 











[a, c] hay [c, b], [a
1
, b
1
], 
[a, b] [a, b] 



:
b
1
- a
1
=
2
1
(b - a).




[a
1,
, b
1

] 






, [a
2
, b
2
], [a
1
, b
1
] 



[a,
b] [a
1,
, b
1
] :
b
2
- a
2
=

2
1
(b
1
- a
1
) =
2
2
1
(b - a)






















, [a
n
, b
n
], [a, b] 1/2
n
[a, b] :
a
n
   b
n
; b
n
- a
n
=
n
ab
2
)( 









n
, :

19


nnn
aba

n
ab
2
)( 
(2.10)

n
, :

nnn
abb

n
ab
2
)( 
(2.11)









, a
n
hay b
n
.
Khi n

 
n
 , b
n
 . 







.
: 



















. : 


.
2. 
(2.9)



















 






[1, 2]. 

:
  [1, 2] (1) = 1 - 1 - 1 < 0
f(2) = 2
3
- 2 - 1 > 0


[1, 2] 



3/2.
f







2
3
=






2
3
2
-
2
3
- 1 > 0 (1). 

  [1, 3/2].


[1, 3/2], 



5/4. 


(5/4) < 0, 
f(1). 

  [5/4, 3/2].


[5/4, 3/2], 



11/8. 

(11/8) > 0, 
(5/4). 

  [5/4, 11/8].


[5/4, 11/8], 



21/16. 

(21/16) < 0, 


(5/4). 


  [21/16, 11/8].


[21/16, 11/8], 



43/32. 

(42/32) > 0,
(21/16). 

 [21/16, 42/32].

20









 

21/16 = 1,3125 hay 43/32 =
1,34375  1/2
5
= 1/32 =

0,03125.
5 







[1,2] 2 - 1 = 1, ( 


(2.10) (2.11)).
3. 



 




1) 

(x) = 0
2) .
3) [a, b]


21


4)























= (a+b)/2, (c)
f(c)f(a)< 0
Thay b=c
Thay a=c
= b - a

e < 


:
  a
  b

-
a
< 

-
b
< 




S
S

22

2. 3. 




1. 





(2.1) 











 


[a,b];






(2.1) 

:
X =  (x) (2.12)
(2.1)








0
 [a,b] 
x
n
:
x
n
=  (x
n-1
), n = 1,2 (2.13)
x
0


 [a,b] (2.14)





,  

.

2. 





:




2.2 - 


n
  khi n  
(2.13) (2.14) 



.












n
 



. 





n












. 












n
. .























:




2.4 - 



(2.13)(2.14) 
1) [a,b]  (2.1) 






(2.12):
2)
n
(2.13) (2.14)  [a,b]:
3) (x) :
| q <1, a<x<b (2.15)







.

×