Tải bản đầy đủ (.doc) (159 trang)

các dạng toán thi vào lớp 10 chuyên TOÁN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.23 MB, 159 trang )

Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
ôn tập vào lớp 10 năm học 2009-2010

Phần 1: Các loại bài tập về biểu thức

Bài 1: Cho biểu thức :
+
+

+
+
=
6
5
3
2
aaa
a
P
a2
1
a) Rút gọn P
b) Tìm giá trị của a để P<1
Bài 2: Cho biểu thức: P=









+
+
+

+
+

+








+

65
2
3
2
2
3
:
1
1
xx
x

x
x
x
x
x
x
a) Rút gọn P
b)Tìm giá trị của a để P<0
Bài 3: Cho biểu thức: P=








+











+

+



13
23
1:
19
8
13
1
13
1
x
x
x
x
xx
x

a) Rút gọn P
b) Tìm các giá trị của x để P=
5
6
Bài 4: Cho biểu thức P=









+










+
+
1
2
1
1
:
1
1
aaaa
a
a
a
a

a) Rút gọn P

b) Tìm giá trị của a để P<1
c) Tìm giá trị của P nếu
3819 =a
Bài 5: Cho biểu thức: P=

















+
+









+


+

a
a
a
a
a
a
a
aa
1
1
.
1
1
:
1
)1(
332
a) Rút gọn P
b) Xét dấu của biểu thức M=a.(P-
2
1
)
Bài 6: Cho biểu thức: P =










+

+
+
+










+
+
+
+
12
2
12

1
1:1
12
2
12
1
x
xx
x
x
x
xx
x
x
a) Rút gọn P
b) Tính giá trị của P khi x
( )
223.
2
1
+=
Bài 7: Cho biểu thức: P=









+
+










+
1
1:
1
1
1
2
x
x
xxxxx
x
a) Rút gọn P
b) Tìm x để P

0
1
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Bài 8: Cho biểu thức: P=










+
+








++

+
a
a
a
aa
a
a
a
1

1
.
1
12
3
3
a) Rút gọn P
b) Xét dấu của biểu thức P.
a1
Bài 9: Cho biểu thức P=
.
1
1
1
1
1
2
:1









+

++

+
+

+
x
x
xx
x
xx
x
a) Rút gọn P
b) So sánh P với 3
Bài 10: Cho biểu thức : P=









+
+









+


a
a
aa
a
a
aa
1
1
.
1
1

a) Rút gọn P
b) Tìm a để P<
347
Bài 11: Cho biểu thức: P=





















+


+
+
1
3
22
:
9
33
33
2
x
x
x
x
x
x

x
x
a) Rút gọn P
b) Tìm x để P<
2
1
c) Tìm giá trị nhỏ nhất của P
Bài 12: Cho biểu thức: P=








+





+













3
2
2
3
6
9
:1
9
3
x
x
x
x
xx
x
x
xx
a) Rút gọn P
b) Tìm giá trị của x để P<1
Bài 13: Cho biểu thức : P=
3
32
1
23
32

1115
+
+



+
+

x
x
x
x
xx
x
a) Rút gọn P
b) Tìm các giá trị của x để P=
2
1
c) Chứng minh P
3
2

Bài 14: Cho biểu thức: P=
2
2
44
2
mx
m

mx
x
mx
x



+
+
với m>0
a) Rút gọn P
b) Tính x theo m để P=0.
c) Xác định các giá trị của m để x tìm đợc ở câu b thoả mãn điều kiện x>1
Bài 15: Cho biểu thức P=
1
2
1
2
+
+

+
+
a
aa
aa
aa
a) Rút gọn P
b) Biết a>1 Hãy so sánh P với P
c) Tìm a để P=2

d) Tìm giá trị nhỏ nhất của P
2
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Bài 16: Cho biểu thức P=








+

+

+
+










+
+

+
+
1
11
1
:1
11
1
ab
aab
ab
a
ab
aab
ab
a

a) Rút gọn P
b) Tính giá trị của P nếu a=
32
và b=
31
13
+

c) Tìm giá trị nhỏ nhất của P nếu
4=+ ba
Bài 17: Cho biểu thức : P=









+

+

+






+
+
+



1
1
1
1111
a
a
a

a
a
a
aa
aa
aa
aa
a) Rút gọn P
b) Với giá trị nào của a thì P=7
c) Với giá trị nào của a thì P>6
Bài 18: Cho biểu thức: P=









+

+











1
1
1
1
2
1
2
2
a
a
a
a
a
a
a) Rút gọn P
b) Tìm các giá trị của a để P<0
c) Tìm các giá trị của a để P=-2
Bài 19: Cho biểu thức P=
( )
ab
abba
ba
abba
+
+
.
4

2
a) Tìm điều kiện để P có nghĩa.
b) Rút gọn P
c) Tính giá trị của P khi a=
32
và b=
3
Bài 20: Cho biểu thức : P=
2
1
:
1
1
11
2









+
++
+

+ x
xxx

x
xx
x
a) Rút gọn P
b) Chứng minh rằng P>0

x
1
Bài 21: Cho biểu thức : P=








++
+













+
1
2
1:
1
1
1
2
xx
x
xxx
xx
a) Rút gọn P
b) Tính
P
khi x=
325 +
Bài 22: Cho biểu thức P=
xx
x
x
x 24
1
:
24
2
4
2
3

2
1
:1
















+
+
a) Rút gọn P
b) Tìm giá trị của x để P=20
Bài 23: Cho biểu thức : P=
( )
yx
xyyx
xy
yx
yx

yx
+
+










+


2
33
:
a) Rút gọn P
b) Chứng minh P
0

3
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Bài 24: Cho biểu thức P=









++




















+
+
+ baba
ba
bbaa

ab
babbaa
ab
ba
:
31
.
31
a) Rút gọn P
b) Tính P khi a=16 và b=4
Bài 25: Cho biểu thức: P=
12
.
1
2
1
12
1











+



+
+
a
aa
aa
aaaa
a
aa
a) Rút gọn P
b) Cho P=
61
6
+
tìm giá trị của a
c) Chứng minh rằng P>
3
2
Bài 26: Cho biểu thức: P=











+
+
+

+












3
5
5
3
152
25
:1
25
5
x
x
x
x

xx
x
x
xx
a) Rút gọn P
b) Với giá trị nào của x thì P<1
Bài 27: Cho biểu thức P=
( )
( )
baba
baa
babbaa
a
baba
a
222
.1
:
133
++











+


++
a) Rút gọn P
b) Tìm những giá trị nguyên của a để P có giá trị nguyên
Bài 28: Cho biểu thức P=









+


+







1
2
2

1
:
1
1
1
a
a
a
a
aa
a) Rút gọn P
b) Tìm giá trị của a để P>
6
1
Bài 29: Cho biểu thức:
P=
33
33
:
112
.
11
xyyx
yyxxyx
yx
yxyx
+
+++









++
+








+
a) Rút gọn P
b) Cho x.y=16. Xác định x,y để P có giá trị nhỏ nhất
Bài 30: Cho biểu thức : P=
x
x
yxyxx
x
yxy
x


+


1
1
.
22
2
2
3
a) Rút gọn P
b) Tìm tất cả các số nguyên dơng x để y=625 và P<0,2
4
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Bài tập rút gọn
Bài 31 :
1) Đơn giản biểu thức : P =
14 6 5 14 6 5+ +
.
2) Cho biểu thức : Q =
x 2 x 2 x 1
.
x 1
x 2 x 1 x

+ +




+ +



a) Rút gọn biểu thức Q.
b) Tìm x để
Q
> - Q.
c) Tìm số nguyên x để Q có giá trị nguyên.
H ớng dẫn :
1. P = 6
2. a) ĐKXĐ : x > 0 ; x

1. Biểu thức rút gọn : Q =
1
2
x
.
b)
Q
> - Q

x > 1.
c) x =
{ }
3;2
thì Q

Z
Bài 32 : Cho biểu thức P =
1 x
x 1 x x
+
+

a) Rút gọn biểu thức sau P.
b) Tính giá trị của biểu thức P khi x =
1
2
.
H ớng dẫn :
a) ĐKXĐ : x > 0 ; x

1. Biểu thức rút gọn : P =
x
x

+
1
1
.
b) Với x =
1
2
thì P = - 3 2
2
.
Bài 33 : Cho biểu thức : A =
1
1
1
1
+




+
x
x
x
xx
a) Rút gọn biểu thức sau A.
b) Tính giá trị của biểu thức A khi x =
4
1
c) Tìm x để A < 0.
d) Tìm x để
A
= A.
H ớng dẫn :
a) ĐKXĐ : x

0, x

1. Biểu thức rút gọn : A =
1x
x
.
b) Với x =
4
1
thì A = - 1.
c) Với 0

x < 1 thì A < 0.

d) Với x > 1 thì
A
= A.
Bài 34 : Cho biểu thức : A =
1 1 3
1
a 3 a 3 a

+
ữ ữ
+


5
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
a) Rút gọn biểu thức sau A.
b) Xác định a để biểu thức A >
2
1
.
H ớng dẫn :
a) ĐKXĐ : a > 0 và a

9. Biểu thức rút gọn : A =
3
2
+a
.
b) Với 0 < a < 1 thì biểu thức A >
2

1
.
Bài 35 : Cho biểu thức: A =
2
2
x 1 x 1 x 4x 1 x 2003
.
x 1 x 1 x 1 x

+ +
+

+

.
1) Tìm điều kiện đối với x để biểu thức có nghĩa.
2) Rút gọn A.
3) Với x

Z ? để A

Z ?
H ớng dẫn :
a) ĐKXĐ : x 0 ; x

1.
b) Biểu thức rút gọn : A =
x
x 2003+
với x 0 ; x


1.
c) x = - 2003 ; 2003 thì A

Z .
Bài 36 : Cho biểu thức: A =
( )
2 x 2 x 1
x x 1 x x 1
:
x 1
x x x x
+

+




+

.
a) Rút gọn A.
b) Tìm x để A < 0.
c) Tìm x nguyên để A có giá trị nguyên.
H ớng dẫn :
a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A =
1
1


+
x
x
.
b) Với 0 < x < 1 thì A < 0.
c) x =
{ }
9;4
thì A

Z.
Bài 37 : Cho biểu thức: A =
x 2 x 1 x 1
:
2
x x 1 x x 1 1 x

+
+ +


+ +

a) Rút gọn biểu thức A.
b) Chứng minh rằng: 0 < A < 2.
H ớng dẫn :
a) ĐKXĐ : x > 0 ; x 1. Biểu thức rút gọn : A =
1
2
++ xx

b) Ta xét hai trờng hợp :
+) A > 0


1
2
++ xx
> 0 luôn đúng với x > 0 ; x 1 (1)
+) A < 2


1
2
++ xx
< 2

2(
1++ xx
) > 2


xx +
> 0 đúng vì theo gt thì x > 0. (2)
Từ (1) và (2) suy ra 0 < A < 2(đpcm).
6
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Bài 38 : Cho biểu thức: P =
a 3 a 1 4 a 4
4 a
a 2 a 2

+
+

+
(a

0; a

4)
a) Rút gọn P.
b) Tính giá trị của P với a = 9.
H ớng dẫn :
a) ĐKXĐ : a

0, a

4. Biểu thức rút gọn : P =
2
4
a
b) Ta thấy a = 9

ĐKXĐ . Suy ra P = 4
Bài 39 : Cho biểu thức: N =
a a a a
1 1
a 1 a 1

+
+

ữ ữ
ữ ữ
+


1) Rút gọn biểu thức N.
2) Tìm giá trị của a để N = -2004.
H ớng dẫn :
a) ĐKXĐ : a

0, a

1. Biểu thức rút gọn : N = 1 a .
b) Ta thấy a = - 2004

ĐKXĐ . Suy ra N = 2005.
Bài 40 : Cho biểu thức
3x
3x
1x
x2
3x2x
19x26xx
P
+

+


+

+
=
a. Rút gọn P.
b. Tính giá trị của P khi
347x =

c. Với giá trị nào của x thì P đạt giá trị nhỏ nhất và tính giá trị nhỏ nhất đó.
H ớng dẫn :
a ) ĐKXĐ : x

0, x

1. Biểu thức rút gọn :
3x
16x
P
+
+
=

b) Ta thấy
347x =


ĐKXĐ . Suy ra
22
33103
P
+
=


c) P
min
=4 khi x=4.
Bài 41 : Cho biểu thức




















+

+
+
+

= 1
3
22
:
9
33
33
2
x
x
x
x
x
x
x
x
P
a. Rút gọn P. b. Tìm x để
2
1
P <
c. Tìm giá trị nhỏ nhất của P.
H ớng dẫn :
a. ) ĐKXĐ : x

0, x

9. Biểu thức rút gọn :
3x
3

P
+

=

b. Với
9x0
<
thì
2
1
P <

c. P
min
= -1 khi x = 0
7
Trường THCS Trấn Hưng Đạo Cam Lộ Học sinh tiêu biểu Lê Ngọc Lâm
Bµi 42: Cho A=
1 1 1
4 .
1 1
a a
a a
a a a
 
+ −
 
− + +
 ÷

 ÷
 ÷
− +
 
 
víi x>0 ,x

1
a. Rót gän A
b. TÝnh A víi a =
( ) ( )
(
)
4 15 . 10 6 . 4 15+ − −
( KQ : A= 4a )
Bµi 43: Cho A=
3 9 3 2
1 :
9
6 2 3
x x x x x
x
x x x x
   
− − − −
− + −
 ÷  ÷
 ÷  ÷

+ − − +

   
víi x

0 , x

9, x

4 .
a. Rót gän A.
b. x= ? Th× A < 1.
c. T×m
x Z

®Ó
A Z∈
(KQ : A=
3
2x −
)
Bµi 44: Cho A =
15 11 3 2 2 3
2 3 1 3
x x x
x x x x
− − +
+ −
+ − − +
víi x

0 , x


1.
a. Rót gän A.
b. T×m GTLN cña A.
c. T×m x ®Ó A =
1
2
d. CMR : A
2
3

. (KQ: A =
2 5
3
x
x

+
)
Bµi 45: Cho A =
2 1 1
1 1 1
x x
x x x x x
+ +
+ +
− + + −
víi x

0 , x


1.
a . Rót gän A.
b. T×m GTLN cña A . ( KQ : A =
1
x
x x+ +
)
Bµi 46: Cho A =
1 3 2
1 1 1x x x x x
− +
+ + − +
víi x

0 , x

1.
a . Rót gän A.
b. CMR :
0 1A
≤ ≤
( KQ : A =
1
x
x x− +
)
Bµi 47: Cho A =
5 25 3 5
1 :

25
2 15 5 3
x x x x x
x
x x x x
   
− − + −
− − +
 ÷  ÷
 ÷  ÷

+ − + −
   
a. Rót gän A.
b. T×m
x Z

®Ó
A Z∈
( KQ : A =
5
3x +
)
Bµi 48: Cho A =
2 9 3 2 1
5 6 2 3
a a a
a a a a
− + +
− −

− + − −
víi a

0 , a

9 , a

4.
8
Trường THCS Trấn Hưng Đạo Cam Lộ Học sinh tiêu biểu Lê Ngọc Lâm
a. Rót gän A.
b. T×m a ®Ó A < 1
c. T×m
a Z

®Ó
A Z∈
( KQ : A =
1
3
a
a
+

)
Bµi 49: Cho A=
7 1 2 2 2
:
4 4
2 2 2

x x x x x
x x
x x x
   
− + + −
+ − −
 ÷  ÷
 ÷  ÷
− −
− − +
   
víi x > 0 , x

4.
a. Rót gän A.
b. So s¸nh A víi
1
A
( KQ : A =
9
6
x
x
+
)
Bµi50: Cho A =
( )
2
3 3
:

x y xy
x y
x y
y x
x y x y
 
− +


 ÷
+
 ÷

− +
 
víi x

0 , y

0,
x y

a. Rót gän A.
b. CMR : A

0 ( KQ : A =
xy
x xy y− +
)
Bµi 51 : Cho A =

1 1 1 1 1
.
1 1
x x x x x x
x
x x x x x x x
 
− + + −
 
− + − +
 ÷
 ÷
 ÷
− + − +
 
 
Víi x > 0 , x

1.
a. Rót gän A.
b. T×m x ®Ó A = 6 ( KQ : A =
( )
2 1x x
x
+ +
)
Bµi 52 : Cho A =
( )
4 3 2
:

2 2
2
x x x
x x x
x x
 
 
− +
 ÷
+ −
 ÷
 ÷
 ÷
− −

 
 
víi x > 0 , x

4.
a. Rót gän A
b. TÝnh A víi x =
6 2 5−
(KQ: A =
1 x−
)
Bµi 53 : Cho A=
1 1 1 1 1
:
1 1 1 1 2x x x x x

   
+ − +
 ÷  ÷
− + − +
   
víi x > 0 , x

1.
a. Rót gän A
b. TÝnh A víi x =
6 2 5−
(KQ: A =
3
2 x
)
Bµi 54 : Cho A=
3
2 1 1 4
: 1
1 1
1
x x
x x x
x
 
+ +
 
− −
 ÷
 ÷

 ÷
− + +
 

 
víi x

0 , x

1.
a. Rót gän A.
b. T×m
x Z

®Ó
A Z∈
(KQ: A =
3
x
x −
)
Bµi 55: Cho A=
1 2 2 1 2
:
1
1 1 1
x
x
x x x x x x
 


 
− −
 ÷
 ÷
 ÷

+ − + − −
 
 
víi x

0 , x

1.
a. Rót gän A.
b. T×m
x Z

®Ó
A Z∈

9
Trường THCS Trấn Hưng Đạo Cam Lộ Học sinh tiêu biểu Lê Ngọc Lâm
c. T×m x ®Ó A ®¹t GTNN . (KQ: A =
1
1
x
x


+
)
Bµi 56 : Cho A =
2 3 3 2 2
: 1
9
3 3 3
x x x x
x
x x x
   
+ −
+ − −
 ÷  ÷
 ÷  ÷

+ − −
   
víi x

0 , x

9
. a. Rót gän A.
b. T×m x ®Ó A < -
1
2
( KQ : A =
3
3a


+
)
Bµi 57 : Cho A =
1 1 8 3 1
:
1 1
1 1 1
x x x x x
x x
x x x
   
+ − − −
− − −
 ÷  ÷
 ÷  ÷
− −
− + −
   
víi x

0 , x

1.
a. Rót gän A
b. TÝnh A víi x =
6 2 5−
(KQ: A =
4
4

x
x +
)
c . CMR : A
1≤
Bµi 58 : Cho A =
1 1 1
:
1 2 1
x
x x x x x
+
 
+
 ÷
− − − +
 
víi x > 0 , x

1.
a. Rót gän A (KQ: A =
1x
x

)
b.So s¸nh A víi 1
Bµi 59 : Cho A =
1 1 8 3 2
: 1
9 1

3 1 3 1 3 1
x x x
x
x x x
   
− −
− + −
 ÷  ÷
 ÷  ÷

− + +
   
Víi
1
0,
9
x x≥ ≠
a. Rót gän A.
b. T×m x ®Ó A =
6
5
c. T×m x ®Ó A < 1.
( KQ : A =
3 1
x x
x
+

)
Bµi 60 : Cho A =

2
2 2 2 1
.
1 2
2 1
x x x x
x
x x
 
− + − +

 ÷
 ÷

+ +
 
víi x

0 , x

1.
a. Rót gän A.
b. CMR nÕu 0 < x < 1 th× A > 0
c. TÝnh A khi x =3+2
2
d. T×m GTLN cña A (KQ: A =
(1 )x x−
)
Bµi 61 : Cho A =
2 1 1

:
2
1 1 1
x x x
x x x x x
 
+ −
+ +
 ÷
 ÷
− + + −
 
víi x

0 , x

1.

a. Rót gän A.
10
Trường THCS Trấn Hưng Đạo Cam Lộ Học sinh tiêu biểu Lê Ngọc Lâm
b. CMR nÕu x

0 , x

1 th× A > 0 , (KQ: A =
2
1x x+ +
)
Bµi 62 : Cho A =

4 1 2
1 :
1 1
1
x x
x x
x

 
− +
 ÷
− −
+
 
víi x > 0 , x

1, x

4.
a. Rót gän
b. T×m x ®Ó A =
1
2
Bµi 63 : Cho A =
1 2 3 3 2
:
1 1
1 1
x x x x
x x

x x
 
+ − − +
 
− +
 ÷
 ÷
 ÷
− −
− +
 
 
víi x

0 , x

1.
a. Rót gän A.
b. TÝnh A khi x= 0,36
c. T×m
x Z

®Ó
A Z∈

Bµi 64 : Cho A=
3 2 2
1 :
1 2 3 5 6
x x x x

x x x x x
   
+ + +
− + +
 ÷  ÷
 ÷  ÷
+ − − − +
   
víi x

0 , x

9 , x

4.
a. Rót gän A.
b. T×m
x Z

®Ó
A Z∈

c. T×m x ®Ó A < 0 (KQ: A =
2
1
x
x

+
)

11
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Phần 2: Các bài tập về hệ ph ơng trình bậc 2:
Bài 1: Cho phơng trình :
( )
2
2
2122 mxxm +=
a) Giải phơng trình khi
12 +=m
b) Tìm m để phơng trình có nghiệm
23 =x
c) Tìm m để phơng trình có nghiệm dơng duy nhất
Bài 2: Cho phơng trình :

( )
0224
2
=+ mmxxm
(x là ẩn )
a) Tìm m để phơng trình có nghiệm
2=x
.Tìm nghiệm còn lại
b) Tìm m để phơng trình 2 có nghiệm phân biệt
c) Tính
2
2
2
1
xx +

theo m
Bài 3: Cho phơng trình :

( )
0412
2
=++ mxmx
(x là ẩn )
a) Tìm m để phơng trình 2 có nghiệm trái dấu
b) Chứng minh rằng phơng trình luôn có 2 nghiệm phân biệt với mọi m
c) Chứng minh biểu thức M=
( ) ( )
1221
11 xxxx +
không phụ thuộc vào m.
Bài 4: Tìm m để phơng trình :
a)
( )
012
2
=+ mxx
có hai nghiệm dơng phân biệt
b)
0124
2
=++ mxx
có hai nghiệm âm phân biệt
c)
( )
( )

012121
22
=+++ mxmxm
có hai nghiệm trái dấu
Bài 5: Cho phơng trình :
( )
021
22
=+ aaxax
a) Chứng minh rằng phơng trình trên có 2 nghiệm tráI dấu với mọi a
b) Gọi hai nghiệm của phơng trình là x
1
và x
2
.Tìm giá trị của a để
2
2
2
1
xx +
đạt giá trị nhỏ nhất
Bài 6: Cho b và c là hai số thoả mãn hệ thức:
2
111
=+
cb

CMR ít nhất một trong hai phơng trình sau phải có nghiệm
0
0

2
2
=++
=++
bcxx
cbxx
Bài 7:Với giá trị nào của m thì hai phơng trình sau có ít nhất một nghiệm số chung:

( )
( )
)2(036294
)1(012232
2
2
=+
=++
xmx
xmx

Bài 8: Cho phơng trình :

0222
22
=+ mmxx
a) Tìm các giá trị của m để phơng trình có hai nghiệm dơng phân biệt
b) Giả sử phơng trình có hai nghiệm không âm, tìm nghiệm dơng lớn nhất của phơng trình
Bài 9: Cho phơng trình bậc hai tham số m :

014
2

=+++ mxx
a) Tìm điều kiện của m để phơng trình có nghiệm
b) Tìm m sao cho phơng trình có hai nghiệm x
1
và x
2
thoả mãn điều kiện

10
2
2
2
1
=+ xx
Bài 10: Cho phơng trình

( )
05212
2
=+ mxmx
a) Chứng minh rằng phơng trình luôn có hai nghiệm với mọi m
b) Tìm m để phơng trình có hai nghiệm cung dấu . Khi đó hai nghiệm mang dấu gì ?
12
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Bài 11: Cho phơng trình

( )
010212
2
=+++ mxmx

(với m là tham số )
a) Giải và biện luận về số nghiệm của phơng trình
b) Trong trờng hợp phơng trình có hai nghiệm phân biệt là
21
; xx
; hãy tìm một hệ thức liên hệ giữa
21
; xx
mà không phụ thuộc vào m
c) Tìm giá trị của m để
2
2
2
121
10 xxxx ++
đạt giá trị nhỏ nhất
Bài 12: Cho phơng trình

( )
0121
2
=++ mmxxm
với m là tham số
a) CMR phơng trình luôn có hai nghiệm phân biệt
1

m
b) Xác định giá trị của m dể phơng trình có tích hai nghiệm bằng 5, từ đó hãy tính tổng hai nghiêm
của phơng trình
c) Tìm một hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m

d) Tìm m để phơng trình có nghiệm
21
; xx
thoả mãn hệ thức:

0
2
5
1
2
2
1
=++
x
x
x
x

Bài 13: A) Cho phơng trình :

01
2
=+ mmxx
(m là tham số)
a) Chứng tỏ rằng phơnh trình có nghiệm
21
; xx
với mọi m ; tính nghiệm kép ( nếu có) của phơng
trình và giá trị của m tơng ứng
b) Đặt

21
2
2
2
1
6 xxxxA +=

Chứng minh
88
2
+= mmA
Tìm m để A=8
Tìm giá trị nhỏ nhất của A và giá trị của m tơng ứng
c) Tìm m sao cho phơng trình có nghiệm này bằng hai lần nghiệm kia
B) Cho phơng trình

0122
2
=+ mmxx
a) Chứng tỏ rằng phơnh trình có nghiệm
21
; xx
với mọi m.
b) Đặt A=
21
2
2
2
1
5)(2 xxxx +

CMR A=
9188
2
+ mm
Tìm m sao cho A=27
c)Tìm m sao cho phơng trình có nghiệm nay bằng hai nghiệm kia.
Bài 14: Giả sử phơng trình
0.
2
=++ cbxxa
có 2 nghiệm phân biệt
21
; xx
.Đặt
nn
n
xxS
21
+=
(n nguyên d-
ơng)
a) CMR
0.
12
=++
++ nnn
cSbSSa
b) áp dụng Tính giá trị của : A=
55
2

51
2
51









+








+
Bài 15: Cho
f
(x)
= x
2
- 2 (m+2).x + 6m+1
a) CMR phơng trình f
(x)

= 0

có nghiệm với mọi m
b) Đặt x=t+2 .Tính f
(x)
theo t, từ đó tìm điều kiện đối với m để phơng trình f
(x)
= 0

có 2 nghiệm lớn
hơn 2

Bài 16: Cho phơng trình :

( )
05412
22
=+++ mmxmx

13
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
a) Xác định giá trị của m để phơng trình có nghiệm
b) Xác định giá trị của m để phơng trình có hai nghiệm phân biệt đều dơng
c) Xác định giá trị của m để phơng trình có hai nghiệm có giá trị tuyệt đối bằng nhau và trái dấu
nhau
d) Gọi
21
; xx
là hai nghiệm nếu có của phơng trình . Tính
2

2
2
1
xx +
theo m
Bài 17: Cho phơng trình
0834
2
=+ xx
có hai nghiệm là
21
; xx
. Không giải phơng trình , hãy tính giá
trị của biểu thức :
2
3
1
3
21
2
221
2
1
55
6106
xxxx
xxxx
M
+
++

=
Bài 18: Cho phơng trình

( )
0122 =+++ mxmx
x

a) Giải phơng trình khi m=
2
1

b) Tìm các giá trị của m để phơng trình có hai nghiệm trái dấu
c) Gọi
21
; xx
là hai nghiệm của phơng trình . Tìm giá trị của m để :

2
1221
)21()21( mxxxx =+
Bài 19: Cho phơng trình

03
2
=++ nmxx
(1) (n , m là tham số)
Cho n=0 . CMR phơng trình luôn có nghiệm với mọi m
Tìm m và n để hai nghiệm
21
; xx

của phơng trình (1) thoả mãn hệ :




=
=
7
1
2
2
2
1
21
xx
xx
Bài 20: Cho phơng trình:

( )
05222
2
= kxkx
( k là tham số)
a) CMR phơng trình có hai nghiệm phân biệt với mọi giá trị của k
b) Gọi
21
; xx
là hai nghiệm của phơng trình . Tìm giá trị của k sao cho

18

2
2
2
1
=+ xx
Bài 21: Cho phơng trình

( )
04412
2
=+ mxxm
(1)
a) Giải phơng trình (1) khi m=1
b) Giải phơng trình (1) khi m bất kì
c) Tìm giá trị của m để phơng trình (1) có một nghiệm bằng m
Bài 22:Cho phơng trình :

( )
0332
22
=+ mmxmx
a) CMR phơng trình luôn có hai nghiệm phân biệt với mọi m
Xác định m để phơng trình có hai nghiệm
21
, xx
thoả mãn
61
21
<<< xx
Bài tập về hàm số bậc nhất

B ài 23 :
1) Viết phơng trình đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4).
2) Tìm toạ độ giao điểm của đờng thẳng trên với trục tung và trục hoành.
H ớng dẫn :
1) Gọi pt đờng thẳng cần tìm có dạng : y = ax + b.
14
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Do đờng thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) ta có hệ pt :



+=
+=
ba
ba
4
2



=
=

1
3
b
a
Vậy pt đờng thẳng cần tìm là y = 3x 1
2) Đồ thị cắt trục tung tại điểm có tung độ bằng -1 ; Đồ thị cắt trục hoành tại điểm có hoành độ bằng
3

1
.
B ài 2 4 Cho hàm số y = (m 2)x + m + 3.
1) Tìm điều kiện của m để hàm số luôn nghịch biến.
2) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
3) Tìm m để đồ thị của hàm số trên và các đồ thị của các hàm số y = -x + 2 ; y = 2x 1
đồng quy.
H ớng dẫn :
1) Hàm số y = (m 2)x + m + 3

m 2 < 0

m < 2.
2) Do đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. Suy ra : x= 3 ; y = 0
Thay x= 3 ; y = 0 vào hàm số y = (m 2)x + m + 3, ta đợc m =
4
3
.
3) Giao điểm của hai đồ thị y = -x + 2 ; y = 2x 1 là nghiệm của hệ pt :



=
+=
12
2
xy
xy

(x;y) = (1;1).

Để 3 đồ thị y = (m 2)x + m + 3, y = -x + 2 và y = 2x 1 đồng quy cần :
(x;y) = (1;1) là nghiệm của pt : y = (m 2)x + m + 3.
Với (x;y) = (1;1)

m =
2
1
B ài 25 : Cho hàm số y = (m 1)x + m + 3.
1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1.
2) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1 ; -4).
3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m.
H ớng dẫn :
1) Để hai đồ thị của hàm số song song với nhau cần : m 1 = - 2

m = -1.
Vậy với m = -1 đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1.
2) Thay (x;y) = (1 ; -4) vào pt : y = (m 1)x + m + 3. Ta đợc : m = -3.
Vậy với m = -3 thì đồ thị của hàm số đi qua điểm (1 ; -4).
3) Gọi điểm cố định mà đồ thị luôn đi qua là M(x
0
;y
0
). Ta có
y
0
= (m 1)x
0
+ m + 3

(x

0
1)m - x
0
- y
0
+ 3 = 0





=
=
2
1
0
0
y
x
Vậy với mọi m thì đồ thị luôn đi qua điểm cố định (1;2).
B à26 : Cho hai điểm A(1 ; 1), B(2 ; -1).
1) Viết phơng trình đờng thẳng AB.
2) Tìm các giá trị của m để đờng thẳng y = (m
2
3m)x + m
2
2m + 2 song song với đ-
ờng thẳng AB đồng thời đi qua điểm C(0 ; 2).
H ớng dẫn :
1) Gọi pt đờng thẳng AB có dạng : y = ax + b.

15
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Do đờng thẳng đi qua hai điểm (1 ; 1) và (2 ;-1) ta có hệ pt :



+=
+=
ba
ba
21
1



=
=

3
2
b
a
Vậy pt đờng thẳng cần tìm là y = - 2x + 3.
2) Để đờng thẳng y = (m
2
3m)x + m
2
2m + 2 song song với đờng thẳng AB đồng thời đi qua điểm
C(0 ; 2) ta cần :






=+
=
222
23
2
2
mm
mm

m = 2.
Vậy m = 2 thì đờng thẳng y = (m
2
3m)x + m
2
2m + 2 song song với đờng thẳng AB đồng thời đi
qua điểm C(0 ; 2)
B ài 27 : Cho hàm số y = (2m 1)x + m 3.
1) Tìm m để đồ thị của hàm số đi qua điểm (2; 5)
2) Chứng minh rằng đồ thị của hàm số luôn đi qua một điểm cố định với mọi m. Tìm điểm
cố định ấy.
3) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x =
2 1
.
H ớng dẫn :
1) m = 2.
2) Gọi điểm cố định mà đồ thị luôn đi qua là M(x

0
;y
0
). Ta có
y
0
= (2m 1)x
0
+ m - 3

(2x
0
+ 1)m - x
0
- y
0
- 3 = 0










=

=

2
5
2
1
0
0
y
x
Vậy với mọi m thì đồ thị luôn đi qua điểm cố định (
2
5
;
2
1
).
Baứi 28 : Tìm giá trị của k để các đờng thẳng sau :
y =
6 x
4

; y =
4x 5
3

và y = kx + k + 1 cắt nhau tại một điểm.
B ài 7 : Giả sử đờng thẳng (d) có phơng trình y = ax + b. Xác định a, b để (d) đi qua hai điểm A(1; 3)
và B(-3; -1).
B ài 8 : Cho hàm số : y = x + m (D).
Tìm các giá trị của m để đờng thẳng (D) :
1) Đi qua điểm A(1; 2003).

2) Song song với đờng thẳng x y + 3 = 0.
Chủ đề : Phơng trình bất ph ơng trình bậc nhất một ần
Hệ phơng trình bậc nhất 2 ẩn .
A. kiến thức cần nhớ :
1. Phơng trình bậc nhất : ax + b = 0.
Ph ơng pháp giải :
+ Nếu a 0 phơng trình có nghiệm duy nhất : x =
b
a
.
+ Nếu a = 0 và b 0

phơng trình vô nghiệm.
+ Nếu a = 0 và b = 0

phơng trình có vô số nghiệm.
16
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
2. Hệ phơng trình bậc nhất hai ẩn :



=+
=+
c'y b' x a'
c by ax
Ph ơng pháp giải :
Sử dụng một trong các cách sau :
+) Phơng pháp thế : Từ một trong hai phơng trình rút ra một ẩn theo ẩn kia , thế vào phơng trình thứ 2
ta đợc phơng trình bậc nhất 1 ẩn.

+) Phơng pháp cộng đại số :
- Quy đồng hệ số một ẩn nào đó (làm cho một ẩn nào đó của hệ có hệ số bằng nhau hoặc đối nhau).
- Trừ hoặc cộng vế với vế để khử ẩn đó.
- Giải ra một ẩn, suy ra ẩn thứ hai.
B. Ví dụ minh họa :
Ví dụ 1 : Giải các phơng trình sau đây :
a)
2
2 x
x

1 -x
x
=
+
+
ĐS : ĐKXĐ : x 1 ; x - 2. S =
{ }
4
.
b)
1 x x
1 - 2x
3
3
++
= 2
Giải : ĐKXĐ :
1 x x
3

++
0. (*)
Khi đó :
1 x x
1 - 2x
3
3
++
= 2

2x = - 3

x =
2
3
Với

x =
2
3
thay vào (* ) ta có (
2
3
)
3
+
2
3
+ 1 0
Vậy x =

2
3
là nghiệm.
Ví dụ 2 : Giải và biện luận phơng trình theo m :
(m 2)x + m
2
4 = 0 (1)
+ Nếu m

2 thì (1)

x = - (m + 2).
+ Nếu m = 2 thì (1) vô nghiệm.
Ví dụ 3 : Tìm m

Z để phơng trình sau đây có nghiệm nguyên .
(2m 3)x + 2m
2
+ m - 2 = 0.
Giải :
Ta có : với m

Z thì 2m 3

0 , vây phơng trình có nghiệm : x = - (m + 2) -
3 - m2
4
.
để pt có nghiệm nguyên thì 4


2m 3 .
Giải ra ta đợc m = 2, m = 1.
Ví dụ 3 : Tìm nghiệm nguyên dơng của phơng trình : 7x + 4y = 23.
Giải :
a) Ta có : 7x + 4y = 23

y =
4
7x - 23
= 6 2x +
4
1 x
Vì y

Z

x 1

4.
Giải ra ta đợc x = 1 và y = 4
17
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Phơng trình bậc hai định lý viet và ứng dụng
A.Kin thc cn ghi nh
1. bin lun s cú nghim ca phng trỡnh : ax
2
+ bx + c = 0 (1) trong ú a,b ,c ph thuc tham s
m,ta xột 2 trng hp
a)Nu a= 0 khi ú ta tỡm c mt vi giỏ tr no ú ca m ,thay giỏ tr ú vo (1).Phng trỡnh (1) tr
thnh phng trỡnh bc nht nờn cú th : - Cú mt nghim duy nht

- hoc vụ nghim - hoc vụ s nghim
b)Nu a

0
Lp bit s

= b
2
4ac hoc

/
= b
/2
ac
*

< 0 (

/
< 0 ) thỡ phng trỡnh (1) vụ nghim
*

= 0 (

/
= 0 ) : phng trỡnh (1) cú nghim kộp x
1,2
= -
a
b

2
(hoc x
1,2
= -
a
b
/
)
*

> 0 (

/
> 0 ) : phng trỡnh (1) cú 2 nghim phõn bit:
x
1
=
a
b
2

; x
2
=
a
b
2
+
(hoc x
1

=
a
b
//

; x
2
=
a
b
//
+
)
2. nh lý Viột.
Nu x
1
, x
2
l nghim ca phng trỡnh ax
2
+ bx + c = 0 (a

0) thỡ
S = x
1
+ x
2
= -
a
b

p = x
1
x
2
=
a
c
o lại: Nu cú hai s x
1
,x
2
m x
1
+ x
2
= S v x
1
x
2
= p thỡ hai s ú l of PT bac 2: x
2
S x + p = 0
3.Dấu của nghiệm số của phơng trình bậc hai.
Cho phơng trình bậc hai ax
2
+ bx + c = 0 (a

0) . Gọi x
1
,x

2
là các nghiệm của phơng trình .Ta có
các kết quả sau:
x
1
và x
2
trái dấu( x
1
< 0 < x
2
)

p < 0
Hai nghiệm cùng dơng( x
1
> 0 và x
2
> 0 )






>
>

0
0

0
S
p
Hai nghiệm cùng âm (x
1
< 0 và x
2
< 0)







<
>

0
0
0
S
p
Một nghiệm bằng 0 và 1 nghiệm dơng( x
2
> x
1
= 0)







>
=
>
0
0
0
S
p
Một nghiệm bằng 0 và 1 nghiệm âm (x
1
< x
2
= 0)






<
=
>
0
0
0
S

p
4.Vài bài toán ứng dụng định lý Viét
a)Tính nhẩm nghiệm.
Xét phơng trình bậc hai: ax
2
+ bx + c = 0 (a

0)
18
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Nếu a + b + c = 0 thì phơng trình có hai nghiệm x
1
= 1 , x
2
=
a
c
Nếu a b + c = 0 thì phơng trình có hai nghiệm x
1
= -1 , x
2
= -
a
c
Nếu x
1
+ x
2
= m +n , x
1

x
2
= mn và
0
thì phơng trình có nghiệm
x
1
= m , x
2
= n hoặc x
1
= n , x
2
= m
b) Lập phơng trình bậc hai khi biết hai nghiệm x
1
,x
2
của nó
Cách làm : - Lập tổng S = x
1
+ x
2

- Lập tích p = x
1
x
2
- Phơng trình cần tìm là : x
2

S x + p = 0
c)Tìm điều kiện của tham số để phơng trình bậc 2 có nghệm x
1
, x
2
thoả mãn điều kiện cho trớc.
(Các điều kiện cho trớc thờng gặp và cách biến đổi):
*) x
1
2
+ x
2
2
= (x
1
+ x
2
)
2
2x
1
x
2
= S
2
2p
*) (x
1
x
2

)
2
= (x
1
+ x
2
)
2
4x
1
x
2
= S
2
4p
*) x
1
3
+ x
2
3
= (x
1
+ x
2
)
3
3x
1
x

2
(x
1
+ x
2
) = S
3
3Sp
*) x
1
4
+ x
2
4
= (x
1
2
+ x
2
2
)
2
2x
1
2
x
2
2
*)
21

21
21
11
xx
xx
xx
+
=+
=
p
S
*)
21
2
2
2
1
1
2
2
1
xx
xx
x
x
x
x +
=+
=
p

pS 2
2

*) (x
1
a)( x
2
a) = x
1
x
2
a(x
1
+ x
2
) + a
2
= p aS + a
2
*)
2
21
21
21
2
))((
2
11
aaSp
aS

axax
axx
axax
+

=

+
=

+

(Chú ý : các giá trị của tham số rút ra từ điều kiện cho trớc phải thoả mãn điều kiện
0
)
d)Tìm điều kiện của tham số để phơng trình bậc hai có một nghiệm x = x
1
cho trớc .Tìm nghiệm
thứ 2
Cách giải: Tìm điều kiện để phơng trình có nghiệm x= x
1
cho trớc có hai cách làm
+) Cách 1:- Lập điều kiện để phơng trình bậc 2 đã cho có 2 nghiệm:

0
(hoặc
0
/

) (*)

- Thay x = x
1
vào phơng trình đã cho ,tìm đợc giá trị của
tham số
- Đối chiếu giá trị vừa tìm đợc của tham số với điều kiện(*)
để kết luận
+) Cách 2: - Không cần lập điều kiện
0
(hoặc
0
/

) mà ta thay luôn
x = x
1
vào phơng trình đã cho, tìm đợc giá trị của tham số
- Sau đó thay giá trị tìm đợc của tham số vào phơng trình và
giải phơng trình
Chú ý : Nếu sau khi thay giá trị của tham số vào phơng trình đã cho mà phơng trình bậc hai này có


< 0 thì kết luận không có giá trị nào của tham số để phơng trình có nghiệm x
1
cho trớc.
Đê tìm nghiệm thứ 2 ta có 3 cách làm
+) Cách 1: Thay giá trị của tham số tìm đợc vào phơng trình rồi giải phơng trình (nh cách 2 trình bầy ở
trên)
+) Cách 2 :Thay giá trị của tham số tìm đợc vào công thức tổng 2 nghiệm sẽ tìm đợc nghiệm thứ 2
+) Cách 3: thay giá trị của tham số tìm đợc vào công thức tích hai nghiệm ,từ đó tìm đợc nghiệm thứ 2
B . Bài tập áp dụng

19
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Bài 1: Giải và biện luận phơng trình : x
2
2(m + 1) +2m+10 = 0
Giải.
Ta có
/

= (m + 1)
2
2m + 10 = m
2
9
+ Nếu
/

> 0

m
2
9 > 0

m < - 3 hoặc m > 3 .Phơng trình đã cho có 2 nghiệm phân biệt:
x
1

= m + 1 -
9
2

m
x
2
= m + 1 +
9
2
m
+ Nếu
/

= 0

m =

3
- Với m =3 thì phơng trình có nghiệm là x
1.2
= 4
- Với m = -3 thì phơng trình có nghiệm là x
1.2
= -2
+ Nếu
/

< 0

-3 < m < 3 thì phơng trình vô nghiệm
Kết kuận:
Với m = 3 thì phơng trình có nghiệm x = 4
Với m = - 3 thì phơng trình có nghiệm x = -2

Với m < - 3 hoặc m > 3 thì phơng trình có 2 nghiệm phân biệt
x
1

= m + 1 -
9
2
m
x
2
= m + 1 +
9
2
m
Với -3< m < 3 thì phơng trình vô nghiệm
Bài 2: Giải và biện luận phơng trình: (m- 3) x
2
2mx + m 6 = 0
Hớng dẫn
Nếu m 3 = 0

m = 3 thì phơng trình đã cho có dạng
- 6x 3 = 0

x = -
2
1
* Nếu m 3

0


m

3 .Phơng trình đã cho là phơng trình bậc hai có biệt số
/

= m
2
(m
3)(m 6) = 9m 18
- Nếu
/

= 0

9m 18 = 0

m = 2 .phơng trình có nghiệm kép
x
1
= x
2
= -
32
2
/

=
a
b

= - 2
- Nếu
/

> 0

m >2 .Phơng trình có hai nghiệm phân biệt
x
1,2
=
3
23


m
mm
- Nếu
/

< 0

m < 2 .Phơng trình vô nghiệm
Kết luận:
Với m = 3 phơng trình có nghiệm x = -
2
1
Với m = 2 phơng trình có nghiệm x
1
= x
2

= -2
Với m > 2 và m

3 phơng trình có nghiệm x
1,2
=
3
23


m
mm
Với m < 2 phơng trình vô nghiệm
Bài 3: Giải các phơng trình sau bằng cách nhẩm nhanh nhất
a) 2x
2
+ 2007x 2009 = 0
b) 17x
2
+ 221x + 204 = 0
c) x
2
+ (
53
)x -
15
= 0
d) x
2
(3 - 2

7
)x - 6
7
= 0
Giải
a) 2x
2
+ 2007x 2009 = 0 có a + b + c = 2 + 2007 +(-2009) = 0
20
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Vậy phơng trình có hai nghiệm phân biệt: x
1
= 1 , x
2
=
2
2009
=
a
c
b) 17x
2
+ 221x + 204 = 0 có a b + c = 17 221 + 204 = 0
Vậy phơng trình có hai nghiệm phân biệt: x
1
= -1 ,
x
2

= -

17
204
=
a
c
= - 12
c) x
2
+ (
53
)x -
15
= 0 có: ac = -
15
< 0 .
Do đó phơng trình có hai nghiệm phân biệt x
1
, x
2
.áp dụng hệ thức Viet ta có :
x
1
+ x
2
= -(
53
) = -
3
+
5

x
1
x
2
= -
15
= (-
3
)
5
Vậy phơng trình có 2 nghiệm là x
1
= -
3
, x
2
=
5

(hoặc x
1
=
5
, x
2
= -
3
)
d ) x
2

(3 - 2
7
)x - 6
7
= 0 có : ac = - 6
7
< 0
Do đó phơng trình có hai nghiệm phân biệt x
1
, x
2
.áp dụng hệ thức Viét ,ta có






==
=+
)73(-2 76 - xx
72 - 3 xx
2 1
2 1

Vậy phơng trình có 2 nghiệm x
1
= 3 , x
2
= - 2

7
Bài 4 : Giải các phơng trình sau bằng cánh nhẩm nhanh nhất (m là tham số)
a) x
2
+ (3m 5)x 3m + 4 = 0
b) (m 3)x
2
(m + 1)x 2m + 2 = 0
Hớng dẫn :
a) x
2
+ (3m 5)x 3m + 4 = 0 có a + b + c = 1 + 3m 5 3m + 4 = 0
Suy ra : x
1
= 2
Hoặc x
2
=
3
1+m
b) (m 3)x
2
(m + 1)x 2m + 2 = 0 (*)
* m- 3 = 0

m = 3 (*) trở thành 4x 4 = 0

x = - 1
* m 3


0

m

3 (*)







=
=

3
22
1
2
1
m
m
x
x

Bài 5: Gọi x
1
, x
2
là các nghịêm của phơng trình : x

2
3x 7 = 0
a) Tính:
A = x
1
2
+ x
2
2
B =
21
xx
C=
1
1
1
1
21

+
xx
D = (3x
1
+ x
2
)(3x
2
+ x
1
)

b) lập phơng trình bậc 2 có các nghiệm là
1
1
1
x

1
1
2
x
Giải ;
21
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
Phơng trình bâc hai x
2
3x 7 = 0 có tích ac = - 7 < 0 , suy ra phơng trình có hai nghiệm phân
biệt x
1
, x
2
.
Theo hệ thức Viét ,ta có : S = x
1
+ x
2
= 3 và p = x
1
x
2
= -7

a)Ta có
+ A = x
1
2
+ x
2
2
= (x
1
+ x
2
)
2
2x
1
x
2
= S
2
2p = 9 2(-7) = 23
+ (x
1
x
2
)
2
= S
2
4p => B =
21

xx
=
374
2
= pS

+ C =
1
1
1
1
21

+
xx
=
9
1
1
2
)1)(1(
2)(
21
21
=
+

=

+

Sp
S
xx
xx

+ D = (3x
1
+ x
2
)(3x
2
+ x
1
) = 9x
1
x
2
+ 3(x
1
2
+ x
2
2
) + x
1
x
2

= 10x
1

x
2
+ 3 (x
1
2
+ x
2
2
)
= 10p + 3(S
2
2p) = 3S
2
+ 4p = - 1
b)Ta có :
S =
9
1
1
1
1
1
21
=

+
xx
(theo câu a)
p =
9

1
1
1
)1)(1(
1
21
=
+
=
Spxx
Vậy
1
1
1
x

1
1
2
x
là nghiệm của hơng trình :
X
2
SX + p = 0

X
2
+
9
1

X -
9
1
= 0

9X
2
+ X - 1 = 0
Bài 6 : Cho phơng trình :
x
2
( k 1)x - k
2
+ k 2 = 0 (1) (k là tham số)
1. Chứng minh phơng trình (1 ) luôn có hai nghiệm phân biệt với mọi giá trị của k
2. Tìm những giá trị của k để phơng trình (1) có 2 nghiệm phân biệt trái dấu
3. Gọi x
1
, x
2
là nghệm của phơng trình (1) .Tìm k để : x
1
3
+ x
2
3
> 0
Giải.
1. Phơng trình (1) là phơng trình bậc hai có:



= (k -1)
2
4(- k
2
+ k 2) = 5k
2
6k + 9 = 5(k
2
-
5
6
k +
5
9
)
= 5(k
2
2.
5
3
k +
25
9
+
25
36
) = 5(k -
5
3

) +
5
36
> 0 với mọi giá trị của k. Vậy phơng trình (1)
luôn có hai nghiệm phân biệt
2. Phơng trình (1) có hai nghiệm phân biệt trái dấu

p < 0


- k
2
+ k 2 < 0

- ( k
2
2.
2
1
k +
4
1
+
4
7
) < 0

-(k -
2
1

)
2

-
4
7
< 0 luôn đúng với mọi k.Vậy phơng trình (1) có hai nghiệm phân biệt trái dấu với
mọi k
3. Ta có x
1
3
+ x
2
3
= (x
1
+ x
2
)
3
3x
1
x
2
(x
1
+ x
2
)
Vì phơng trình có nghiệm với mọi k .Theo hệ thức viét ta có

x
1
+ x
2
= k 1 và x
1
x
2
= - k
2
+ k 2
x
1
3
+ x
2
3
= (k 1)
3
3(- k
2
+ k 2)( k 1)
22
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
= (k 1) [(k 1)
2
- 3(- k
2
+ k 2)]
= (k 1) (4k

2
5k + 7)
= (k 1)[(2k -
4
5
)
2
+
16
87
]
Do đó x
1
3
+ x
2
3
> 0

(k 1)[(2k -
4
5
)
2
+
16
87
] > 0



k 1 > 0 ( vì (2k -
4
5
)
2
+
16
87
> 0 với mọi k)


k > 1
Vậy k > 1 là giá trị cần tìm
Bài 7:
Cho phơng trình : x
2
2( m + 1) x + m 4 = 0 (1) (m là tham số)
1. Giải phơng trình (1) với m = -5
2. Chứng minh rằng phơng trình (1) luôn có hai nghiệm x
1
, x
2
phân biệt với mọi m
3. Tìm m để
21
xx
đạt giá trị nhỏ nhất (x
1
, x
2


là hao nghiệm của phơng trình (1) nói trong phần
2.)
Giải
1. Với m = - 5 phơng trình (1) trở thành x
2
+ 8x 9 = 0 và có 2 nghiệm là x
1
= 1 , x
2
= - 9
2. Có
/

= (m + 1)
2
(m 4) = m
2
+ 2m + 1 m + 4 = m
2
+ m + 5
= m
2
+ 2.m.
2
1
+
4
1
+

4
19
= (m +
2
1
)
2
+
4
19
> 0 với mọi m
Vậy phơng trình (1) luôn có 2 nghiệm phân biệt x
1
, x
2
3. Vì phơng trình có nghiệm với mọi m ,theo hệ thức Viét ta có:
x
1
+ x
2
= 2( m + 1) và x
1
x
2
= m 4
Ta có (x
1
x
2
)

2
= (x
1
+ x
2
)
2
4x
1
x
2
= 4( m + 1)
2
4 (m 4)
= 4m
2
+ 4m + 20 = 4(m
2
+ m + 5) = 4[(m +
2
1
)
2
+
4
19
]
=>
21
xx

= 2
4
19
)
2
1
(
2
++m

4
19
2
=
19
khi m +
2
1
= 0

m = -
2
1
Vậy
21
xx
đạt giá trị nhỏ nhất bằng
19
khi m = -
2

1
Bài 8 : Cho phơng trình (m + 2) x
2
+ (1 2m)x + m 3 = 0 (m là tham số)
1) Giải phơng trình khi m = -
2
9
2) Chứng minh rằng phơng trình đã cho có nghiệm với mọi m
3) Tìm tất cả các giá trị của m sao cho phơng trình có hai nghiệm phân biệt và nghiệm này
gấp ba lần nghiệm kia.
Giải:
1) Thay m = -
2
9
vào phơng trình đã cho và thu gọn ta đợc
5x
2
- 20 x + 15 = 0
phơng trình có hai nghiệm x
1
= 1 , x
2
= 3
2) + Nếu: m + 2 = 0 => m = - 2 khi đó phơng trình đã cho trở thành;
5x 5 = 0

x = 1
23
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
+ Nếu : m + 2


0 => m

- 2 .Khi đó phơng trình đã cho là phơng trình bậc hai có biệt số :

= (1 2m)
2
- 4(m + 2)( m 3) = 1 4m + 4m
2
4(m
2
- m 6) = 25 > 0
Do đó phơng trình có hai nghiệm phân biệt
x
1
=
)2(2
512
+
+
m
m
=
1
42
42
=
+
+
m

m
x
2
=
2
3
)2(2
)3(2
)2(2
512
+

=
+

=
+

m
m
m
m
m
m
Tóm lại phơng trình đã cho luôn có nghiệm với mọi m
3)Theo câu 2 ta có m

- 2 thì phơng trình đã cho có hai nghiệm phân biệt.Để nghiệm này gấp 3
lần nghiệm kia ta sét 2 trờng hợp
Trờng hợp 1 : 3x

1
= x
2


3 =
2
3
+

m
m
giải ra ta đợc m = -
2
9
(đã giải ở câu 1)
Trờng hợp 2: x
1
= 3x
2


1= 3.
2
3
+

m
m



m + 2 = 3m 9

m =
2
11
(thoả mãn điều kiện m

-
2)
Kiểm tra lại: Thay m =
2
11
vào phơng trình đã cho ta đợc phơng trình :
15x
2
20x + 5 = 0 phơng trình này có hai nghiệm
x
1
= 1 , x
2

=
15
5
=
3
1
(thoả mãn đầu bài)
Bài 9: Cho phơng trình : mx

2
2(m-2)x + m 3 = 0 (1) với m là tham số .
1. Biện luận theo m sự có nghiệm của phơng trình (1)
2. Tìm m để (1) có 2 nghiệm trái dấu.
3. Tìm m để (1) có một nghiệm bằng 3. Tìm nghiệm thứ hai.
Giải
1.+ Nếu m = 0 thay vào (1) ta có : 4x 3 = 0

x =
4
3
+ Nếu m

0 .Lập biệt số
/

= (m 2)
2
m(m-3)
= m
2
- 4m + 4 m
2
+ 3m
= - m + 4
/

< 0

- m + 4 < 0


m > 4 : (1) vô nghiệm
/

= 0

- m + 4 = 0

m = 4 : (1) có nghiệm kép
x
1
= x
2
= -
2
1
2
242
/
=

=

=
m
m
a
b
/


> 0

- m + 4 > 0

m < 4: (1) có 2 nghiệm phân biệt
x
1
=
m
mm 42 +
; x
2
=
m
mm 42 ++
Vậy : m > 4 : phơng trình (1) vô nghiệm
m = 4 : phơng trình (1) Có nghiệm kép x =
2
1
0

m < 4 : phơng trình (1) có hai nghiệm phân biệt:

x
1
=
m
mm 42 +
; x
2

=
m
mm 42 ++
m = 0 : Phơng trình (1) có nghiệm đơn x =
4
3
24
Trng THCS Trn Hng o Cam L Hc sinh tiờu biu Lờ Ngc Lõm
2. (1) có nghiệm trái dấu


a
c
< 0


m
m 3
< 0













>
<



<
>
0
03
0
03
m
m
m
m












>
<




<
>
0
3
0
3
m
m
m
m
Trờng hợp



<
>
0
3
m
m
không thoả mãn
Trờng hợp



>
<

0
3
m
m


0 < m < 3
3. *)Cách 1: Lập điều kiện để phơng trình (1) có hai nghiệm
/



0

0

m

4 (*) (ở câu a đã có)
- Thay x = 3 vào phơng trình (1) ta có :
9m 6(m 2) + m -3 = 0

4m = -9

m = -
4
9
- Đối chiếu với điều kiện (*), giá trị m = -
4
9

thoả mãn
*) Cách 2: Không cần lập điều kiện
/



0 mà thay x = 3 vào (1) để tìm đợc m = -
4
9
.Sau đó thay
m = -
4
9
vào phơng trình (1) :
-
4
9
x
2
2(-
4
9
- 2)x -
4
9
- 3 = 0

-9x
2
+34x 21 = 0


/

= 289 189 = 100 > 0 =>





=
=
9
7
3
2
1
x
x
Vậy với m = -
4
9
thì phơng trình (1) có một nghiệm x= 3
*)Để tìm nghiệm thứ 2 ,ta có 3 cách làm
Cách 1: Thay m = -
4
9
vào phơng trình đã cho rồi giải phơng trình để tìm đợc x
2
=
9

7
(Nh phần trên
đã làm)
Cách 2: Thay m = -
4
9
vào công thức tính tổng 2 nghiệm:
x
1
+ x
2
=
9
34
4
9
)2
4
9
(2
)2(2
=


=

m
m
x
2

=
9
34
- x
1
=
9
34
- 3 =
9
7
25

×