Tải bản đầy đủ (.doc) (7 trang)

Tuyển tập đề thi vào THPT

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (86.8 KB, 7 trang )

Ôn thi THPT năm 2009
Phần 6 : Hình học

Bài120: Cho hai đờng tròn tâm O và O

có R > R

tiếp xúc ngoài tại C . Kẻ các đờng kính
COA và CO

B. Qua trung điểm M của AB , dựng DE AB.
a) Tứ giác ADBE là hình gì ? Tại sao ?
b) Nối D với C cắt đờng tròn tâm O

tại F . CMR ba điểm B , F , E thẳng hàng
c) Nối D với B cắt đờng tròn tâm O

tại G . CMR EC đi qua G
d) *Xét vị trí của MF đối với đờng tròn tâm O

, vị trí của AE với đờng tròn ngoại tiếp tứ
giác MCFE


Bài 121: Cho nửa đờng tròn đờng kính COD = 2R . Dựng Cx , Dy vuông góc với CD . Từ
điểm E bất kì trên nửa đờng tròn , dựng tiếp tuyến với đờng tròn , cắt Cx tại P , cắt Dy tại Q.
a) Chứng minh POQ vuông ; POQ đồng dạng với CED


b) Tính tích CP.DQ theo R
c) Khi PC=


2
R

. CMR
16
25
=


CED
POQ
d) Tính thể tích của hình giới hạn bởi nửa đờng tròn tâm O và hình thang vuông CPQD khi
chúng cùng quay theo một chiều và trọn một vòng quanh CD
Bài 122: Cho đờng tròn tâm O bán kính R có hai đờng kính AOB , COD vuông góc với
nhau. Lấy điểm E bất kì trên OA , nối CE cắt đờng tròn tại F . Qua F dựng tiếp tuyến Fx với
đờng tròn , qua E dựng Ey vuông góc với OA . Gọi I là giao điểm của Fx và Ey .
a) Chứng minh I,F,E,O cùng nằm trên một đờng tròn.
b) Tứ giác CEIO là hình gì ?
c) Khi E chuyển động trên AB thì I chuyển động trên đờng nào ?
Bài 123: Cho đờng tròn tâm O và một điểm A trên đờng tròn . Qua A dựng tiếp tuyến Ax .
Trên Ax lấy một điểm Q bất kì , dựng tiếp tuyến QB .
a) CMR tứ giác QBOA nội tiếp đợc
b) Gọi E là trung điểm của QO , tìm quỹ tích của E khi Q chuyển động trên Ax.
c) Hạ BK Ax , BK cắt QO tại H . CMR tứ giác OBHA là hình thoi và suy ra quỹ tích
của điểm H
Bài 124: Cho ABC có ba góc nhọn nội tiếp đờng tròn tâm O . Các đờng cao AD , BK cắt
nhau tại H , BK kéo dài cắt đờng trong tại F . Vẽ đờng kính BOE .
a) Tứ giác AFEC là hình gì ? Tại sao ?
b) Gọi I là trung điểm của AC , chứng minh H , I , E thẳng hàng
c) CMR OI =

2
BH
và H ; F đối xứng nhau qua AC
Page 1 of 7
Ôn thi THPT năm 2009
Bài 125: Cho (O,R) và (O

,R

) (với R>R

) tiếp xúc trong tại A . Đờng nối tâm cắt đờng
tròn O

và đờng tròn O tại B và C . Qua trung điểm P của BC dựng dây MN vuông góc với BC
. Nối A với M cắt đờng tròn O

tại E .
a) So sánh AMO với NMC ( - đọc là góc)
b) Chứng minh N , B , E thẳng hàng và O

P = R ; OP = R


c) Xét vị trí của PE với đờng tròn tâm O

Bài 126: Cho đờng tròn tâm O đờng kính AB . Lấy B làm tâm vẽ đờng tròn bán kính OB .
Đờng tròn này cắt đờng tròn O tại C và D
a) Tứ giác ODBC là hình gì ? Tại sao ?
b) CMR OC AD ; OD AC

c) CMR trực tâm của tam giác CDB nằm trên đờng tròn tâm B
Bài 127: Cho đờng tròn tâm O và một đờng thẳng d cắt đờng tròn đó tại hai điểm cố định
A và B . Từ một điểm M bất kì trên đờng thẳng d nằm ngoài đoạn AB ngời ta kẻ hai tiếp
tuyến với đờng tròn là MP và MQ ( P, Q là các tiếp điểm ) .
a) Tính các góc của
MPQ
biết rằng góc giữa hai tiếp tuyến MP và MQ là 45
0
.
b) Gọi I là trung điểm AB . CMR 5 điểm M , P , Q , O , I cùng nằm trên một đờng tròn .
c) Tìm quỹ tích tâm đờng tròn ngoại tiếp MPQ khi M chạy trên d
Bài 128: Cho ABC nội tiếp đờng tròn tâm O , tia phân giác trong của góc A cắt cạnh
BC tại E và cắt đờng tròn tại M .
a) CMR OM BC
b) Dựng tia phân giác ngoài Ax của góc A . CMR Ax đi qua một điểm cố định
c) Kéo dài Ax cắt CB kéo dài tại F . CMR FB . EC = FC . EB
( Hớng dẫn : áp dụng tính chất đờng phân giác của tam giác )
Bài 129: Cho ABC ( AB = AC , A < 90
0
), một cung tròn BC nằm trong ABC và
tiếp xúc với AB , AC tại B và C . Trên cung BC lấy điểm M rồi hạ các đờng vuông góc MI ,
MH , MK xuống các cạnh tơng ứng BC , CA , AB . Gọi P là giao điểm của MB , IK và Q là
giao điểm của MC , IH.
a) CMR các tứ giác BIMK , CIMH nội tiếp đợc
b) CMR tia đối của tia MI là phân giác HMK
c) CMR tứ giác MPIQ nội tiếp đợc . Suy ra PQ // BC
Bài 130: Cho ABC ( AC > AB ;
CAB

> 90

0
) . I , K theo thứ tự là các trung điểm của
AB , AC . Các đờng tròn đờng kính AB , AC cắt nhau tại điểm thứ hai D ; tia BA cắt đờng
tròn (K) tại điểm thứ hai E ; tia CA cắt đờng tròn (I) tại điểm thứ hai F.
a) CMR ba điểm B , C , D thẳng hàng
b) CMR tứ giác BFEC nội tiếp đợc
c) Chứng minh ba đờng thẳng AD , BF , CE đồng quy
Page 2 of 7
Ôn thi THPT năm 2009
d) Gọi H là giao điểm thứ hai của tia DF với đờng tròn ngoại tiếp AEF . Hãy so sánh độ
dài các đoạn thẳng DH , DE .
Bài 131: Cho đờng tròn (O;R) và điểm A với OA =
2R
, một đờng thẳng (d) quay quanh
A cắt (O) tại M , N ; gọi I là trung điểm của đoạn MN .
a) CMR OI MN. Suy ra I di chuyển trên một cung tròn cố định với hai điểm giới hạn
B , C thuộc (O)
b) Tính theo R độ dài AB , AC . Suy ra A , O , B , C là bốn đỉnh của hình vuông
c) Tính diện tích của phần mặt phẳng giới hạn bởi đoạn AB , AC và cung nhỏ BC của
(O)

Bài132: Cho nửa đờng tròn đờng kính AB = 2R , C là trung điểm của cung AB . Trên cung
AC lấy điểm F bất kì . Trên dây BF lấy điểm E sao cho BE = AF.
a) AFC và BEC có quan hệ với nhau nh thế nào ? Tại sao ?
b) CMR FEC vuông cân
c) Gọi D là giao điểm của đờng thẳng AC với tiếp tuyến tại B của nửa đờng tròn . CMR
tứ giác BECD nội tiếp đợc
Bài133: Cho đờng tròn (O;R) và hai đờng kính AB , CD vuông góc với nhau . E là một
điểm bất kì trên cung nhỏ BD (
DEBE ;

) . EC cắt AB ở M , EA cắt CD ở N.
a) CMR AMC đồng dạng ANC .
b) CMR : AM.CN = 2R
2

c) Giả sử AM=3MB . Tính tỉ số
ND
CN
Bài 134: Một điểm M nằm trên đờng tròn tâm (O) đờng kính AB . Gọi H , I lần lợt là hai
điểm chính giữa các cungAM , MB ; gọi Q là trung điểm của dây MB , K là giao điểm của
AM , HI.
a) Tính độ lớn góc HKM
b) Vẽ IP AM tại P , CMR IP tiếp xúc với đờng tròn (O)
c) Dựng hình bình hành APQR . Tìm tập hợp các điểm R khi M di động trên nửa đờng tròn
(O) đờng kính AB
Bài 135: Gọi O là trung điểm cạnh BC của ABC đều . Vẽ góc xOy =60
0
sao cho tia Ox,
Oy cắt cạnh AB , AC lần lợt tại M, N .
a) CMR OBM đồng dạng NCO , từ đó suy ra BC
2
= 4 BM.CN .
b) CMR : MO, NO theo thứ tự là tia phân giác các góc BMN, MNC .
c) CMR đờng thẳng MN luôn tiếp xúc với một đờng tròn cố định , khi góc xOy quay xung
quanh O sao cho các tia Ox,Oy vẫn cắt các cạnh AB, AC của tam giác đều ABC
Page 3 of 7
Ôn thi THPT năm 2009
Bài136: Cho M là điểm bất kì trên nửa đờng tròn tâm (O) đờng kính AB=2R (
BAM ,
).

Vẽ các tiếp tuyến Ax , By , Mz của nửa đờng tròn đó . Đờng Mz cắt Ax , By lần lợt tại N và
P . Đờng thẳng AM cắt By tại C và đờng thẳng BM cắt Ax tại D . Chứng minh :
a) Tứ giác AOMN nội tiếp đờng tròn và NP = AN + BP
b) N và P lần lợt là trung điểm các đoạn thẳng AD và BC
c) AD.BC = 4R
2
d) Xác định vị trí M để t giác ABCD có diện tích nhỏ nhất
Bài 137: Cho tứ giác ABCD nội tiếp trong đờng tâm (O) và I là điểm chính giữa cung AB
(cung AB không chứa C và D ). Dây ID , IC cắt AB lần lợt tại M và N .
a) CMR tứ giác DMNC nội tiếp trong đờng tròn
b) IC và AD cắt nhau tại E ; ID và BC cắt nhau tại F . CMR EF // AB
Bài 138: Cho đờng tròn tâm (O) đờng kính AC . Trên đoạn OC lấy điểm B (
CB

) và vẽ
đờng tròn tâm (O

) đờng kính BC . Gọi M là trung điểm của đoạn AB . Qua M kẻ dây cung
DE vuông góc với AB , DC cắt đờng tròn (O

) tại I .
a) Tứ giác ADBE là hình gì ? Tại sao ?
b) Chứng minh ba điểm I , B , E thẳng hàng
c) CMR: MI là tiếp tuyến của đờng tròn (O

) và MI
2
= MB.MC
(Lớp10- bộ đề toán)
Bài 139: Cho đờng tròn tâm (O) đờng kính AB = 2R và một điểm M di động trên một nửa

đờng tròn . Ngời ta vẽ một đờng tròn tâm (E) tiếp xúc với đờng tròn (O) tại M và tiếp xúc với
đờng kính AB tại N . Đờng tròn này cắt MA , MB lần lợt tại các điểm thứ hai C , D
a) Chứng minh : CD // AB .
b) Chứng minh MN là tia phân giác của góc AMB và đờng thẳng MN luôn đi qua một điểm
K cố định.
c) CMR : KM.KN không đổi
Bài 140: Cho một đờng tròn đờng kính AB , các điểm C , D ở trên đờng tròn sao cho C ,
D không nằm trên cùng một nửa mặt phẳng bờ AB đồng thời AD > AC. Gọi các điểm chính
giữa các cung AC , AD lần lợt là M , N ; giao điểm của MN với AC , AD lần lợt là H , I ;
giao điểm của MD với CN là K
a) CMR:
MAKNKD ;
cân
b) CMR tứ giác MCKH nội tiếp đợc . Suy ra KH // AD
c) So sánh góc CAK với góc DAK
Bài 141: Cho ba điểm A , B , C trên một đờng thẳng theo thứ tự ấy và đờng thẳng (d)
vuông góc với AC tại A . Vẽ đờng tròn đờng kính BC và trên đó lấy điểm M bất kì . Tia CM
cắt đờng thẳng d tại D ; tia AM cắt đờng tròn tại điểm thứ hai N ; tia DB cắt đờng tròn tại
điểm thứ hai P.
a) CMR tứ giác ABMD nội tiếp đợc
Page 4 of 7
Ôn thi THPT năm 2009
b) CMR : CM.CD không phụ thuộc vị trí của M
c) Tứ giác APND là hình gì ? Tại sao ?
d) Chứng minh trọng tâm G của tam giác MAC chạy trên một đờng tròn cố định khi M di
động.
Bài 142: Cho nửa đờng tròn tâm O đờng kính AB . Một điểm M nằm trên cung AB ; gọi
H là điểm chính giữa của cung AM . Tia BH cắt AM tại một điểm I và cắt tiếp tuyến tại A
của đờng tròn (O) tại điểm K . Các tia AH ; BM cắt nhau tại S .
a) Tam giác BAS là tam giác gì ? Tại sao ? Suy ra điểm S nằm trên một đờng tròn cố

định .
b) Xác định vị trí tong đối của đờng thẳng KS với đờng tròn (B;BA)
c) Đờng tròn đi qua B , I , S cắt đờng tròn (B;BA) tại một điểm N . CMR đờng thẳng MN
luôn đi qua một điểm cố định khi M di động trên cung AB.
d) Xác định vị trí của M sao cho
0
90

=AKM
.
Bài 143: Cho tứ giác ABCD nội tiếp trong một đờng tròn và P là điểm chính giữa của
cung AB không chứa C và D . Hai dây PC và PD lần lợt cắt dây AB tại E và F . Các dây AD
và PC kéo dài cắt nhau tại I ; các dây BC và PD kéo dài cắt nhau tại K . CMR:
a) Góc CID bằng góc CKD
b) Tứ giác CDFE nội tiếp đợc
c) IK // AB
d) Đờng tròn ngoại tiếp tam giác AFD tiếp xúc với PA tại A
Bài 144: Cho hai đờng tròn (O
1
) và (O
2
) tiếp xúc ngoài với nhau tại A , kẻ tiếp tuyến
chung Ax. Một đờng thẳng d tiếp xúc với (O
1
) , (O
2
) lần lợt tại các điểm B , C và cắt Ax tại
điểm M . Kẻ các đờng kính BO
1
D và CO

2
E.
a) CMR: M là trung điểm của BC
b) CMR:

O
1
MO
2
vuông
c) Chứng minh B , A , E thẳng hàng ; C , A , D thẳng hàng
d) Gọi I là trung điểm của DE . CMR đờng tròn ngoại tiếp tam giác IO
1
O
2
tiếp xúc với
đờng thẳng d
Bài 145: Cho (O;R) trên đó có một dây AB = R
2
cố định và một điểm M di động trên
cung lớn AB sao cho tam giác MAB có ba góc nhọn . Gọi H là trực tâm của tam giác MAB ;
P , Q lần lợt là các giao điểm thứ hai của các đờng thẳng AH , BH với đờng tròn (O) ; S là
giao điểm của các đờng thẳng PB , QA.
a) CMR : PQ là đờng kính của đờng tròn (O)
b) Tứ giác AMBS là hình gì ? Tại sao ?
c) Chứng minh độ dài SH không đổi
d) Gọi I là giao điểm của các đờng thẳng SH , PQ . Chứng minh I chạy trên một đờng
tròn cố định.
Page 5 of 7
Ôn thi THPT năm 2009

Bài 146: Cho đờng tròn (O;R) đờng kính AB , kẻ tiếp tuyến Ax và trên đó lấy điểm P sao
cho AP > R . Kẻ tiếp tuyến PM (M là tiếp điểm ) .
a) CMR : BM // OP
b) Đờngthẳng vuông gócvới AB tại O cắt tia BM tại N . Tứ giác OBNP là hình gì ? Tại
sao ?
c) Gọi K là giao điểm của AN với OP ; I là giao điểm của ON với PM ; J là giao điểm
của PN với OM . CMR : K , I , J thẳng hàng
d) Xác định vị trí của P sao cho K nằm trên đờng tròn (O)
Bài 147: Cho đờng tròn (O;R) , hai đờng kính AB và CD vuông góc nhau . Trong đoạn
thẳng AB lấy điểm M ( khác điểm O ) , đờng thẳng CM cắt đờng tròn (O) tại điểm thứ hai N .
Đờng thẳng vuông góc với AB tại M cắt tiếp tuyến tại N với đờng tròn (O) ở điểm P .
a) CMR tứ giác OMNP nội tiếp đợc
b) Tứ giác CMPO là hình gì ? Tại sao ?
c) CMR : CM.CN không đổi
d) CMR : khi M di động trên đoạn AB thì P chạy trên mộtđờng thẳng cố định
Bài 148: Cho hai đờng tròn (O) , (O) cắt nhau tại hai điểm A và B . Các đờng thẳng AO ,
AO cắt đờng tròn (O) lần lợt tại các điểm thứ hai C , D và cắt đờng tròn (O) lần lợt tại các
điểm thứ hai E , F .
a) CMR: B , F , C thẳng hàng
b) Tứ giác CDEF nội tiếp đợc
c) Chứng minh A là tâm đờng tròn nội tiếp tam giác BDE
d) Tìm điều kiện để DE là tiếp tuyến chung của các đờng tròn (O) , (O)
Bài 149: Cho nửa đờng tròn đờng kính AB = 2R và một điểm M bất kỳ trên nửa đờng tròn
( M khác A và B ) . Đờng thẳng d tiếp xúc với nửa đờng tròn tại M và cắt đờng trung trực của
đoạn AB tại I . Đờng tròn (I) tiếp xúc với AB cắt đờng thẳng d tại C và D ( D nằm trong góc
BOM ).
a) CMR các tia OC , OD là các tia phân giác của các góc AOM , BOM.
b) CMR : CA và DB vuông góc với AB
c) CMR :
AMB

đồng dạng
COD

d) CMR : AC.BD = R
2
Bài 150: Cho đờng tròn (O;R) đờng kính AB và một điểm M bất kỳ trên đờng tròn . Gọi
các điểm chính giữa của các cung AM , MB lần lợt là H , I . Cãc dây AM và HI cắt nhau tại
K .
a) Chứng minh góc HKM có độ lớn không đổi
b) Hạ

. Chứng minh IP là tiếp tuyến của (O;R)
c) Gọi Q là trung điểm của dây MB . Vẽ hình bình hành APQS . Chứng minh S thuộc
đờng tròn (O;R)
Page 6 of 7
Ôn thi THPT năm 2009
d) CMR kkhi M di động thì thì đờng thẳng HI luôn luôn tiếp xúc với một đờng tròn cố
định.
Bài 151: Cho nửa đờng tròn (O) đờng kính AB và hai điểm C , D thuộc nửa đờng tròn sao
cho cung AC < 90
0

0
90

=DOC
. Gọi M là một điểm trên nửa đờng tròn sao cho C là điểm
chính chính giữa cung AM . Các dây AM , BM cắt OC , OD lần lợt tại E và F .
a) Tứ giác OEMF là hình gì ? Tại sao ?
b) CMR : D là điểm chính giữa của cung MB.

c) Một đờng thẳng d tiếp xúc với nửa đờng tròn tại M và cắt các tia OC , OD lần lợt tại
I , K . CMR các tứ giác OBKM ; OAIM nội tiếp đợc.
d) Giả sử tia AM cắt tia BD tại S . Xác định vị trí của C và D sao cho 5 điểm M , O , B ,
K , S cùng thuộc một đờng tròn
Bài 152: Cho
ABC

(AB = AC ) , một cung tròn BC nằm bên trong tam giác ABC và tiếp
xúc với AB , AC tại B , C sao cho A và tâm của cung BC nằm khác phía đối với BC . Trên
cung BC lấy một điểm M rồi kẻ các đờng vuông góc MI , MH , MK xuống các cạnh tơng ứng
BC , CA , AB . Gọi giao điểm của BM , IK là P ; giao điểm của CM , IH là Q.
a) CMR các tứ giác BIMK, CIMH nội tiếp đợc .
b) CMR : MI
2
= MH . MK
c) CMR tứ giác IPMQ nội tiếp đợc . Suy ra PQ

MI
d) CMR nếu KI = KB thì IH = IC

Page 7 of 7

×