Tiểu Luận
Ứng dụng hợp chất cơ
nguyên tố trong tổng
hợp hữu cơ
MỤC LỤC
2
Phần I. MỞ ĐẦU
I. Đặt vấn đề
Mặc dù ra đời muộn hơn các chuyên ngành hóa học khác nhưng sau hơn hai thế kỷ ra đời
hóa học hữu cơ đã có những bước phát triển nhanh chóng và đóng góp to lớn vào tất cả các
lĩnh vực của đời sống sản xuất. Ngành hóa hữu cơ khi mới ra đời mang ý nghĩa là ngành hóa
học nghiên cứu về những hợp chất có trong cơ thể sống. Hiện nay nó mang ý nghĩa rộng hơn
là ngành hóa học nghiên cứu về các hợp chất của cacbon (trừ CO
2
, CO, muối cacbonat,
xianua, cacbua).
Tổng hợp hữu cơ là một bộ phận quan trọng của hóa học hữu cơ, bản thân nó có lịch sử
phát triển khá lâu dài. Đây là một lĩnh vực rộng lớn và hấp dẫn, lôi cuốn được khá nhiều nhà
khoa học trên thế giới quan tâm và nghiên cứu. Cùng với sự phát triển không ngừng của
khoa học kỹ thuật cũng như các lĩnh vực khác của hóa học, ngày càng có nhiều hơn các
phương pháp mới để tổng hợp các hợp chất hữu cơ.
Tổng hợp hữu cơ có thể xem là một nhiệm vụ quan trọng của hóa học hữu cơ, nó không
những tạo ra những hợp chất quan trọng cho đời sống và sản xuất, mà còn trang bị cho người
học những kiến thức lý thuyết cơ bản về phản ứng hữu cơ. Muốn tổng hợp thành công một
hợp chất hữu cơ, cần nắm vững tính chất hóa học của các hợp chất khác nhau, sự chuyển hóa
giữa các nhóm chức đồng thời vận dụng linh hoạt vào từng trường hợp cụ thể để có thể đạt
hiệu suất cao nhất.
Hợp chất cơ nguyên tố là những tác nhân có tính chất hóa học đa dạng và khả năng phản
ứng cao. Xuất phát từ các hợp chất cơ nguyên tố, người ta có thể tổng hợp và điều chế được
nhiều hợp chất khác nhau. Có thể nói đây là con đường tổng hợp hữu cơ cho hiệu suất tối ưu
nhất. Với những lý do đó tôi đã chọn đề tài: “Ứng dụng hợp chất cơ nguyên tố trong tổng
hợp hữu cơ”. Tuy nhiên trong giới hạn của một niên luận đề tài này chỉ trình bày ứng dụng
cơ bản trong tổng hợp và điều chế của một số hợp chất cơ nguyên tố điển hình: Cơ magie, cơ
liti và cơ photpho.
II. Đối tượng nghiên cứu
- Tính chất hóa học của các hợp chất cơ nguyên tố và ứng dụng trong tổng hợp và điều chế
hữu cơ.
3
- Phương pháp giải các bài tập về tổng hợp và điều chế hữu cơ.
- Hệ thống câu hỏi và bài tập về tổng hợp và điều chế hữu cơ.
III. Mục tiêu nghiên cứu
- Góp phần rèn luyện khả năng giải các bài tập tổng hợp và điều chế hữu cơ bằng nhiều con
đường khác nhau từ đó bồi dưỡng ý thức yêu thích môn học.
IV. Phương pháp nghiên cứu
- Nghiên cứu cơ sở lý thuyết của đề tài.
- Nghiên cứu các tài liệu khoa học có liên quan đến đề tài.
4
Phần II. NỘI DUNG
I. Tổng quan lý thuyết
1. Hợp chất cơ nguyên tố
1.1 Khái niệm và phân loại
- Hợp chất cơ nguyên tố là những hợp chất mà trong phân tử có chứa liên kết C-E trong đó E
không phải là các nguyên tố organogen (C, H, O, N, S, Halogen )
- Tùy thuộc vào bản chất của nguyên tố E trong liên kết C-E mà người ta phân ra hợp chất cơ
kim và hợp chất cơ phi kim. Tuy nhiên sự phân chia này không có một ranh giới rõ rệt.
1.2 Đặc điểm cấu tạo và tính chất chung
1.2.1 Hợp chất cơ kim
- Các hợp chất cơ kim có thể có 2 dạng cấu tạo khác nhau: R-Me (1) và R-Me-Hal (2)
Trong đó Me là các nguyên tố kim loại, Hal- là các halogen (Cl, Br, I). Tùy thuộc vào bản
chất của kim loại, halogen, R- mà hợp chất cơ kim có những loại liên kết khác nhau:
Liên kết C-Me có thể là liên kết ion ở mức độ nào đó (Me: K, Na, Li, Ca, Mg )
Liên kết C-Me có thể là liên kết cộng hóa trị (Me: Pb, Hg )
- Do bản chất liên kết C-Me trong các hợp chất cơ kim là khác nhau do đó các hợp chất cơ
kim có những tính chất vật lý và hóa học khác nhau. Về mặt hóa học các hợp chất cơ kim thể
hiện 2 tính chất chính:
Tính chất bazơ: Các hợp chất cơ kim dễ dàng tác dụng với các hợp chất có H linh động
như: HOH, ROH, HX
Tính nucleophin: Các hợp chất cơ kim đóng vai trò là một tác nhân nucleophin mạnh.
Các tính chất này có sự thể hiện cụ thể ở từng tác nhân khác nhau.
1.2.2 Hợp chất cơ phi kim
- Là những hợp chất hữu cơ mà phân tử có liên kết C-E (E là các phi kim P, S, Si ) trong đó
quan trọng hợp cả là hợp chất cơ - photpho và cơ - silic.
1.3 Một số hợp chất cơ nguyên tố tiêu biểu
1.3.1 Hợp chất cơ magie
- Các hợp chất cơ magie có cấu tạo khá phức tạp, song để đơn giản người ta dùng công thức
RMgX (R là gốc hidrocacbon, X là halogen).
5
- Hợp chất cơ magie được tổng hợp đầu tiên bởi Barbier vào năm 1899. Năm 1900 học trò
của Barbier là Grignard đã đưa ra quy trình tổng hợp hợp chất cơ - magie đi từ dẫn xuất
halogen trong môi trường ete khan cho hiệu suất cao (Thuốc thử Grignard).
RX + Mg
→
ete
RMgX
R- có thể là gốc ankyl bậc 1, bậc 2 hay gốc ankyl bậc 3. Nó cũng có thể là gốc xycloankyl,
ankenyl, aryl. Đietyl ete khan là dung môi thường sử dụng trong phản ứng điều chế hợp chất
cơ magie theo phương pháp trên, tuy nhiên trong trường hợp vinyl- và arylclorua thì dung
môi sử dụng là THF (tetrahiđrofuran).
- Nhờ có khả năng phản ứng cao và tính chất hóa học đa dạng cho nên các hợp chất cơ-
magie được ứng dụng rộng rãi trong tổng hợp và điều chế hữu cơ.
- Hai phản ứng cơ bản của hợp chất cơ-magie là: Phản ứng thế MgX bởi H linh động và phản
ứng cộng RMgX vào liên kết >C=O trong hợp chất cacbonyl.
Nhược điểm cơ bản của thuốc thử Grignard chính là tính bazơ mạnh của nó do đó trong các
phản ứng hóa học nó dễ bị thủy phân bởi các axit yếu (HOH, ROH, RNH
2
…)
1.3.2 Hợp chất cơ liti
- Hợp chất cơ liti (RLi) được điều chế từ dẫn xuất halogen và liti kim loại trong dung môi ete
khan hoặc hexan.
RX + 2Li
→
hexan
RLi + LiX
- Các hợp chất cơ liti tham gia các phản ứng tương tự hợp chất cơ magie nhưng khả năng
phản ứng cao hơn.
1.3.3 Hợp chất cơ đồng (Liti điankylcuprat)
- Liti điankylcuprat được điều chế từ hợp chất cơ liti và muối Cu (I) halogenua:
2RLi + CuX → R
2
CuLi + LiX
(X là Cl, Br, I)
- R
2
CuLi (tương đối dễ tan trong nước) là hợp chất quan trọng trong quá trình tổng hợp, điều
chế các hiđrocacbon bất đối xứng (Phương pháp Corey-House).
1.3.4 Hợp chất cơ photpho
- Hợp chất cơ photpho là loại hợp chất cơ phi kim được nghiên cứu nhiều nhất và có nhiều
ứng dụng rộng rãi nhất.
6
Chưng khan
Người ta phân chia hợp chất cơ photpho thành 2 loại lớn: Loại có liên kết C-P và loại có liên
kết gián tiếp P và C qua một nguyên tố khác. Thực tế thì cả hai loại này đều có nhiều ứng
dụng trong thực tế.
1.3.5 Một số hợp chất cơ nguyên tố khác.
Ngoài những hợp chất cơ nguyên tố đã nêu ở trên còn rất nhiều những hợp chất cơ nguyên tố
khác:
- Hợp chất cơ Na, K: Về cả tính chất và cấu tạo giống với hợp chất cơ Liti
- Hợp chất cơ kẽm: Có thể có 2 dạng RZnR hay RZnX và được điều chế từ dẫn xuất halogen
và kẽm: R-I + Zn → RZnI
2RZnI RZnR + ZnI
2
Về tính chất hóa học, hợp chất cơ kẽm tương tự hợp chất cơ magie nhưng khả năng phản
ứng kém hơn nhiều đồng thời việc điều chế nó gặp khá nhiều khó khăn do đó nó ít được sử
dụng trong tổng hợp hữu cơ hơn các hợp chất cơ-magie.
- Hợp chất cơ thủy ngân: Nhiều hợp chất cơ thủy ngân đã được điều chế và sử dụng trong
thực tế vi hoạt tính sinh học cao. Tuy nhiên hợp chất cơ thủy ngân rất độc.
2. Phản ứng thế nucleophin (S
N
)
2.1 Cơ chế S
N
1
- Qua 2 giai đoạn:
Giai đoạn chậm: Tạo cacbocation R
+
Giai đoạn nhanh: Cacbocation kết hợp với một tác nhân nucleophin trong hỗn hợp phản
ứng tạo ra sản phẩm.
- Hóa lập thể: Do cấu tạo của gốc cacbocation phẳng nên đa số các trương hợp nếu xuất phát
từ hợp chất quang hoạt sẽ thu được một biến thể raxemic. Tuy nhiên nếu cacbocation sinh ra
không hoàn toàn tự do thì sản phẩm sinh ra là biến thể raxemic và quay cấu hình một phần.
2.2 Cơ chế S
N
2
- Là cơ chế 1 giai đoạn đi qua trạng thái chuyển tiếp
Y
-
+ R-X [ Y R X] → Y-R + X
-
- Hóa lập thể: Về phương diện không gian trong phản ứng S
N
2 tác nhân Y
-
tấn công vào
nguyên tử C trung tâm từ phía đối diện của X do đó nếu đi từ dẫn xuất quang hoạt thì sản
phẩm thu được có cấu hình ngược với dẫn xuất ban đầu (Sự quay cấu hình).
7
2.3 Các yếu tố ảnh hưởng
2.3.1 Ảnh hưởng của gốc hidrocacbon (R-)
- Cấu tạo của gốc R- có ảnh hưởng đến phản ứng thế nucleophin:
+ Các gốc ankyl có bậc càng cao thì khả năng phản ứng S
N
1 tăng, phản ứng S
N
2 giảm.
+ Các dẫn xuất anlyl và benzyl thuận lợi cho cả cơ chế S
N
2 và S
N
1
+ Các dẫn xuất phenyl và vinyl thường tham gia phản ứng thế nucleophin khó khăn.
2.3.2 Ảnh hưởng của nhóm bị thay thế
- Khả năng phản ứng của các dẫn xuất R-X trong phản ứng S
N
1 và S
N
2 không chỉ phụ thuộc
vào cấu tạo của gốc R- mà còn phụ thuộc vào bản chất của nhóm bị thay thế X-
Ví dụ: I
-
> Br
-
> Cl
-
>> F
-
2.3.3 Ảnh hưởng của tác nhân nucleophin
- Phản ứng xảy ra theo cơ chế S
N
1 thì tốc độ phản ứng hầu như không phụ thuộc vào nồng độ
và bản chất của tác nhân nucleophin còn theo cơ chế S
N
2 thì tốc độ phản ứng lại phụ thuộc
vào nồng độ và lực nucleophin của tác nhân.
2.3.4 Ảnh hưởng của dung môi
- Sự ảnh hưởng của dung môi đến phản ứng thế nucleophin là khá phức tạp, khi chuyển từ
dung môi này qua dung môi khác tốc độ phản ứng sẽ thay đổi và có khi làm thay đổi cả cơ
chế của phản ứng. Tuy nhiên trong các trường hợp lý tưởng người ta bỏ qua sự tương tác của
dung môi.
3. Phản ứng cộng nucleophin vào nhóm cacbonyl (>C=O)
3.1 Cơ chế A
N
(CO)
Phản ứng tổng quát:
Trong đó X-Y có thể là: HOH, ROH, HCN, HSO
3
Na, R-MgX
Phản ứng diễn ra qua 2 giai đoạn:
- Giai đoạn 1: Y
-
+ →
- Giai đoạn 2: + X
+
→
3.2 Hóa lập thể.
8
R
O
L
N
Tb
Hướng chính
- Về mặt hóa lập thể, phản ứng cộng nucleophin vào nhóm cacbonyl (trong anđehit, xeton)
không có tính đặc thù vì nguyên tử C trong nhóm cacbonyl ở dạng phẳng. Nếu phản ứng
cộng vào nhóm cacbonyl dẫn tới sản phẩm có cacbon bất đối thì đó phải là biến thể raxemic.
- Nếu nhóm >C=O liên kết với một nguyên tử C bất đối thì phản ứng sẽ ưu tiên tạo thành
một đồng phân quang học không đối quang (đồng phân đia) theo quy tắc Cram
Nội dung: Nếu một phân tử mà trong đó nhóm cacbonyl liên kết trực tiếp với một nguyên tử
cacbon bất đối có ba nhóm thế với kích thước khác nhau (Lớn ‘L’, Trung bình ‘Tb’, Nhỏ
‘N’) thì trong phản ứng cộng nucleophin tác nhân Y
-
sẽ ưu tiên tấn công từ phía ít bị án ngữ
không gian hơn.
- Tuy nhiên quy tắc Cram không phải hoàn toàn nghiệm đúng, tỷ lệ sản phẩm theo quy tắc
Cram và ngược quy tắc Cram phụ thuộc vào kích thước không gian của các nhóm thế trong
hợp chất cacbonyl cũng như kích thước của tác nhân nucleophin. Để xác định sản phẩm
chính của phản ứng cộng nucleophin vào nhóm cacbonyl người ta sử dụng mô hình Felkin-
Anh. Đây là mô hình dựa trên tính toán lý thuyết và phù hợp rộng rãi với các kết quả thực
nghiệm.
3.3 Các yếu tố ảnh hưởng
3.3.1 Hiệu ứng electron
- Trong phản ứng cộng nucleophin nếu điện tích trên nguyên tử C trung tâm càng lớn thì tác
nhân nucleophin càng dễ tấn công, phản ứng càng dễ xảy ra. Như vậy các nhóm thế đẩy
electron (có hiệu ứng +I, +C) nối với nguyên tử cacbon-cacbonyl sẽ làm giảm điện tích
dương và khả năng phản ứng giảm đi. Trái lại các nhóm thế hút electron (có hiệu ứng -I, -C)
có tác dụng ngược lại nghĩa là làm tăng điện tích dương trên nguyên tử cacbon-cacbonyl do
đó khả năng phản ứng tăng lên.
Ví dụ: CCl
3
-CHO > HCHO > CH
3
-CHO > (CH
3
)
2
CO
3.3.2 Hiệu ứng không gian
9
- Tác nhân nucleophin trong phản ứng cộng vào nhóm cacbonyl thường có kích thước khá
cồng kềnh do đó sẽ có sự ảnh hưởng của hiệu ứng không gian loại I tới khả năng phản ứng.
Nếu các nhóm thế liên kết trực tiếp với nguyên tử cacbon-cacbonyl có kích thước càng cồng
kềnh thì sẽ làm cho tác nhân nucleophin khó tấn công vào nguyên tử cacbon trung tâm hơn,
mặt khác trạng thái chuyển tiếp tạo thành kém bền do đó khả năng phản ứng giảm.
4. Bảo vệ nhóm chức trong tổng hợp hữu cơ
4.1 Khái niệm bảo vệ nhóm chức trong tổng hợp hữu cơ
- Trong quá trình tổng hợp hữu cơ thường xảy ra sự cần thiết phải chuyển hóa các nhóm
chức này mà không tác động tới nhóm chức khác trong phân tử nghĩa là cần phải bảo vệ
nhóm chức này trong quá trình chuyển hóa nhóm chức kia. Để làm được điều này người ta
có thể thực hiện theo hai cách cơ bản:
Thứ nhất là sử dụng các tác nhân chọn lọc và điều kiện phản ứng nghiêm ngặt. Ví dụ:
Dùng chất khử là LiAlH
4
thay cho H
2
/Ni để khử nhóm cacbonyl mà không tác động tới các
liên kết bội
Cách thứ hai là tạm thời chuyển hóa nhóm chức cần bảo vệ thành một nhóm chức khác
mà nó sẽ không biến đổi trong suốt quá trình chuyển hóa nhóm chức cần thiết. Cách thứ hai
mà ta đang đề cập tới ở đây chính là phương pháp bảo vệ nhóm chức trong tổng hợp hữu cơ,
nhóm chức được tạm thời thay đổi được gọi là nhóm bảo vệ.
- Như vậy yêu cầu cơ bản đối với nhóm chức bảo vệ là:
+ Phải dễ dàng chuyển hóa thành các nhóm chức khác, mà nhóm chức mới này được ổn định
và không tham gia vào quá trình phản ứng chuyển hóa nhóm chức cần chuyển hóa.
+ Sau phản ứng chuyển hóa nhóm chức cần thiết, nhóm bảo vệ lại dễ dàng được chuyển lại
nhóm chức cũ trong điều kiện hết sức nhẹ nhàng.
4.2 Bảo vệ nhóm ancol
- Chuyển hóa qua nhóm chức ete: Các ete nói chung bền vững với hầu hết các tác nhân oxi
hóa trong môi trường trung tính và kiềm. Để tái tạo ancol người ta thủy phân các ete trong
môi trường axit.
- Chuyển hóa qua nhóm este: Các este tương đối bền trong môi trường axit, do đó nó được
ứng dụng trong việc bảo vệ nhóm hyđroxyl trong quá trình nitro hóa, oxi hóa
10
- Bảo vệ điol: Các điol được bảo vệ một cách thuận tiện và đồng thời bằng cách chuyển hóa
thành axetal hay xetal. Để tái tạo người ta thủy phân các xetal, axetal trong môi trường axit.
4.3 Bảo vệ nhóm chức axit cacboxylic
- Để bảo vệ nhóm chức axit người ta thường chuyển hóa chúng thành nhóm chức este khi
cho tác dụng với ancol. Ancol thường sử dụng là metanol và etanol, tuy nhiên trong điều
kiện môi trường axit mạnh hay kiềm thì với các metyl-, etyleste này sự loại tách chúng sau
phản ứng thường không có lợi, để khắc phục người ta sử dụng ancol tert-butylic vì các tert-
butyleste dễ dàng loại bỏ sau phản ứng khi tác dụng với các axit yếu.
4.4 Bảo vệ nhóm amino
- Để bảo vệ nhóm chức amino người ta thường chuyển hóa nhóm amino thành nhóm chức
amit N-thế bằng phản ứng axyl hóa giữa nhóm chức amino với dẫn xuất của axit cacboxylic.
Các amit N-thế dễ bị thủy phân nhờ xúc tác OH
-
hoặc H
+
và tái tạo lại nhóm amino.
4.5 Bảo vệ nhóm chức cacbonyl
- Bảo vệ nhóm chức cacbonyl tốt nhất là chuyển hóa chúng thành axetal hay xetal nhờ điol
mà tác nhân thường sử dụng hơn là etylen glicol vì các axetal hay xetal vòng bền trong môi
trường trung tính và kiềm.
II. Tổng hợp một số hợp chất hữu cơ có nhóm chức qua con đường hợp chất cơ
nguyên tố
1. Tổng hợp hiđrocacbon
1.1 Tổng hợp hiđrocacbon giữa nguyên mạch cacbon (phương pháp Grignard)
- Để điều chế các hiđrocacbon từ dẫn xuất halogen tương ứng với số cacbon không đổi người
ta sử dụng phương pháp Grignard theo sơ đồ sau:
R-X
→
eteMg /
R-MgX
→
HOH
RH + Mg(OH)X
Phương pháp này dựa trên cơ sở tính chất bazơ mạnh của thuốc thử Grignard.
1.2 Tổng hợp các hiđrocacbon tăng mạch cacbon
1.2.1 Phương pháp W
u
rtz (Vuyêc)
Trong điều chế hiđrocacbon, để thực hiện điều chế các hiđrocacbon có mạch cacbon dài hơn
đi từ các dẫn xuất halogen có số cacbon ít hơn người ta có thể sử dụng phản ứng W
u
rtz.
2RX + 2Na → R-R + 2NaX
11
Có thể xem thực ra phản ứng ban đầu tạo thành hợp chất cơ-natri (R-Na), đó là một tác nhân
nucleophin mạnh nó sẽ phản ứng với dẫn xuất halogen để tạo ra hiđrocacbon.
R-X + 2Na → R
-
Na
+
+ NaX
R
-
Na
+
+ R-X → R-R + NaX
Trong trường hợp nếu dùng hỗn hợp 2 dẫn xuất halogen (RX, R’X) ta sẽ thu được hỗn hợp
gồm 3 hiđrocacbon (R-R, R-R’, R’-R’). Như vậy nhược điểm của phản ứng W
u
rtz là chỉ
điều chế cho hiệu suất cao đối với các hiđrocacbon đối xứng, ngược lại đối với các
hiđrocacbon bất đối xứng (bất đối phân tử, R-R’ trong đó R#R’) thường cho hiệu suất thấp.
1.2.2 Phương pháp Corey-Huose
Như đã nói việc điều chế các hiđrocacbon bất đối xứng bằng phản ứng W
u
rtz cho hiệu suất
không cao vì vậy một trong những phương pháp giúp điều chế hiđrocacbon bất đối xứng với
hiệu suất cao là phản ứng Corey-Huose.
2R-X
→
HexanLi /2
2R-Li
→
CuX
R
2
CuLi
→
XR
'
R-R’
- Hợp chất cơ đồng (Liti điankylcuprat) có chứa nguyên tử C nucleophin, do đó ở giai đoạn
cuối có thể thấy đó là phản ứng thế nucleophin trong đó R
2
Cu
-
đóng vai trò là tác nhân
nucleophin.
Trong phương pháp trên, R’X thường là các dẫn xuất halogen bậc 1, còn R- trong Liti
điankylcuprat có thể là gốc ankyl hoặc aryl. Các dẫn xuất halogen (R’-X) bậc 1 cho hiệu suất
cao còn các dẫn xuất bậc 2, bậc 3 cho hiệu suất thấp một cách rõ rệt.
Ví dụ: R’-X + (n-C
4
H
9
)
2
CuLi
→
THF
n-C
4
H
9
-R’ + n-C
4
H
9
Cu + LiX
Hiệu suất tạo n-C
4
H
9
-R’ biến đổi theo R’-X như sau:
R’-X Hiệu suất
CH
3
CH
2
CH
2
CH
2
CH
2
-Br 98%
CH
3
CH
2
CH
2
CHBrCH
3
12%
CH
3
CH
2
CH
2
CBr(CH
3
)
2
< 10%
Về khả năng phản ứng của các ankyl halogenua với Liti điankylcuprat phù hợp với cơ chế
S
N
2.
CH
3
-X > CH
3
CH
2
-X
> (CH
3
)
2
CH-X > (CH
3
)
3
C-X
R’-I > R’-Br> R’-Cl >> R’-F
12
Tuy nhiên về mặt cơ chế của phản ứng nhiều phức tạp chưa hoàn toàn rõ ràng vì khi R’X là
các dẫn xuất vinyl hay phenyl thì phản ứng vẫn cho hiệu suất cao. Nhưng dù sao thì đây
cũng là một phương pháp rất tốt để tổng hợp các hiđrocacbon không đối xứng.
1.3 Tổng hợp anken bằng phản ứng Wittig
- Phản ứng Wittig dùng để điều chế anken đi từ hợp chất cacbonyl (anđehit hoặc xeton) và
hợp chất cơ photpho (Photphoni ylua)
RCOR’ + (C
6
H
5
)
3
P=CRR’ → RR’C=CRR’ + (C
6
H
5
)
3
P=O
Về cơ chế của phản ứng khá phức tạp nhưng có thể hình dung như sau:
Đầu tiên, Ylit sẽ kết hợp với nhóm cacbonyl tạo thành một hợp chất trung gian ở dạng vòng
4 cạnh gọi là oxaphosphetane. Sau đó, hợp chất trung gian này phân hủy tạo ra anken và
triphotphin oxit.
Bước 1:
Bước 2:
2. Tổng hợp các ancol qua hợp chất cơ nguyên tố
2.1 Tổng hợp ancol với hiệu suất cao từ anken
- Từ anken để điều chế 1 ancol có thể dùng phản ứng cộng HOH (trực tiếp) hay cộng HX (X
là halogen) rồi thủy phân dẫn xuất halogen thu được. Tuy nhiên phương pháp này sẽ cho
hiệu suất không cao bởi vì các phản ứng cộng HX (HOH, H-Hal) vào anken chạy theo cơ
chế A
E
. Ở giai đoạn 1 có sự tạo thành cacbocation do đó trong nhiều trường hợp có thể xảy
ra sự chuyển vị, khi đó ta sẽ thu được hỗn hợp sản phẩm. Để tổng hợp các ancol có bậc khác
nhau với hiệu suất cao người ta có thể tổng hợp qua hợp chất cơ nguyên tố.
2.1.1 Phản ứng oxi thủy ngân hóa-loại bỏ thủy ngân.
Phản ứng này dùng để điều chế các ancol bậc cao với hiệu suất cao từ anken mà không sinh
ra sản phẩm chuyển vị giống như phương pháp hiđrat hóa.
Giai đoạn 1: Oxi thủy ngân hóa
13
R-CH=CH
2
+ Hg(OAc)
2
+ H
2
O
→
THF
R-CH(OH)-CH
2
HgOAc + HOAc
Giai đoạn 2: Loại bỏ thủy ngân
4R-CH(OH)-CH
2
HgOAc+NaBH
4
+4NaOH → 4RCH(OH)CH
3
+NaB(OH)
4
+4Hg+4NaOAc
2.1.2 Phản ứng hiđrobo hóa.
- Phản ứng hiđrat hóa anken chạy theo cơ chế A
E
sản phẩm tạo thành tuân theo quy tắc
Maccopnhicop tổng quát. Thông thường sản phẩm thu được là ancol bậc cao. Muốn có được
ancol bậc thấp người ta có thể cho anken tác dụng với HBr có mặt peroxit rồi thủy phân dẫn
xuất brom thu được. Tuy nhiên, cách này cũng cho hiệu suất không cao, một trong những
cách có thể điều chế ancol bậc thấp từ anken đó là qua con đường hợp chất cơ-bo.
Giai đoạn 1: Hiđrobo hóa anken
6RCH=CH
2
+ B
2
H
6
→ 2(RCH
2
CH
2
)
3
B
Giai đoạn 2: Oxi hóa triankyl boran
(RCH
2
CH
2
)
3
B + 3H
2
O
2
+ NaOH → 3RCH
2
CH
2
OH + NaB(OH)
4
Ưu điểm của phương pháp này là cho hiệu suất cao và tính chọn lọc cao, hầu như ta chỉ thu
được ancol bậc thấp và không có sự chuyển vị.
2.2 Tổng hợp ancol từ dẫn xuất halogen và hợp chất cacbonyl
- Năm 1900 học trò của Barbier là Grignard đã đưa ra quy trình tổng hợp hợp chất cơ -
magie đi từ dẫn xuất halogen trong môi trường ete khan cho hiệu suất cao. Dựa trên tính chất
đa dạng và khả năng phản ứng cao của hợp chất cơ magie, Grignard và các cộng sự đã tổng
hợp nhiều hợp chất hữu cơ khác nhau.
Khi cho hợp chất cơ magie tác dụng với các tác nhân thích hợp (Anđehit, xeton, este,…) rồi
đem các sản phẩm thu được thủy phân bằng axit sẽ thu được các ancol khác nhau tương ứng
theo sơ đồ sau:
R-MgX + HCHO → RCH
2
OMgX
→
+
OH
3
RCH
2
OH (ancol bậc 1, số C tăng thêm 1)
R-MgX + → RCH
2
CH
2
OMgX
→
+
OH
3
RCH
2
CH
2
OH
(Ancol bậc 1, số C tăng thêm 2)
R-MgX + R’CHO →
→
+
OH
3
(Ancol bậc 2, số C tăng thêm ≥2)
14
R-MgX + R’COR” →
→
+
OH
3
(Ancol bậc 3, số C tăng thêm ≥3)
R-MgX + R’COOR” →
→
+
OH
3
(Ancol bậc 3, số C tăng thêm ≥3)
Trong trường hợp nếu dùng este của axit fomic ta sẽ thu được ancol bậc 2 RCHOHR
- Có thể sử dụng các dẫn xuât khác của axit cacboxylic RCOZ (với Z là Cl-, -OCOR’), trong
các trường hợp đó ta luôn thu được ancol bậc 3 với số cacbon tăng thêm ≥3.
3. Tổng hợp các hợp chất cacbonyl qua con đường hợp chất cơ nguyên tố
3.1 Tổng hợp anđehit – xeton
- Thông thường người ta thường điều chế anđehit – xeton bằng cách oxi hóa nhẹ ancol tương
ứng bằng các tác nhân oxi hóa thích hợp. Trong đó ancol có thể được tổng hợp từ con đường
cơ nguyên tố.
- Trong trường hợp xeton có thể tổng hợp bằng phản ứng của hợp chất nitrin với hợp chất cơ
kim loại sau đó thủy phân sản phẩm sẽ thu được xeton.
R-CN
→
MgXR'
R-C=NMgX
→
+
OH
3
R-C=O
R’ R’
Trong đó hợp chất nitrin được điều chế bằng phản ứng tổng hợp Kolbe.
3.2 Tổng hợp axit cacboxylic qua hợp chất cơ nguyên tố
- Để tổng hợp các axit cacboxylic người ta có thể oxi hóa trực tiếp các ancol hoặc anđehit,
xeton tương ứng với tác nhân oxi hóa thích hợp. Ngoài ra người ta có thể tổng hợp trực tiếp
axit bằng cách cho hợp chất cơ kim tác dụng với CO
2
sau đó đem sản phẩm thủy phân sản
phẩm thu được.
RMgX
→
2
CO
R-COOMgX
→
+
OH
3
RCOOH
III. Phương pháp giải bài tập tổng hợp hữu cơ nhiều giai đoạn
1. Phương pháp giải chung
- Việc tổng hợp và điều chế hữu cơ là một công việc rất khó khăn, việc giải quyết các bài tập
về tổng hợp hữu cơ giúp người học nắm vững kiến thức cơ bản về hóa học hữu cơ, quan hệ
giữa các nhóm chức hữu cơ. Bên cạnh đó đòi hỏi người học phải có kỹ năng phân tích và
15
tổng hợp thành thạo để từ đó lựa chọn được con đường tổng hợp phù hợp và ưu việt nhất. Có
thể nói việc giải quyết các bài tập loại này giúp người học càng hoàn thiện kiến thức, kỹ
năng mặt khác giúp giáo viên kiểm tra và đánh giá chính xác khả năng hiểu bài và vận dụng
kiến thức liên quan của người học.
- Thông thường quá trình giải một bài tập tổng hợp hữu cơ nhiều giai đoạn tiến hành qua
các bước cơ bản sau:
Bước 1: Xác định công thức cấu tạo của chất ban đầu và sản phẩm cần tổng hợp
Bước 2: Xác định nhóm chức và cấu tạo của chất cần tổng hợp, xem xét mối quan hệ với
chất đầu.
Bước 3: Tìm các phương pháp khác nhau có thể dùng để tổng hợp trực tiếp sản phẩm. Chọn
phương pháp hợp lý nhất (tương đối ít giai đoạn, cho hiệu suất cao ) đi từ các hợp chất
trung gian gần gũi với chất ban đầu.
Bước 4: Thực hiện quy trình tương đối với chất trung gian, cho tới khi tiếp cận chất đầu.
Bước 5: Hoàn thành sơ đồ phản ứng (Viết các phương trình phản ứng nếu cần).
2. Bài tập vận dụng
Bài 1 : Thay thế các chữ cái A, B, C, D, E, F trong các sơ đồ tổng hợp sau bằng các công
thức thích hợp?
a. A
→
MgBrCHCH
323
][
B
→
+
OH
3
Pentan-1-ol
b. C
→
MgICHCH
23
D
→
+
OH
3
1-phenylbutan-2-ol
c. E
→
eteMg /
F
→
+
OHCO
32
.2,.1
Axit pentanoic
Giải:
a. A: HCHO, B: CH
3
[CH
2
]
3
CH
2
MgBr
PTPƯ: CH
3
[CH
2
]
3
MgBr + HCHO → CH
3
[CH
2
]
3
CH
2
OMgBr
CH
3
[CH
2
]
3
CH
2
OMgBr + H
3
O
+
→ CH
3
[CH
2
]
4
OH
b. C: C
6
H
5
CH
2
CHO, D: C
6
H
5
CH
2
CH(OMgI)CH
2
CH
3
PTPƯ: C
6
H
5
CH
2
CHO + CH
3
CH
2
MgI → C
6
H
5
CH
2
CH(OMgI)CH
2
CH
3
C
6
H
5
CH
2
CH(OMgI)CH
2
CH
3
+ H
2
O → C
6
H
5
CH
2
CH(OH)CH
2
CH
3
c. E: CH
3
CH
2
CH
2
CH
2
X, F: CH
3
CH
2
CH
2
CH
2
-MgX trong đó X là Cl, Br, I
16
PTPƯ: CH
3
CH
2
CH
2
CH
2
X + Mg
→
khanete,
CH
3
CH
2
CH
2
CH
2
-MgX
CH
3
CH
2
CH
2
CH
2
-MgX + CO
2
→
+
OH
3
CH
3
CH
2
CH
2
CH
2
COOH
Bài 2: Chỉ ra chỗ sai trong sơ đồ tổng hợp sau đây:
a. Br-CH
2
CH
2
-Br
→
eteMg /
BrMgCH
2
-CH
2
MgBr
→
+
OHHCHO
3
.2;.1
HO[CH
2
]
4
OH
b. R-C≡CNa
→
−− BrCHCl
32
][
R-C≡C-[CH
2
]
3
-Br
→
NaOH
R-C≡C-[CH
2
]
3
-OH
c. CH
3
[CH
2
]
3
Cl
→
hexanLi /
CH
3
[CH
2
]
3
Li
→
CuBr
(CH
3
[CH
2
]
3
)
2
CuLi
→
23223
)(CHCBrCHCHCH
CH
3
CH
2
CH
2
CH
2
C(CH
3
)
2
-CH
2
CH
2
CH
3
Giải:
a. Giai đoạn 1 dẫn xuất đihalogen sẽ bị tách Br
2
tạo ra etilen
b. Ở giai đoạn 1 ankinua sẽ phản ứng với dẫn xuất Brom vì dẫn xuất Brom có khả năng phản
ứng cao hơn các dẫn xuất Clo.
c. Liti Điankylcuprat phản ứng với dẫn xuất halogen bậc 3 cho hiệu suất rất thấp do vậy
trong thực tế người ta không sử dụng phản ứng của Liti Điankylcuprat với các dẫn xuất
halogen bậc 2, 3 để tổng hợp các ankan bất đối xứng.
Bài 3: Từ các hợp chất hữu cơ có số cacbon ≤ 2 và các hóa chất vô cần thiết hãy tổng hợp
các hợp chất sau qua con đường hợp chất cơ nguyên tố.
a. 2-metylbut-2-en
b. 4-Clo-4-metylpent-2-en
Giải:
a. 2-metylbut-2-en
Cách 1:
CH≡CH
→
Na
CH≡CNa
→
ICH
3
CH
3
C≡CH
→
o
tPdH ,/
2
CH
3
CH=CH
2
→
HCl
CH
3
-CHCl-CH
3
→
eteMg /
CH
3
CH(MgCl)CH
3
→
OHCHOCH
23
.2;.1
(CH
3
)
2
CHCH(OH)CH
3
→
đSOH
42
(CH
3
)
2
C=CHCH
3
Cách 2:
CH
3
COOH
→
2
,ThOt
o
CH
3
COCH
3
→
OHMgClHC
252
.2;.1
CH
3
CH
2
COH(CH
3
)
2
→
o
tOAl ,
32
(CH
3
)
2
C=CHCH
3
b. 4-Clo-4-metylpent-2-en
17
t
o
H
2
O
Zn/HOH
CH
3
COOH
→
2
,ThOt
o
CH
3
COCH
3
(CH
3
COO)
2
Ca
CH≡CH
→
Na
CH≡CNa
→
ICH
3
CH
3
C≡CH
→
peoxitHBr ),1:1(
CH
3
CH=CHBr
→
eteMg /
CH
3
CH=CHMgBr
→
33
COCHCH
CH
3
CH=CHCOH(CH
3
)
2
→
PCl /
2
CH
3
CH=CHC-Cl(CH
3
)
2
Bài 4: Từ etan hãy viết 4 sơ đồ tổng hợp propan-1-ol? Cho biết các hóa chất vô cơ và điều
kiện phản ứng có đủ.
Giải:
C
1
: CH
3
CH
3
+Cl
2
→
as
CH
3
CH
2
Cl +HCl
CH
3
CH
2
Cl + KOH
→
ancol
CH
2
=CH
2
+KCl
+H
2
O
CH
2
=CH
2
+
2
1
O
2
→
CAg
o
250,
CH
3
CH
2
Cl + Mg
→
ete
CH
3
CH
2
MgCl
CH
3
CH
2
MgCl +
→
OH
2
CH
3
CH
2
CH
2
CH
2
OH + MgOHBr
CH
3
CH
2
CH
2
CH
2
OH
→
32
OAl
CH
3
CH
2
CH=CH
2
+ H
2
O
CH
3
CH
2
CH=CH
2
→
OHZnO
23
/.2;.1
CH
3
CH
2
CHO + HCHO
CH
3
CH
2
CHO + H
2
→
o
tNi,
CH
3
CH
2
CH
2
OH
C
2
: CH
3
CH
2
MgCl + CO
2
→
+
OH
3
CH
3
CH
2
COOH + MgClOH
CH
3
CH
2
COOH + LiAlH
4
+ 3H
2
O → CH
3
CH
2
CH
2
OH + LiOH + Al(OH)
3
+ 2H
2
C
3
: CH
2
=CH
2
→
3
.1 O
2HCHO
CH
3
CH
2
MgCl + HCHO → CH
3
CH
2
CH
2
MgCl
CH
3
CH
2
CH
2
OMgCl + HOH → CH
3
CH
2
CH
2
OH + MgClOH
C
4
: HCHO + H
2
→
o
tNi.
CH
3
OH
CH
3
OH + HCl → CH
3
Cl + H
2
O
CH
3
Cl + Mg
→
ete
CH
3
MgCl
CH
3
MgCl + → CH
3
CH
2
CH
2
OMgCl
CH
3
CH
2
CH
2
OMgCl + HOH → CH
3
CH
2
CH
2
OH + MgClOH
Ngoài ra có thể sử dụng cách sau:
2CH
2
=CH
2
+ O
2
→
22
,CuClPdCl
2CH
3
CHO
18
Ca(OH)
2
CH
3
CH
2
CH
3
CH
3
CH
2
CH
3
CH
3
CH
2
CH
3
CH
3
CHO + CH
3
MgCl → CH
3
CH(OMgCl)CH
3
CH
3
CH(OMgCl)CH
3
+ HOH → CH
3
CH(OH)CH
3
CH
3
CH(OH)CH
3
→
o
tđSOH ,
42
CH
3
CH=CH
2
+ HOH
6CH
3
CH=CH
2
+ B
2
H
6
→
THF
2 (CH
3
CH
2
CH
2
)
3
B
(CH
3
CH
2
CH
2
)
3
B + 3H
2
O
2
+ NaOH → 3CH
3
CH
2
CH
2
OH + NaB(OH)
4
Bài 5: Chọn các hợp chất cacbonyl và ylit thích hợp, viết phương trình phản ứng để điều chế
các anken sau?
a. 3-metylhept-3-en c. C
6
H
5
CH
2
CH=C(CH
2
CH
3
)
2
b. Pent-2-en d. 2-xiclopentyliđen propan
Giải:
a. CH
3
CH
2
CH
2
CHO + (C
6
H
5
)
3
P=C< →CH
3
CH
2
CH
2
CH=C<
+ (C
6
H
5
)
3
P=O
CH
3
CH
2
COCH
3
+ (C
6
H
5
)
3
P=CHCH
2
CH
2
CH
3
→ CH
3
CH
2
CH
2
CH=C<
+ (C
6
H
5
)
3
P=O
b. CH
3
CH
2
CHO + (C
6
H
5
)
3
P=CHCH
3
→ CH
3
CH
2
CH=CHCH
3
+ (C
6
H
5
)
3
P=O
Hay: CH
3
CHO + (C
6
H
5
)
3
P=CHCH
2
CH
3
→ CH
3
CH
2
CH=CHCH
3
+ (C
6
H
5
)
3
P=O
c. (CH
3
CH
2
)
2
CO + (C
6
H
5
)
3
P=CHCH
2
C
6
H
5
→ C
6
H
5
CH
2
CH=C(CH
2
CH
3
)
2
+ (C
6
H
5
)
3
P=O
Hay: C
6
H
5
CH
2
CHO+(C
6
H
5
)
3
P=C(CH
2
CH
3
)
2
→ C
6
H
5
CH
2
CH=C(CH
2
CH
3
)
2
+(C
6
H
5
)
3
P=O
d. (CH
3
)
2
CO + (C
6
H
5
)
3
P= → (CH
3
)
2
C=
Hay: + (C
6
H
5
)
3
P=C(CH
3
)
2
→ (CH
3
)
2
C=
Bài 6: Từ etanol hãy viết các phương trình phản ứng điều chế 2-brombutan? Giả thiết các
hóa chất vô cơ và các điều kiện cho đầy đủ.
Giải:
Cách 1: CH
3
CH
2
OH + Cu + O
2
→ CH
3
CHO + CuO + H
2
O
6CH
3
CH
2
OH + 2P + 3Br
2
→ 6CH
3
CH
2
Br + 2H
3
PO
3
CH
3
CH
2
Br + Mg
→
ete
CH
3
CH
2
MgBr
CH
3
CH
2
MgBr + CH
3
CHO
→
+
OH
3
CH
3
CH
2
CHOHCH
3
6CH
3
CH
2
CHOHCH
3
+ 2P + 3Br
2
→ CH
3
CH
2
CHBrCH
3
+ H
3
PO
3
Cách 2: CH
3
CH
2
OH
→
COAl
o
400,
32
CH
2
=CH
2
+ H
2
O
19
O
2CH
2
=CH
2
+ O
2
→
CAg
o
250,
2
CH
3
CH
2
MgBr +
→
+
OH
3
CH
3
CH
2
CH
2
CH
2
OH + Mg
2+
+ H
2
O + Br
-
CH
3
CH
2
CH
2
CH
2
OH
→
COAl
o
400,
32
CH
3
CH
2
CH=CH
2
+ H
2
O
CH
3
CH
2
CH=CH
2
+ HBr → CH
3
CH
2
CHBrCH
3
Bài 7: Từ axetilen hãy viết các phương trình phản ứng điều chế 1,2-đibrombutan? Giả thiết
các hóa chất vô cơ và các điều kiện có đủ.
Giải:
Cách 1: CH≡CH + H
2
→
o
tPbCOPd ,/
3
CH
2
=CH
2
CH
2
=CH
2
+ HCl → CH
3
CH
2
Cl
CH≡CH + Na → CH≡CNa
CH≡CNa + CH
3
CH
2
Cl → CH
3
CH
2
C≡CH
CH
3
CH
2
C≡CH + H
2
→
o
tPbCOPd ,/
3
CH
3
CH
2
CH=CH
2
CH
3
CH
2
CH=CH
2
+ Br
2
→
4
CCl
CH
3
CH
2
CHBrCH
2
Br
Cách 2: CH
3
CH
2
Cl + Mg
→
ete
CH
3
CH
2
MgCl
2CH
2
=CH
2
+ O
2
→
CAg
o
250,
2
CH
3
CH
2
MgCl +
→
+
OH
3
CH
3
CH
2
CH
2
CH
2
OH + Mg
2+
+ H
2
O + Br
-
CH
3
CH
2
CH
2
CH
2
OH
→
COAl
o
400,
32
CH
3
CH
2
CH=CH
2
+ H
2
O
CH
3
CH
2
CH=CH
2
+ Br
2
→
4
CCl
CH
3
CH
2
CHBrCH
2
Br
Cách 3: 2CH
2
=CH
2
+ O
2
→
22
,CuClPdCl
2CH
3
CHO
2 CH
3
CHO
→
−
OH
CH
3
CH=CHCHO + H
2
O
CH
3
CH=CHCHO + 2H
2
→
o
tNi,
CH
3
CH
2
CH
2
CH
2
OH
CH
3
CH
2
CH
2
CH
2
OH
→
COAl
o
400,
32
CH
3
CH
2
CH=CH
2
+ H
2
O
CH
3
CH
2
CH=CH
2
+ Br
2
→
4
CCl
CH
3
CH
2
CHBrCH
2
Br
Bài 8: Từ etilen và các hóa chất vô cơ cần thiết hãy viết phương trình phản ứng điều chế:
a. Axit propanoic
b. Axit butanoic
c. Etyl metyl xeton
Giải:
20
a. CH
3
CH
2
COOH
Cách1: CH
2
=CH
2
+ HCl → CH
3
CH
2
Cl
CH
3
CH
2
Cl + Mg
→
ete
CH
3
CH
2
MgCl
CH
3
CH
2
MgCl + CO
2
→ CH
3
CH
2
COOMgCl
CH
3
CH
2
COOMgCl + HOH→ CH
3
CH
2
COOH + Mg(OH)Cl
Cách 2: CH
3
CH
2
Cl + KCN → CH
3
CH
2
CN + KCl
CH
3
CH
2
CN + 2HOH → CH
3
CH
2
COOH + NH
3
Cách 3: CH
2
=CH
2
→
OHZnO
23
/.2;.1
2HCHO
CH
3
CH
2
MgCl + HCHO → CH
3
CH
2
CH
2
OMgCl
CH
3
CH
2
CH
2
OMgCl + HOH → CH
3
CH
2
CH
2
OH + Mg(OH)Cl
CH
3
CH
2
CH
2
OH
→
O][
CH
3
CH
2
COOH
b. CH
3
CH
2
CH
2
COOH
Cách 1: 2CH
2
=CH
2
+ O
2
→
CAg
o
250,
2
CH
3
CH
2
MgCl +
→
+
OH
3
CH
3
CH
2
CH
2
CH
2
OH + Mg
2+
+ H
2
O + Br
-
CH
3
CH
2
CH
2
CH
2
OH
→
O][
CH
3
CH
2
CH
2
COOH
Cách 2: CH
2
=CH
2
→
OHZnO
23
/.2;.1
2HCHO
CH
3
CH
2
MgCl + HCHO → CH
3
CH
2
CH
2
OMgCl
CH
3
CH
2
CH
2
OMgCl + HOH → CH
3
CH
2
CH
2
OH + Mg(OH)Cl
6CH
3
CH
2
CH
2
OH + 2P + 3Br
2
→ 6CH
3
CH
2
CH
2
Br + 2H
3
PO
3
CH
3
CH
2
CH
2
Br + Mg
→
ete
CH
3
CH
2
CH
2
MgBr
CH
3
CH
2
CH
2
MgBr + CO
2
→ CH
3
CH
2
CH
2
COOMgBr
CH
3
CH
2
CH
2
COOMgBr + HOH → CH
3
CH
2
CH
2
COOH + Mg(OH)Br
c. CH
3
CH
2
COCH
3
Cách 1: CH
2
=CH
2
+ HCl → CH
3
CH
2
Cl
CH
3
CH
2
Cl + Mg
→
ete
CH
3
CH
2
MgCl
2CH
2
=CH
2
+ O
2
→
22
,CuClPdCl
2CH
3
CHO
CH
3
CH
2
MgCl + CH
3
CHO → CH
3
CH
2
CH(OMgCl)CH
3
CH
3
CH
2
CH(OMgCl)CH
3
+ HOH → CH
3
CH
2
CH(OH)CH
3
+ Mg(OH)Cl
3CH
3
CH
2
CH(OH)CH
3
+ 2CrO
3
+ 6H
+
→ 3CH
3
CH
2
COCH
3
+ 2Cr
3+
+ 6H
2
O
21
H
3
O
+
H
3
O
+
Cách 2: CH
2
=CH
2
→
OHZnO
23
/.2;.1
2HCHO
CH
3
CH
2
MgCl + HCHO → CH
3
CH
2
CH
2
OMgCl
CH
3
CH
2
CH
2
OMgCl + HOH → CH
3
CH
2
CH
2
OH + Mg(OH)Cl
CH
3
CH
2
CH
2
OH + Cu + O
2
→ CH
3
CH
2
CHO + CuO + H
2
O
HCHO + H
2
→
o
tNi,
CH
3
OH,
CH
3
OH + HI → CH
3
I + HOH
CH
3
I + Mg
→
ete
CH
3
MgI
CH
3
CH
2
CHO + CH
3
MgI → CH
3
CH
2
CH(OMgCl)CH
3
CH
3
CH
2
CH(OMgCl)CH
3
+ HOH → CH
3
CH
2
CH(OH)CH
3
+ Mg(OH)Cl
3CH
3
CH
2
CH(OH)CH
3
+ 2CrO
3
+ 6H
+
→ 3CH
3
CH
2
COCH
3
+ 2Cr
3+
+ 6H
2
O
Bài 9
*
: Đi từ hợp chất hữu cơ duy nhất là etanol, bằng phương pháp tổng hợp qua hợp
chất cơ nguyên tố hãy lập sơ đồ tổng hợp 3,3,5-trimetylheptan-1-ol với các tác nhân vô
cơ và điều kiện phản ứng có đủ.
Giải:
CH
3
CH
2
OH
→
2
SOCl
CH
3
CH
2
Cl
→
eteMg /
CH
3
CH
2
-MgCl
CH
3
CH
2
OH
→
COAl
o
400,
32
CH
2
=CH
2
→
AgO /
2
CH
2
=CH
2
→
OHZnO
23
/.2;.1
2HCHO
→
o
tNiH ,/
2
CH
3
OH
→
HCl
CH
3
Cl
→
eteMg /
CH
3
-MgCl
CH
3
CH
2
-MgCl
→
HOHHCHO .2,.1
CH
3
CH
2
CH
2
OH
→
O][
CH
3
CH
2
CHO
→
HOHMgClCH .2,.1
3
CH
3
CH
2
CH(OH)CH
3
→
3
PCl
CH
3
CH
2
CHCH
3
→
eteMg /
CH
3
CH
2
CMgCl
Cl CH
3
CH
3
CH
2
CHCH
2
CH
2
OH
→
O][
CH
3
CH
2
CHCH
2
CHO
→
HOHMgClCH .2,.1
3
CH
3
CH
3
CH
3
CH
2
CHCH
2
CHCH
3
→
O][
CH
3
CH
2
CHCH
2
CCH
3
→
HOHMgClCH .2,.1
3
CH
3
OH CH
3
O
CH
3
CH
2
CHCH
2
C(CH
3
)
2
→
3
PCl
CH
3
CH
2
CHCH
2
C(CH
3
)
2
→
eteMg /
C
2
H
5
CHCH
2
C(CH
3
)
2
CH
3
OH CH
3
Cl CH
3
MgCl
CH
3
CH
2
CHCH
2
C(CH
3
)
2
CH
2
CH
2
OH (3,3,5-trimetylheptan-1-ol)
CH
3
Bài 10: Từ propan-2-ol hãy viết các phương trình phản ứng điều chế Hex-1-en-5-in. Giả
thiết các hóa chất vô cơ và điều kiện phản ứng có đủ.
22
H
3
O
+
Mg/ete
H
3
O
+
(C
6
H
5
)
2
CO
Giải:
(CH
3
)
2
CH-OH
→
o
tOAl ,
32
CH
3
CH=CH
2
+ H
2
O
CH
3
CH=CH
2
+ Br
2
→
4
CCl
CH
3
CHBr-CH
2
Br
CH
3
CHBr-CH
2
Br + 2NaNH
2
→ CH
3
C≡CH + 2NaBr + 2NH
3
CH
3
C≡CH + Cl
2
→
ν
h
ClCH
2
C≡CH + HCl
CH
3
CH=CH
2
Cl
2
→
ν
h
ClCH
2
CH=CH
2
+ HCl
ClCH
2
CH=CH
2
+ 2Li
→
hexan
CH
2
=CHCH
2
Li + LiCl
2CH
2
=CHCH
2
Li + CuI → (CH
2
=CHCH
2
)
2
CuLi + LiI
(CH
2
=CHCH
2
)
2
CuLi + ClCH
2
C≡CH →CH
2
=CHCH
2
CH
2
C≡CH + CH
2
=CHCH
2
Cu + LiCl
(Hex-1-en-5-in)
Bài 11: Hoàn thành đầy đủ các chất trong sơ đồ tổng hợp sau. Viết các phương trình
phản ứng xảy ra trong các giai đoạn của quá trình tổng hợp.
a. ancol isopropylic
→
+
2
IP
X
→
ancolKOH /
Y
→
HBr
Z
→
Na2
T
b. 2-metylbutan-1-ol
→
+
2
BrP
A
1
→
eteMg /
B
1
→
+
OHHCHO
3
.2,.1
C
1
c. 2-metylbut-2-en
→
peroxitHBr /
E
→
eteMg /
F G
C
6
H
5
CH
2
CH
2
C
6
H
5
d. A
→
ν
hCL /
2
B
C D
→
− OH
2
H
Giải:
a. X: (CH
3
)
2
CH-I, Y: CH
3
CH=CH
2
, Z: (CH
3
)
2
CHBr, T: (CH
3
)
2
CHCH(CH
3
)
2
PTPƯ: 6(CH
3
)
2
CHOH + 2P + 3I
2
→ 6(CH
3
)
2
CH-I + 2H
3
PO
3
(CH
3
)
2
CH-I + KOH
→
ole tan
CH
3
CH=CH
2
+ KI + H
2
O
CH
3
CH=CH
2
+ HBr → (CH
3
)
2
CHBr
2(CH
3
)
2
CHBr + 2Na → (CH
3
)
2
CHCH(CH
3
)
2
(phản ứng Wurtz)
b.A
1
:CH
3
CH
2
CHCH
2
Br, B
1
: CH
3
CH
2
CHCH
2
MgBr, C
1
:CH
3
CH
2
CHCH
2
CH
2
OH
CH
3
CH
3
CH
3
PTPƯ: 6CH
3
CH
2
CH(CH
3
)CH
2
OH + 2P + 3Br
2
→ 6CH
3
CH
2
CH(CH
3
)CH
2
Br + 3H
3
PO
3
23
CH
2
=CHCH
2
MgCl
CH
2
=CHCH
2
MgCl
2.H
2
O
1.CO
2
CH
3
CH
2
CH(CH
3
)CH
2
Br +Mg
→
ete
CH
3
CH
2
CH(CH
3
)CH
2
MgBr
CH
3
CH
2
CH(CH
3
)CH
2
MgBr + HCHO
→
+
OH
3
CH
3
CH
2
CH(CH
3
)CH
2
CH
2
OH+Mg
2+
+ Br
-
c. E: CH
3
CHCHBrCH
3
, F: CH
3
CHCH(MgBr)CH
3
, G: CH
3
CHCH(CH
3
)CH
2
CH
2
OH
CH
3
CH
3
CH
3
PTPƯ: (CH
3
)
2
C=CHCH
3
+ HBr
→
peroxit
(CH
3
)
2
CHCHBrCH
3
(CH
3
)
2
CHCHBrCH
3
+ Mg
→
ete
(CH
3
)
2
CHCH(MgBr)CH
3
(CH
3
)
2
CHCH(MgBr)CH
3
+
→
+
OH
3
(CH
3
)
2
CHCH(CH
3
)CH
2
CH
2
OH
+ Mg
2+
+ Br
-
d. A: C
6
H
5
CH
3
, B: C
6
H
5
CH
2
Cl, C: C
6
H
5
CH
2
MgCl, D: C
6
H
5
CH
2
COH(C
6
H
5
)
2
,
H: C
6
H
5
CH=C(C
6
H
5
)
2
.
PTPƯ: C
6
H
5
CH
3
+ Cl
2
→
ν
h
C
6
H
5
CH
2
Cl + HCl
C
6
H
5
CH
2
Cl + Mg
→
ete
C
6
H
5
CH
2
MgCl
C
6
H
5
CH
2
MgCl + (C
6
H
5
)
2
CO
→
+
OH
3
C
6
H
5
CH
2
COH(C
6
H
5
)
2
+ Mg
2+
Cl
-
C
6
H
5
CH
2
COH(C
6
H
5
)
2
→
o
tđSOH ,
42
C
6
H
5
CH=C(C
6
H
5
)
2
+ H
2
O
Bài 12: Viết sơ đồ điều chế các hợp chất sau từ hợp chất đã cho và các hóa chất vô cơ
cần thiết (Giả thiết các điều kiện phản ứng cho đủ).
a. Axit hept-2-inoic từ propen
b. Axit 2,5-đimety ađipic từ propen
c. Axit axetylenđicacboxylic từ axetylen
d. Benzyl metyl cacbinol và etyl metyl cacbinol từ toluen và axetylen
e. nonan-5-on từ ancol n-butylic
Giải:
a. CH
3
CH
2
CH
2
CH
2
C≡C-COOH
CH
3
CH=CH
2
→
CCl
o
500/
2
CH
2
=CHCH
2
Cl
→
eteMg /
CH
2
=CHCH
2
MgCl
CH
3
CH=CH
2
→
peroxitHBr /
CH
3
CH
2
CH
2
Br CH
3
[CH
2
]
3
CH=CH
2
→
2
Br
CH
3
[CH
2
]
3
CHBr-CH
2
Br
→
2
NaNH
CH
3
[CH
2
]
3
C≡CH C
4
H
9
C≡CMgCl
CH
3
[CH
2
]
3
C≡C-COOH
24
+2CO
2
H
3
O
+
1.CH
3
CHO
HOH
KCN
Mg/ete
2.HOH
1.CH
3
CHO
2. H
2
O
1.CO
2
H
3
O
+
b. Axit 2,5-đimety ađipic
CH
3
CH=CH
2
→
CCl
o
500/
2
CH
2
=CHCH
2
Cl
→
Na
CH
2
=CHCH
2
CH
2
CH=CH
2
→
+ HBr2
CH
3
CHBrCH
2
CH
2
CHBrCH
3
→
eteMg /2
CH
3
CH(MgBr)CH
2
CH
2
CH(MgBr)CH
3
HOOC-CHCH
2
CH
2
CH-COOH
CH
3
CH
3
c. HOOC-C≡C-COOH
HC≡CH
→
Na2
NaC≡CNa HOOC-C≡C-COOH
d. C
6
H
5
CH
2
CH(OH)CH
3
CH≡CH
→
+2
/ HgHOH
CH
3
CHO
C
6
H
5
CH
3
→
ν
hCl /
2
C
6
H
5
CH
2
Cl
→
eteMg /
C
6
H
5
CH
2
MgCl
C
6
H
5
CH
2
CH(OH)CH
3
CH
3
CH(OH)CH
2
CH
3
(etyl metyl cacbinol)
CH≡CH
→
PdH /
2
CH
2
=CH
2
→
HCl
CH
3
CH
2
Cl
→
eteMg /
CH
3
CH
2
-MgCl
CH
3
CH(OH)CH
2
CH
3
e. (n-C
4
H
9
)
2
CO
CH
3
[CH
2
]
2
CH
2
-MgBr
CH
3
[CH
2
]
2
CH
2
OH
→
+
2
BrP
CH
3
[CH
2
]
2
CH
2
Br (n-C
4
H
9
)
2
CO
CH
3
[CH
2
]
2
CH
2
-CN
Bài 13: Từ metanol hãy viết các phương trình phản ứng điều chế các hợp chất sau:
a. Etanol b. Propan-2-ol c. Butan-1-ol d. Etyl metyl cacbinol
Giải:
a. CH
3
CH
2
OH
CH
3
OH + HBr → CH
3
Br + HOH
CH
3
Br + Mg
→
ete
CH
3
-MgBr
CH
3
OH + Cu + O
2
→ HCHO + H
2
O + CuO
CH
3
-MgBr + HCHO
→
+
OH
3
CH
3
CH
2
OH + Mg
2+
+ Br
-
b. (CH
3
)
2
CH-OH
Từ các điều kiện ban đầu tổng hợp được ancol etylic (CH
3
CH
2
OH)
Cách 1: CH
3
CH
2
OH + Cu + O
2
→ CH
3
CHO + H
2
O + CuO
25