Tải bản đầy đủ (.pdf) (24 trang)

Nghiên cứu điều khiển bộ khôi phục điện áp động (DVR) để bù lõm điện áp cho phụ tải quan trọng trong xí nghiệp công nghiệp (tóm tắt)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.15 MB, 24 trang )

1

MỞ ĐẦU
Bộ khôi phục điện áp động (Dynamic Voltage Restorer–DVR) xây dựng
trên cơ sở bộ biến đổi bán dẫn là thiết bị nhằm đảm bảo khôi phục điện áp trên
các phụ tải nhạy cảm khi có sự lõm điện áp ngắn hạn, có thời gian kéo dài từ
khoảng nửa chu kỳ điện áp lưới 0,01s đến cỡ dưới 60s, từ phía nguồn cấp. Mặc
dù lõm điện áp xảy ra trong một thời gian rất ngắn, một số phụ tải như các hệ
thống điều khiển, các loại biến tần điều khiển động cơ đã có thể bị dừng.
Trong một số trường hợp các thiết bị này có thể đóng vai trò chủ chốt trong
toàn bộ dây truyền hoạt động của nhà máy, khi bị dừng dẫn tới phải dừng toàn
bộ dây truyền mà sự khởi động trở lại rất tốn kém và kéo dài. Nếu là hệ thống
điều khiển hoặc xử lý số liệu có thể dẫn tới gián đoạn hoặc mất thông tin, cũng
dẫn đến những hậu quả nghiêm trọng.
DVR là giải pháp tiết kiệm, có thể được lắp đặt để bảo vệ các tải nhạy cảm
quan trọng, những hệ thống thiết bị có sẵn và đang bị ảnh hưởng của những sự
cố lõm. Lý do phải dùng DVR là vì việc khắc phục bằng cách cải tạo hệ thống
phân phối là không thể thực hiện được, có thể do không đủ kinh phí hoặc
không thể gián đoạn sản xuất hoặc hệ thống điện nằm ngoài tầm quản lý của
doanh nghiệp.
Trong thực tế lõm điện áp là dạng nhiễu loạn xuất hiện không biết trước và
tồn tại trong thời gian ngắn, bao gồm cả biến động về biên độ điện áp cũng
như góc pha, có đặc điểm phức tạp và tính chất lõm thay đổi liên tục trong thời
gian xảy ra biến cố. Do đó yêu cầu đặt ra đối với DVR là phải có cấu trúc phù
hợp, đảm bảo được khả năng khôi phục điện áp nhất định trên tải khi nguồn
đầu vào có biến động. Hệ thống điều khiển phải đảm bảo yêu cầu về tác động
nhanh, độ chính xác cao để có thể khôi phục điện áp trên tải ngay trong
khoảng thời gian từ một nửa chu kỳ đến hai chu kỳ điện áp lưới (0.01s0.04s)
đối với các kiểu lõm điện áp. Mặt khác, DVR cần đảm bảo các chế độ hoạt
động, đó là chế độ bù, chế độ chờ, chế độ by-pass, trong phạm vi giới hạn của
công suất thiết kế.


Như vậy luận án sẽ nghiên cứu và giải quyết các vấn đề về cấu trúc phần
lực và điều khiển DVR nhằm đảm bảo cho các phụ tải nhạy cảm hoàn toàn
không bị chịu tác động của các loại sự cố kiểu lõm-dâng điện áp ngắn hạn từ
nguồn. Nghiên cứu cũng chỉ ra các điều kiện để có thể đưa vào ứng dụng thiết
bị DVR một cách hiệu quả nhất thông qua một trường hợp thực tế.
Các mục tiêu nghiên cứu sau đây sẽ thực hiện trong luận án:
 Tìm hiểu về đặc điểm lõm điện áp, nguyên nhân và những ảnh hưởng
của nó đối với xí nghiệp công nghiệp và các giải pháp giảm thiểu.
 Nghiên cứu cấu trúc mạch lực bộ khôi phục điện áp động (DVR) để
đảm bảo khả năng đưa ra điện áp bù ứng với toàn giải thay đổi của phụ tải và
biên độ lõm điện áp cũng như thời gian biến động.
2

 Nghiên cấu các cấu trúc và thiết kế tham số cho hệ thống điều khiển đảm
bảo tính tác động nhanh và chính xác của DVR
 Nghiên cứu áp dụng DVR trong lưới điện của xí nghiệp công nghiệp
thông qua một trường hợp thực tế điển hình.
 Xây dựng mô hình mô phỏng và mô hình thực nghiệm để kiểm tra chất
lượng thuật toán điều khiển đề xuất và khả năng khôi phục điện áp của DVR.
Trên cơ sở mục tiêu của luận án, đối tượng nghiên cứu của đề tài sẽ được
tập trung hướng đến giải quyết các vấn đề về:
- Nhiểu loạn lõm điện áp, ảnh hưởng của lõm điện áp đối với xí nghiệp
công nghiệp, phương pháp giảm thiểu lõm điện áp và giải pháp DVR.
- Cấu hình của DVR bao gồm; bộ biến đổi bán dẫn công suất, bộ lọc phía
xoay chiều, máy biến áp nối tiếp, bộ lưu trữ năng lượng và DC-link, các cấu
trúc liên kết giữa các phần tử.
- Các mạch vòng và thuật toán điều khiển của DVR bao gồm; Xây dựng
các mạch vòng dòng điện, điện áp, thuật toán điều khiển điện áp tải của DVR,
thuật toán điều khiển phát hiện lõm, áp dụng thuật toán điều khiển đồng bộ
lưới (PLL), thiết kế các bộ điều khiển được áp dụng.

- Mô hình mô phỏng bao gồm; mô hình lưới điện, mô hình DVR, mô hình
hóa đối tượng được bảo vệ là tải nhạy cảm quan trọng, mô hình hóa các biến
cố điện áp trên lưới, mô hình thực hiện trên phần mềm Matlap/Simulink.
Mô hình thực nghiệm DVR bảo vệ tải nhạy cảm P
đm
=5kW, điện áp 380V xây
dựng tại phòng thí nghiệm.
- Trường hợp áp dụng DVR với lưới điện thực tế gồm; tìm hiểu lưới điện
thực tế của nhà máy xi măng Hoàng Mai, các biến cố điện áp trên lưới, phụ tải
nhạy cảm quan trọng bị ảnh hưởng tại nhà máy, ví trí lắp đặt DVR.
Nội dung của luận án bao gồm phần mở đầu, 5 chương nội dung nghiên
cứu và phần kết luận, kiến nghị. Toàn bộ nội dung trình bày trong 141 trang,
trong đó có 5 bảng và 122 đồ thị và hình vẽ.
Chương1: GIẢM THIỂU ẢNH HƯỞNG CỦA LÕM ĐIỆN ÁP BẰNG BỘ
KHÔI PHỤC ĐIỆN ÁP ĐỘNG (DVR)
1.1 Chất lượng điện năng và vấn đề lõm điện áp
Vấn đề chất lượng điện bao gồm một loạt các rối loạn liên quan đến điện
áp, dòng điện và độ lệch tần số. Các nhiễu loạn đó có thể là: Gián đoạn ngắn,
lõm/dâng điện áp, quá độ dòng điện và điện áp, sự méo dạng của các sóng
dòng điện và điện áp, nháy điện, mất cân bằng, hay đổi tần số nguồn.
Ảnh hưởng của các nhiễu loạn gây nên các sự cố và gián đoạn hoạt động
của các tải nhạy cảm quan trọng trong công nghiệp, dẫn đến những tổn thất về
kinh tế trong sản xuất.
Trong số các nhiễu loạn trên hệ thống điện thì lõm điện áp là loại nhiễu
loạn nghiêm trọng nhất và có tần suất xuất hiện lớn nhất với 31%.
3

Theo IEEE Std. 1159-1995, lõm điện áp là hiện tượng giảm điện áp tức
thời tại một thời điểm mà giá trị điện áp hiệu dụng (RMS) của nó giữa 10%
đến 90% so với điện áp chuẩn, tiếp theo đó điện áp được phục hồi trong một

thời gian rất ngắn, từ một nửa chu kỳ của điện áp lưới (10ms) đến một phút.

Hình 1.4 Lõm điện áp một pha và lõm điện áp ba pha,[22]
 Nguồn gốc lõm điện áp: Các lỗi hệ thống nguồn, khởi động thiết bị công
suất lớn, đóng mạch biến áp năng lượng vào hệ thống, các biến động của tải
 Đặc điểm lõm điện áp:
- Độ lớn lõm điện áp: Là điện áp hiệu dụng theo phần trăm hoặc trên một
đơn vị tương đối (p.u) còn lại trong ''biến cố'' của điện áp trước khi có lỗi.
- Khoảng thời gian lõm điện áp: Là khoảng thời gian giảm điện áp hiệu
dụng dưới 90% của lõm điện áp danh định
- Nhảy góc pha: Nhảy góc pha được xem như là một sự dịch chuyển điểm
qua không của điện áp tức thời.
- Các kiểu của lõm điện áp ba pha: Lõm điện áp cân bằng và lõm điện áp
không cân bằn.
- Lan truyền của lõm điện áp: Một lõm điện áp không cân bằng khi truyền
qua máy biến áp ba pha đang được kết nối sử dụng trong hệ thống điện sẽ dẫn
đến làm phát sinh các kiểu mới của lõm điện áp.
1.2 Bộ khôi phục điện áp động (DVR)
Bộ khôi phục điện áp động là một trong số các thiết bị có khả năng bảo vệ
tải nhạy cảm tốt nhất trước những tác động của lõm điện áp.
1.2.1 Các thiết bị giảm thiểu lõm điện áp
 Giảm thiểu bằng các thiết bị thụ động
 Các hệ thống giảm thiểu dựa trên BBĐ điện tử côngsuất
1.2.2 Giảm thiểu lõm điện áp bằng DVR
 Nguyên tắc hoạt động của DVR: Về cơ bản, DVR được thiết kế để tự
động chèn vào một điện áp u
inj
vào lưới điện như thể hiện trong hình 1.16.
Grid
Load


PCC

u
l
(t)
i
g
(t)
i
l
(t)
u
inj
(t)
u
s
(t)
u
g
(t)
R
g
L
g


Hình 1.16 Sơ đồ mô tả nguyên tắc hoạt động của DVR[32]
trong đó, u
g

là điện áp lưới, u
inj
điện áp chèn vào từ DVR, và u
L
là điện áp tải.


4

Hình 1.17. Đồ thị vector thể hiện nguyên lý chèn điện áp của DVR, trên đó
điện áp trên tải được khôi phục sẽ là: u
L
= u
g,sag
+ u
inj
.

Hình 1.17 Đồ thị vector thể hiện nguyên lý bù lõm của DVR [32]
Để có thể khôi phục cả độ lớn và góc pha của điện áp tải như điều kiện
trước lỗi, ở đây, DVR phải chèn vào cả công suất tác dụng và công suất phản
kháng, tài liệu [32].
load
sagg
inj
P
U
P











cos
)cos(
1
.
(1.6)
load
sagg
inj
Q
U
Q










sin

)sin(
1
.
(1.7)


Vị trí của DVR trong hệ thống phân phối:
DVR có thể được kết nối
ở cấp MV hoặc ở cấp LV trong lưới điện phân phối như minh họa ở hình 1.19
và ở hình 1.20.

Hình.1.19
Vị trí DVR tại cấp MV
Hình 1.20
Vị trí DVR cấp điện áp LV

trong hệ thống phân phối[39] trong hệ thống phân phối[39]
 Cấu trúc chung của DVR: Cấu trúc của DVR gồm các thành phần
chính sau: máy biến áp nối tiếp, bộ lọc đầu ra, bộ biến đổi và bộ lưu trữ năng
lượng như được trình bày ở hình 1.21.

Hình 1.21 Sơ đồ cấu trúc một pha gồm các thành phần chính của DVR[19]
φ
ψ
I
l
U
L
U
inj

U
g,sag

VSC

Bộ
lọc

Grid
Tải NC

MBA
chèn
PCC

u
L









i
g










i
L









R
f

L
f





C
f






DC-Line






u
inj









u
s










u
g









R
g
L
g














Bộ
lưu
NL

Thyristor
By-pass

by-pass disconnection
Tải 1
Tải 2
Tải 3
DVR
50/10kV
10/0.4k
V
50/10kV
10/0.4k
V
Tải 1
Tải 2
Tải 3
10/0.4k
V
DVR
5

1.3 Điều khiển DVR
Các cấu trúc và thuật toán điều khiển bộ khôi phục điện áp động đã được

nghiên cứu và công bố trong nhiều công trình gần đây có thể kể đến như các
công trình nghiên cứu trong các tài liệu [34, 57, 53, 51], trong đó, có thể phân
thành hai dạng điều khiển chủ yếu sau đây.
 Cấu trúc điều khiển trong hệ thống tự nhiên.
 Cấu trúc điều khiển vector.

u
g(abc)
PWM


+
u
L(abc)
abc

αβ

abc

αβ

PI

(Feedfoword)

u
dq
g
u

*
inj
u
dq
inj
u
*
L
(Feed-back)

Pht u
*
L

-
+
-
+
-
+
+
dq

dq
dq

αβ

dq


αβ





PLL
u
*
inv
Phát hiện
lõm

abc

αβ


Hình 1.28 Cấu trúc điều khiển vector phản hồi kết hợp truyền thẳng trên hệ
tọa độ quay dq,[41]
- Mạch vòng điều khiển điện áp được viết bởi phương trình.
)(
** d
inj
d
inj
u
q
inj
F

d
inj
d
f
uuGuCjii 

(1.33)
)(
** q
inj
q
inj
u
d
inj
F
q
inj
q
f
uuGuCjii 

(1.34)
trong đó: u
dq
inj
– lượng điện áp chèn vào thực tế của DVR, u
*dq
inj
– lượng

đặt của điện
1.4 Tóm tắt và kết luận
Lõm điện áp là loại nhiễu loạn nghiêm trọng, chỉ xảy ra trong thời gian rất
ngắn và tính chất của lõm điện áp biến đổi phức tạp trong một biến cố. DVR là
thiết bị có khả năng hạn chế tốt nhất những tác động của lõm điện áp để bảo vệ
tải nhạy cảm trong các xí nghiệp công nghiệp. Để điều khiển DVR khôi phục
điện áp trên tải chính xác và kịp thời, các bộ điều khiển được nghiên cứu trước
đây thực hiện trong hệ thống tự nhiên và điều khiển vector.
Điều khiển trong hệ thống tự nhiên có khả năng điều khiển độc lập và linh
hoạt theo từng pha riêng biệt. Tuy nhiên nó là phức tạp vì phải thực hiện trên
cả ba pha và khó khăn hơn nữa là nếu hệ thống điều khiển cho cả thành phần
thứ tự thuận, thứ tự nghịch và thứ tự không trong trường hợp bù lõm điện áp
không cân bằng.
Điều khiển vector trên hệ tọa độ quay dq có sử dụng vòng khóa pha PLL để
đồng bộ điện áp chèn vào của DVR với điện áp lưới. Cấu trúc điều khiển đã
được áp dụng đơn giản với chỉ một vòng điều chỉnh điện áp thứ tự thuận được
được thực hiện. Với cấu trúc điều khiển như vậy DVR có khả năng bảo vệ các
tải nhạy cảm có công suất nhỏ, điện áp thấp, thường bảo vệ cho một tải độc lập
và cơ bản đáp ứng được cho điều khiển bù lõm điện áp cân bằng.
6

Tuy nhiện, những hạn chế dẫn đến phát sinh các vấn đề nghiêm trọng khi
bù lõm của các cấu trúc điều khiển trên được chỉ ra trong các trường hợp sau
đây:
- Đối với các lõm điện áp mất cân bằng và tồn tại nhiều thành phần nhiễu
loạn trong một lõm điện áp (ví dụ một lõm điện áp gồm giảm độ lớn+nhảy góc
pha+mất cân bằng+méo dạng điện áp) thì sẽ dẫn đến làm chậm trể thời gian
khôi phục điện áp tải, làm mất đồng bộ và sai lệch giá trị điện áp chèn của
DVR gây ra bị biến dạng và dao động điện áp tải, làm tăng lượng quá điều
chỉnh tại thời điểm đầu và thời điểm kết thúc của quá trình bù, cuối cùng tải

nhạy cảm không những được bảo vệ mà còn ảnh hưởng bởi các nhiễu loạn do
chính DVR gây nên.
- Các cấu trúc điều khiển vector thường được đơn giản bằng việc chỉ có
vòng điều chỉnh điện áp mà không có vòng điều chỉnh dòng điện, Tuy nhiên,
điều này sẽ không đảm bảo an toàn cho bộ biến đổi điện tử công suất nối lưới
của DVR, khi làm việc mà gặp phải ngắn mạch tải hay quá tải sẽ dẫn đến nguy
cơ hỏng bộ biến đổi.
- Sụt áp trên bộ biến đổi và các phần tử nối tiếp với bộ biến đổi như bộ lọc,
máy biến áp nối tiếp không được bù, dẫn đến điện áp chèn vào lưới bị sai lệch,
đặc biệt với các hệ thống công suất lớn và điện áp thấp.
Để khôi phục điện áp tải một cách nhanh chóng, kịp thời và chính xác,
đồng thời khắc phục được một số tồn tại của các cấu trúc điều khiển trước đây
thì việc có một cấu trúc phần cứng phù hợp và một thuật toán điều khiển cho
DVR đủ tốt, để cải thiện đặc tính động học của DVR trong bù tất cả các kiểu
lõm điện áp là điều rất quan trọng. Chính vì vậy phân tích lựa chọn cấu trúc
phần lực và phát triển thuật toán điều khiển của DVR, cũng như đưa ra giải
pháp áp dụng DVR cho các xí nghiệp công nghiệp là mục tiêu nghiên cứu mà
đề tài cần hướng đến.
Chương 2: CẤU TRÚC HỆ THỐNG PHỤC HỒI ĐIỆN ÁP ĐỘNG
Các thành phần trong cấu trúc DVR liên kết theo những cách khác nhau, liên
quan chặt chẽ đến khả năng khôi phục điện áp tải của DVR và chiến lược xây
dựng thuật toán điều khiển của nó trong việc bù lõm điện áp và bù các biến
động điện áp trên lưới điện.
2.1 Các thành phần cơ bản của DVR
Sơ đồ cấu trúc chung của DVR đã được trình bày ở hình 1.21, tại mục 1.4.3
của chương một, trong đó đã chỉ ra các thành cơ bản của DVR bao gồm: Máy
biến áp nối tiếp, Bộ lọc L
f
C
f

, Bộ biến đổi VSC, Hệ thống năng lượng DC-Link
và bộ lưu trữ năng lượng ES. Sau đây sẽ trình bày chi tiết các thành phần đó.
2.2 Bộ biến đổi
2.2.1 Cấu trúc bộ biến đổi nối lưới thông qua máy biến áp
Hình 2.1 là cấu trúc BBĐ nửa cầu kết nối máy biến áp sao/sao hở.
Hình 2.2 Cấu trúc BBĐ cầu ba pha kết nối máy biến áp nối tam giác/sao hở.
7


U
DC
VSC

DC-Like

BANT

Phía
nguồn

Phía tải

U
DC/2
U
DC/2
VSC

DC-Like


BANT

Phía
nguồn

Phía tải


Hình 2.1 Cấu trúc BBĐ nửa cầu kết Hình 2.2 Cấu trúc BBĐ cầu ba pha
nối máy biến áp kiểu sao/sao hở[27] kết nối máy biến áp kiểu tam giác/sao hở[27]
- Hình 2.3 là cấu trúc nghịch lưu ba pha dùng ba cầu một pha.

U
DC
VSC

DC-Line

BANT

Phía nguồn

Phía tải


Hình 2.3 Cấu trúc nghịch lưu ba pha dùng ba BBĐ một pha[39]
- Hình 2.4, hình 2.5, hình 2.6 là các cấu trúc sử dụng BBĐ đa mức

+


VSC

DC-Line

Phía nguồn

Phía tải

+

+

-

-

E

E

U
DC
-

BANT

U
DC/2
U
DC/2

VSC

DC-Line

BANT

Phía nguồn

Phía tải


Hình 2.4 Cấu trúc bộ biến đổi đa mức Hình 2.5 Cấu trúc bộ biến đổi đa mức
diode kẹp nối máy biến áp tam giác/sao hở[28] tụ kẹp nối máy biến áp sao/sao hở[28]

VSC_3

DC-Line

Phía nguồn

Phía tải

VSC_2

VSC_11

BANT-1

U
DC

U
DC
U
DC
U
DC
U
DC
U
DC
BANT-2

BANT-3

DC-Line

DC-Line


Hình 2.6 Cấu trúc cascade đa bậc nối máy biến áp sao hở/sao hở[63,64]
8

2.2.2 Cấu trúc bộ biến đổi nối lưới trực tiếp
Trên hình 2.7 trình bày các cấu trúc BBĐ nối lưới trực tiếp liên kết một
pha và ba pha.

Tải

Nguồn


L1

Nguồn

L1

N


Hình 2.7 Các cấu trúc bộ biến đổi kết nối trực tiếp một pha[64]

L
1
L
2
L
3
C
f
C
f
C
f
C
DC
C
DC
C
DC
Cầu 1


Cầu 2

Cầu 3

L
f
L
f
L
f

Hình 2.8 Các cấu trúc bộ biến đổi kết nối trực tiếp hệ thống ba pha[27]
2.2.3 Các phương pháp điều chế
2.3 Bộ lọc tần số chuyển mạch
Để cải thiện dạng điện áp chèn tạo ra bởi bộ biến đổi người ta sử dụng bộ
lọc thụ động. Thông thường nhất sử dụng bộ lọc là mạch cộng hưởng LC có tụ
điện kết nối song song với bộ biến đổi, trong thực tế thường được lựa chọn
một trong hai cấu trúc sau đây.

Z
s
U
S
Tải

U
inv
C
f

L
f
U
L
~

U
Z
U
inj
Z
s
U
Z
U
f
Tải

R
f
C
f
U
L
~

U
s

Hình 2.12 Cấu trúc bộ lọc LC phía bộ biến đổi Hình 2.13 Cấu trúc bộ lọc

RC phía nguồn
2.4 Máy biến áp nối tiếp
Trong phần lớn các giải pháp thực tế sử dụng biến áp nối tiếp cho hệ thống
DVR. Do yêu cầu sự độc lập từ thông trong khi bù nhiễu loạn không cân bằng
nên thường áp dụng ba biến áp một pha.
9

2.5 Năng lượng hệ thống DVR
Để bù lõm điện áp hệ thống DVR cần tạo ra điện áp chèn và công suất tác
dụng để cung cấp cho tải. Năng lượng cần thiết cho mục đích đó cần được tích
lũy ở phía DC-link của bộ biến đổi hoặc bằng một phương pháp khác. Có thể
phân loại hệ thống năng lượng DVR theo hai kiểu, tài liệu [27,28].
 Các kiểu DVR được cấp nguồn từ bộ tích trữ năng lượng.
 Các kiểu DVR không có bộ lưu trữ năng lượng.
2.6 Bảo vệ hệ thống phục hồi điện áp động
Hệ thống DVR cần bảo vệ trong các tình trạng được coi là khẩn cấp xảy ra
trong khi làm việc. Các tình trạng sau đây được coi là không an toàn cho DVR:
 Bảo vệ ngắn mạch
 Bảo vệ trước sự tăng điện áp phía DC-link
 Bảo vệ hở mạch lưới
2.7 Lựa chọn sơ đồ cấu trúc cho DVR

Z
dd
Grid
u
sb
(t)
u
sc

(t)
u
ga
(t)
u
gb
(t)
u
gc
(t)
u
La
(t)
u
Lb
(t)
u
Lc
(t)
VSC

Bộ lọc L
f
C
f
MBA nối tiếp
i
ga
(t)
i

gb
(t)
i
gc
(t)
i
inja
(t)
i
injb
(t)
i
injc
(t)
i
ca
(t)
i
cb
(t)
i
cc
(t)
i
fa
(t)
i
fb
(t)
i

fc
(t)
u
ca
(t)
u
cb
(t)
u
cc
(t)
s
a

s
b

s
c

u
conv,a
(t
)
u
conv,b
(t
)
u
conv,c

(t)
Tải
nhạy
cảm
+
-
+
-
+
-
+
-
+
-
+
-
~
~
~
+
-
+
-
+
-
u
sa
(t)
+
-

ES_DC-link control
DC-link
AC/DC


Hình 2.25 Sơ đồ cấu trúc của DVR nối lưới ở cấp MV
Cấu trúc phần cứng của DVR được lựa chọn cho DVR làm việc tại cấp
MV. Cấu trúc tạo cho DVR có khả năng bù được cả thành phần thứ tự thuận
và thứ tự nghịch khi xảy ra một lõm điện áp không cân bằng. Với cấu trúc lựa
chọn nếu được kết hợp với một thuật toán điều khiển hợp lý sẽ tạo nên khả
năng bù được cả độ lớn và góc pha trong một lõm điện áp để bảo vệ được đa
số các tải nhạy cảm.
2.8 Tóm tắt và kết luận
Trong chương hai các thành phần trong cấu trúc của bộ khôi phục điện áp
động đã được phân tích cụ thể, trong đó đã làm rõ những vẫn đề liên quan đến
hệ thống mạch lực của DVR đồng thời đã chỉ ra các cách thức kết nối giữa các
10

thành phần của cấu trúc DVR và đặc biệt là kết nối của DVR với lưới điện.
Đây là cơ sở quan trọng để chỉ ra các khả năng làm việc của DVR, cũng là các
cơ sở để xây dựng thuật toán điều khiển cho DVR thực hiện tốt các khả năng
đó. Cuối cùng là lựa chọn một cấu trúc phần cứng của DVR trên hình 2.25
được áp dụng để bù lõm điện áp ở cấp trung áp (MV) của hệ thống điện ba pha
ba dây. Với cấu trúc này khá đơn giản, nhưng đủ để áp dụng cho DVR với khả
năng có thể bù được cả lõm điện áp cân bằng và không cân bằng và các nhiễu
loạn điệp áp khác như dao động điện áp hay méo dạng điện áp. Với cấu trúc
này, thuật toán và cấu trúc điều khiển sẽ được nghiên cứu phát triển tiếp ở
chương 3 trong của luận án.
Chương 3: ĐIỀU KHIỂN HỆ THỐNG PHỤC HỒI ĐIỆN ÁP ĐỘNG
Trong điều khiển hệ thống DVR bao gồm điều khiển điện áp tải, điều khiển

điện áp DC-link, điều khiển đồng bộ điện áp lưới và điều khiển phát hiện lõm
điện áp. Trong đó điều khiển điện áp tải là phức tạp và quan trọng nhất, vì nó
quyết định trực tiếp đến khả năng làm việc hiệu quả của DVR trong bù lõm
điện áp để bảo vệ tải nhạy cảm.
3.1 Các chế độ hoạt động và hạn chế của DVR
 Chế độ hoạt động.
 Hạn chế của DVR
3.2 Các phương pháp tạo điện áp chèn vào
- Phương pháp tạo điện áp chèn vào với lõm điện áp cân bằng.
- Phương pháp tạo điện áp chèn vào với lõm điện áp không cân bằng.
3.3 Mô hình toán học của VSC và bộ lọc LC nối lưới
Từ sơ đồ cấu trúc các thành phần của DVR ở hình 2.25 ta xây dựng sơ đồ
một dây hình 3.5 trong đó DVR được đại diện bởi bộ biến đổi VSC và bộ lọc
LC.

Hình. 3.5 Sơ đồ một dây VSC và bộ lọc LC nối lưới
Từ mô hình một dây hình 3.5 chuyển thành mô hình các phần tử tương
đương, hình 3.7.
Grid
PCC

u
L
i
g
i
L
u
g
u

g
R
g
L
g

ES

VSC

R
f
L
f
i
f
DC-Line

Tra,NT

C
f


Load

u
c
=u
i

nj
11


Hình. 3.7 Mô hình VSC và bộ lọc LC nối lưới[62]
Từ sơ đồ ở hình 3.7, ta viết các phương trình trạng thái của VSC và bộ lọc
LC như sau.
   
 


































































injx
fx
injxinjx
f
invx
f
injx
fx
f
ff
f
injx
fx
u
i
ui
C

u
L
u
i
C
LL
R
u
i
dt
d
10;
1
0
0
1
0
1
1
(3.21)
3.4 Cấu trúc mạch vòng điều khiển điện áp tải đáp ứng điều kiện điện áp
mất cân bằng.
Phát triển cấu trúc và thuật toán điều khiển mà có thể xử lý các được thành
phần thứ tự xuất hiện trong một biến cố lõm điện áp không cân bằng là điều rất
cần thiết để cải thiên đặc tính động học, đảm bảo chính xác và làm việc ổn
định của DVR.
3.4.3 Cấu trúc điều khiển của DVR
Cấu trúc điều khiển của DVR được xây dựng trên hình 3.13.
Trong sơ đồ các ký hiệu được giải thích như sau: u
sa

(t), u
sb
(t), u
sc
(t) là các điện
áp pha nguồn. Các điện áp lưới tại điểm nối chung PCC và dòng điện lưới
được ký hiệu tương ứng bởi u
g,a
(t), u
g,b
(t), u
g,c
(t) và i
g,a
(t), i
g,b
(t), i
g,c
(t). Điện áp
tải được ký hiệu là: u
L,a
(t), u
L,b
(t)
,
u
L,c
(t). Điện áp 3 pha của bộ biến đổi VSC và
dòng điện qua điện cuộn cảm lọc tương ứng được ký hiệu: u
inv,abc

(t), và i
f,abc
(t).
Điện áp tụ lọc được ký hiệu: u
c,abc
(t). Điện áp và dòng điện chèn vào thông qua
máy biến áp nối tiếp tương ứng được ký hiệu bởi: u
inj,abc
(t) và i
inj,abc
(t). Điện áp
phía một chiều (DC-Line) được ký hiệu là u
dc
(t). Các ký hiệu trong bộ điều
khiển (BĐK): BĐK_
TTT,
BĐK_
TTN
là bộ điều khiển thứ tự thuận và bộ điều
khiển thứ tự nghịch. u
p
*, u
n
* là điện áp đặt cho thành phần thứ tự thuận và
nghịch.
Tín hiệu đầu vào điều khiển được xác định là điện áp bộ biến đổi (u
inv,abc
),
các biến được điều khiển là dòng điện qua cuộn cảm lọc L
f

(i
f,abc
) và điện áp
chèn vào thực tế (u
inj,abc
), biến nhiễu loạn là dòng điện chèn vào (i
inj,abc
).
Lượng đặt của điện áp tải u
*
L,abc
, lượng đặt điện áp chèn vào của DVR
được xác định.

abcgabcLabcinj
uuu
,
*
,
*
,

(3.25)
i
dc


C
f
i

inj,x


u
inv,x
~
R
f,x
i
f,x
~
L
f,x
u
inj,x
i
c,x


r
dc
U
cd
C
dc


ES
12


Điện áp chèn vào của DVR chính bằng điện áp trên tụ lọc C
f
, u
inj,abc
= u
c,abc
.
Để điều khiển điện áp chèn vào của DVR chính là điều chỉnh điện áp trên tụ
điện C
f
.
Dòng điện chèn vào i
inj,abc
= n.i
g,abc
.

L
o
a
d
Grid
~


u
s,a
u
s,b
u

s,c
i
g,a
i
g,b
i
g,c
i
inj,abc
u
inj,abc
u
inj,abc
=u
c,abc

i
f,abc
L
f

n.u
inj,
a


u
inv,abc

PWM



u
g,abc
/n
BĐK


VSC


C
f

~
~
u
g,a
u
g,b
u
g,c
u
L,a
u
L,b
u
L,c
Z
s,a

Z
s,b
Z
s,c
C
DC

+ u
dc
-
DC-link
Energy storage
i
f,abc
u
αβ

inv,p

u
αβ

inv,n

u
αβ

inv

u

p*

u
n*
PLL


BĐK
TTT
BĐK
TTN
Chuyển
đổi
abc/αβ
abc/dq
Chuyển
đổi
sang αβ


Hình 3.13 Sơ đồ cấu trúc điều khiển của DVR
3.5 Xây dựng thuật toán điều khiển
3.5.1 Mô hình DVR trên hệ tọa độ tĩnh αβ và hệ tọa độ quay dq
- Áp dụng định luật Kirchhoff cho điện áp và dòng điện ba pha ta có các
phương trình như sau :
)()()()()(
)()()()()(
)()()()()(
titu
dt

d
Ctititi
titu
dt
d
Ctititi
titu
dt
d
Ctititi
injcinjcfinjcCfcfc
injbinjbfinjbCfbfb
injainjafinjaCfafa



(3.26)
0)()()()(
0)()()()(
0)()()()(



ti
dt
d
LtiRtutu
ti
dt
d

LtiRtutu
ti
dt
d
LtiRtutu
fcffcfinjcinvc
fbffbfinjbinvb
faffafinjainva

(3.27)
- Áp dụng chuyển đổi Clacrke từ các phương trình (3.26) và (3.27) có thể
viết trên hệ tọa độ tĩnh αβ như sau:
13

   
)(
0
)(
0
)(
)(
1
1
)1(
)1(
)()(
)(
)(
)(
)(

ki
C
T
ku
L
T
ku
ki
C
T
L
T
ku
ki
inj
f
s
inv
f
s
inj
f
f
s
f
s
inj
f






























































(3.34)
Áp dụng phép chuyển đổi tọa độ Park từ hệ tọa độ tĩnh αβ sang tọa độ quay

dq với một PLL đồng bộ với vector điện áp lưới, các phương trình (3.34) được
biến đổi thành (3.49).






























































































































)(
)(
)(
)(
)(
)(
)(
)(
)(
)(
)(
)(
1
0
0
1
00
00
00
00
1
0
0
1
0
1

0
00
1
1
0
0
1
q
inj
d
inj
f
f
q
inv
d
inv
f
f
q
inj
d
inj
q
f
d
f
f
f
ff

f
ff
f
q
inj
d
inj
q
f
d
f
i
i
C
C
u
u
L
L
u
u
i
i
C
C
LL
R
LL
R
u

u
i
i
dt
d




(3.39)
3.5.2 Thuật toán điều khiển trên hệ trục tọa độ quay dq
Thuật toán điều khiển điện áp tải được mô tả dưới dạng các phương trình
toán học và các sơ đồ sau đây.
 Bộ điều chỉnh dòng điện
- Đối với thành phần thứ tự thuận:
))()1(()()()()(
*
kiki
T
L
GkiLjkiRkuku
dq
inj
dq
f
s
f
TTT
PI
dq

ff
dq
ff
dq
inj
dq
inv




(3.42)
- Đối với thành phần thứ tự nghịch:
))()1(()()()()(
*
kiki
T
L
GkiLjkiRkuku
dq
inj
dq
f
s
f
TTN
PI
dq
ff
dq

ff
dq
inj
dq
inv




(3.43)
 Bộ điều chỉnh điện áp
- Đối với thành phần thứ tự thuận:
)())()(()()1(
*
kuCjkuku
T
C
Gkiki
dq
injf
dq
inj
dq
inj
s
f
TTT
PI
dq
inj

dq
f



(3.44)
- Đối với thành phần thứ tự nghịch:
)())()(()()1(
*
kuCjkuku
T
C
Gkiki
dq
injf
dq
inj
dq
inj
s
f
TTN
PI
dq
inj
dq
f





(3.45)
Cấu trúc hệ thống điều khiển được tổng hợp dựa trên hai bộ điều chỉnh
tương ứng các thành phần thứ tự thuận, nghịch như ở hình 3.19.




14








i
inj
(abc)

+
+
u
inj
(abc)

i
f
dq*+


u
inj
dq+

i
inj
dq+

+
+

u
g
(abc)

u
inj
dq-

u
inj
dq*-

u
inj
dq*+

i
inj

dq-

G
PI


TTT
i
f
dq*-


G
PI


TTN
u
inj
(abc)

i
f
(abc)

+
+
u
inv
dq*+

+

i
f
dq+

u
inj
dq+

+
+

i
f
dq-

u
inj
dq-

G
PI


TTT
u
inv
dq*-



G
PI


TTN


PLL


-
-
u
L
*(abc)





Vòng điều chỉnh điện áp
thành phần TTT-TTN

Vòng điều chỉnh dòng điện TTT-TTN

αβ


dq

abc

αβ

αβ


dq
abc

αβ


αβ

αβ

dq

dq

u
inv
αβ*

u
inv
αβ*



Điều chế
vector
không gian

u
F,abc
Điều chế vetor không
gian

Chuyển đổi
abc/αβ và αβ/dq
15

3.5.3 Thuật toán điều khiển dựa trên hệ trục tọa độ tĩnh αβ
Từ phương trình 3.35 ta viết lại phương trình mô tả bộ điều chỉnh dòng điện
khi có bộ điều công hưởng PR như sau:
 Bộ điều chỉnh dòng điện
))()(()()1(
**
kiki
T
L
Gkuku
ff
s
f
PRinjinv


(3.53)

 Bộ điều chỉnh điện áp
)))()(())()((()()1(
***
kuku
T
C
Gkuku
T
C
Gkiki
injinj
s
f
TTN
SDRinjinj
s
f
TTT
SDRinjf


(3.54)
Tổng hợp cấu trúc điều chỉnh cho cả hai vòng trên hệ tọa độ tĩnh αβ được
thể hiện ở sơ đồ của hình 3.25.

Hình 3.25 Sơ đồ cấu trúc điều khiển của DVR trên hệ tọa độ tĩnh αβ
3.6 Thiết kế bộ điều khiển dòng điện PR
1
222
1

)(

hs
s
KKsG
hPhPRh



(3.59)
3.7 Thiết kế bộ điều khiển điện áp SDR
 
 
)(.)(.
1
)(
)(.)(.
1
)(
111
111
syseK
s
sy
syseK
s
sy
I
I









(3.85)
 
 
)(.)(.
1
)(
)(.)(.
1
)(
111
111
syseK
s
sy
syseK
s
sy
I
I









(3.86)
3.8 Nghiên cứu ổn định
Để thực hiện việc phân tích ổn định cho hệ thống, mô hình vòng kín của hệ
thống được bắt nguồn từ bộ điều khiển đã đề nghị như đã trình bày ở mục trên.

SDR
PR
G
inv
1
/
z
LT
fs

1
/
z
CT
fs

u
c
*
u
c


u
s
*
u
c
*
u
c

i
s

u
c

if


Hình 3.36 Mô hình vòng kín của hệ thống với hai mạch vòng
Hình 3.39 là đồ thị Bode mô tả đặc tính biên-tần của hệ hở và hệ kín hệ thống
16


Hình 3.39 Đồ thị Bode của hệ thống vòng hở - vòng kín
3.9 Điều khiển đồng bộ lưới
Đồng bộ ở đây được hiểu là điều khiển điện áp chèn vào của DVR sao cho
góc pha của nó có mối liên hệ với góc pha của điện áp lưới. Có ba phương
pháp, trong đó phương pháp PLL được lựa chọn áp dụng.
 Phương pháp điểm qua không

 Phương pháp Arctangent
 Kỹ thuật PLL
3.10 Điều khiển phát hiện lõm điện áp
Một phần quan trọng trong điều khiển của DVR là điều khiển phát hiện
lõm. Một biến cố lõm điện áp phải được phát hiện điểm đầu và điểm cuối của
nó một cách nhanh chóng để kịp thời đưa hệ thống DVR ở chế độ chờ sang
chế độ bù và ngược lạ.
3.11 Điều khiển điện áp DC-link
Trong điều khiển điện áp DC-link gồm điều khiển nạp điện cho bộ lưu trữ
năng lượng và điều khiển điện áp trên DC-link. Nội dung này đối với DVR
cũng được thực hiện tương tự như trong các hệ thống nối tiếp, tài liệu [29].
3.12 Tóm tắt và kết luận
Trong chương này đã nghiên cứu phát triển hai cấu trúc điều khiển DVR.
Cấu trúc điều khiển vector trên hệ tọa độ quay dq làm việc với lượng một
chiều, có khả năng tách riêng thành thứ tự thuận và ngược của điện áp lưới để
điều chỉnh độc lập dựa trên góc pha của điện áp lưới như là đại lượng cơ bản
để thực hiện. Trong khi, cấu trúc điều khiển vector trên hệ tọa độ tĩnh αβ làm
việc với lượng xoay chiều có khả năng lựa chọn được các thành phần thứ tự
thuận và ngược của điện áp lưới để điều chỉnh dựa trên tần số của điện áp
lưới. Hai cấu trúc điều khiển được đưa ra ở trên đã có những phát triển mới so
với các cấu trúc trước đây, từ đó đã giải quyết được những hạn chế mà các cấu
trúc trước đây chưa thực hiện được cụ thể là:
- Bổ sung thêm giải pháp điều chỉnh cả thành phần thứ tự nghịch trong
hai cấu trúc điều khiển, giảm sai lệch và nâng cao độ chính xác điện áp chèn
vào của DVR, tránh được hiện tượng mất đồng bộ trong khi bù, giảm đáng kể
sự dao động và méo dạng điện áp tải, đảm bảo yêu cầu làm việc ổn định của
17

DVR tương ứng với toàn giải thay đổi của phụ tải và biên độ lõm điện áp cũng
như thời gian biến động.

- Với việc mạch vòng dòng điện được bổ sung trong cấu trúc điều khiển
đã cải thiện được đặc tính động học của DVR; thời gian đáp ứng nhanh hơn từ
0,002s đến 0,02s, lượng quá điều chỉnh được giới hạn trong phạm vi cho phép.
Dòng điện qua VSC luôn được kiểm soát, đảm bảo bộ biến đổi không bị quá
dòng trong trường hợp có sự biến động của tải hoặc ngắn mạch phía tải.
- Hai cấu trúc điều khiển đề xuất được thực hiện trên tọa độ quay dq với
lượng một chiều và trên hệ tọa độ tĩnh αβ với lượng xoay chiều, nhưng cho kết
quả về chất lượng điều khiển tương đương nhau, phù hợp với điều kiện thực tế
khác nhau.
Qua những kết quả nghiên cứu lý thuyết, có thể khẳng định cấu trúc điều
khiển làm việc ổn định, đáp ứng điều khiển DVR khôi phục điện áp tải, bảo vệ
tải nhạy cảm trong điều kiện lõm điện áp cân bằng và không cân bằng.
Chương 4: GIẢI PHÁP ÁP DỤNG DVR CHO XÍ NGHIỆP CÔNG NGHIỆP
4.1 Ảnh hưởng của lõm điện áp đối với xí nghiệp công nghiệp
Để tạo ra một phần hoặc toàn bộ quá trình tự động trong sản xuất, các thiết
bị điện quan trọng trong nhà máy thường được tích hợp từ các phần tử điều
khiển điện, điện tử, các thiết bị đó có thể là các bộ điều khiển vi xử lý, máy vi
tính, robot công nghiệp, các hệ truyền động có điều khiển tốc độ, các thiết bị
điều khiển trong hệ thống thông tin công nghiệp.v.v. Tuy nhiên các thiết bị này
rất nhạy cảm với các nhiễu loạn điện áp, đặc biệt là lõm điện áp đã gây nên sự
dừng máy móc, thiết bị trong các xí nghiệp công nghiệp và hậu quả cuối cùng
là tổn thất về mặt tài chính. Những vẫn đề đó đã trở nên thách thức đối với nhà
cung cấp năng lượng điện và cả phía khách hàng là các xí nghiệp công nghiệp.
4.2 Ứng dụng DVR trong thực tế
Các điều kiện và thủ tục để ứng dụng DVR được thực hiện thông qua một
trường hợp thực tế đó là; thiết kế DVR bảo vệ cho một phụ tải nhạy cảm quan
trọng ở cấp trung áp 6,3kV, công suất 2400kVA tại một xí nghiệp công nghiệp
thuộc ngành xi măng.
Hình 4.5 sơ đồ DVR kết nối lưới điện bảo vệ phụ tải nhạy cảm quan trọng
là tổ hợp Biến tần-Động cơ quạt ID 142 trong nhà máy xi măng Hoàng Mai.

4.3 Mô phỏng
Mô hình mô phỏng được xây dựng dựa trên phần mềm mô phỏng
Matlab/Simulink, bao gồm hệ thống lưới điện từ trạm nguồn Nghi Sơn đến các
trạm huyện và lưới điện nhà máy xi măng Hoàng Mai theo sơ đồ lưới điện
thực tế (xem hình pl2.2 của phụ lục 2), trong đó mô hình DVR đặt tại vị trí cấp
trung áp 6,3kV bảo vệ phụ tải nhạy cảm quan trọng là tổ hợp Biến tần-Động cơ
142-FN1 trong nhà máy được xây dựng như sơ đồ thiết kế hình 4.5. Các tham
số cài đặt trong mô hình sẽ được lấy từ kết quả thiết kế và kết quả khảo sát
18

thực tế tại lưới điện Hoàng Mai. Phần điều khiển DVR sẽ được xây dựng bằng
thuật toán và cấu trúc điều khiển nghiên cứu đề xuất ở chương 3. Các biến cố
điện áp tại lưới điện Hoàng Mai sẽ được tái hiện lại nhờ các khối tạo lỗi trong
mô hình, trên cơ sở đó kiểm tra khả năng phản ứng của DVR để bảo vệ tải
nhạy cảm trước các biến cố điện áp như đã xảy ra tại lưới điện Hoàng Mai.

Hình 4.5 DVR kết nối lưới điện tại vị trí có cấp điện áp 6,3 kV
4.5.1 Xây dựng mô hình mô phỏng
Qua các bước tiến hành xây dựng cuối cùng mô hình mô phỏng
Matlab_Simulink của hệ thống điện và DVR nối lưới bảo vệ tải nhạy cảm
được thể hiện ở hình 4.8.
4.5.2 Kết quả mô phỏng
Các trường hợp đưa ra để kiểm tra đó là:
 Bù sự lõm điện áp tại vị trí trung áp 6,3kV
- Bù lõm điện áp cân bằng.
- Bù lõm điện áp không cân bằng.
 Bù dao động và méo dạng điện áp tại vị trí 6,3kV do tác động của việc
đóng cắt hệ thống tụ bù trên lưới 110kV.
 Bù khởi động động cơ cảm ứng trong điều kiện lưới điện có công suất
ngắn mạch nhỏ mắc ở phía nguồn cung cấp.

Các kết quả mô phỏng được trình bày chi tiết ở trang 111 đến 123 của luận án.



+
-
+
-
+
-
VSC
MBA
NT
i
inja

i
injb

i
injc

L
fa
i
fa

i
fb


i
fc

e
ca

e
cb

e
cc

u
inva
(t)
u
invb
(t)
u
invc
(t)
+
-
+
-
+
-
L
fb
L

fc
Tr. Hoàng
Mai
Tuyến 110kV Ba chè
MBAT1:25MV
A/110/6.3kV
MBAT2:2800kVA/
6,3/0.690kV
MBA_142-
FN1-M01
DC_142-
FN1-M01
INVERTER
2340KVA
/0,61kV
Tải nhạy cảm
Tuyến 110kV Nghi sơn
+
-
DC-link
AC/DC

ES_DC-link control

19



20


4.6 Tóm tắt và kết luận
Những ảnh hưởng của lõm điện áp đối với xí nghiệp công nghiệp đã được
chỉ ra như là những minh chứng để đưa ra giải pháp áp dụng DVR là điều cần
thiết đối với xí nghiệp công nghiệp. Để kết nối DVR bảo vệ tải nhạy cảm quan
trọng trong một xí nghiệp công nghiệp có hiệu quả, cần thiết thực hiện các
điều kiện áp dụng trước khi tiến hành một thiết kế chi tiết. Các thủ tục áp dụng
DVR để bảo vệ cho một tải nhạy cảm quan trọng có công suất 2400kVA ở cấp
trung áp 6,3kV đã được thực hiện có tính chất điển hình, nhằm mục đích để
thực hiện những áp dụng tương tự cho các ngành công nghiệp khác nhau.
Xây dựng được mô hình mô phỏng hệ thống lưới điện thực tế theo kết quả
khảo sát, trong đó có mô hình DVR kết nối lưới điện ở cấp trung áp 6,3kV để
bảo vệ tải nhạy cảm như đã thiết kế. Áp dụng hai cấu trúc và cài đặt thuật toán
điều khiển cho DVR được đề xuất ở chương ba vào trong mô hình mô phỏng
của DVR, kiểm tra khả năng phản ứng của DVR trong vai trò khôi phục điện
áp tải thông qua các kiểu biến cố điện áp được tạo ra từ ba trường hợp phức tạp
nhất thường xuất hiện trên lưới điện.
Qua các kết quả mô phỏng đưa ra các kết luận như sau:
- Đối với các lõm điện áp cân bằng và không cân bằng do các lỗi ngắn
mạch hoặc do khởi động của động cơ cảm ứng công suất lớn ở phía nguồn gây
nên. Bộ khôi phục điện áp động đều có khả năng bù nhanh chóng trong khoảng
thời gian một chu kỳ điện áp lưới, với mức độ chính xác điện áp khá cao, độ
quá điều chỉnh của điện áp tại thời điển xuất hiện và thời điểm kết thúc lõm
được hạn chế tốt. Độ méo dạng hài THD của sóng cơ bản trong phạm vi cho
phép.
- Đối với bù dao động và méo dạng điện áp do đóng hoặc cắt hệ thống tụ
bù. Đây là một dạng biến cố khá phức tạp. Qua các đặc tính mô phỏng cho
thấy điện áp tải được khôi phục bởi DVR có lượng hài được giảm nhẹ trên cả
ba pha đặc biệt đối với hài bậc 3 giảm đến 70%, độ méo dạng điện áp THD vì
thế cũng được giảm thiểu rất đáng kể, thời gian đáp ứng của hệ nhanh chóng
khoảng 0.01s (1/2 chu kỳ cơ bản), lượng quá điều chỉnh của các đặc tính tại

các thời điểm bắt đầu lõm, kết thúc lõm, bắt đầu đóng tụ điện được điều chỉnh
đảm bảo nằm trong pham vi cho phép, trừ trường hợp tại thời điểm cắt tụ điện
lượng quá điều chỉnh điện áp vượt quá mức trong khoảng thời gian rất ngắn
0.0002s (1 chu kỳ trích mẫu).
Vậy có thể kết luận các lựa chọn, tính toán thiết kế các thành phần lực
trong cấu hình DVR hoàn toàn phù hợp và chính xác, cấu trúc và thuật toán
điều khiển điện áp được nghiên cứu đề xuất cho DVR hoàn toàn có đủ khả
năng để điều khiển DVR khôi phục điện áp trên tải nhạy cảm, đảm bảo cho tải
nhạy cảm không bị ảnh hưởng bởi bất kỳ các tác động của các kiễu lõm điện
áp khác nhau. Các kết quả có được ở chương bốn là những điều kiện quan
trọng để tiếp tục triển khai mô hình thực nghiệm trong nghiên cứu này.
21

Chương 5: XÂY DỰNG MÔ HÌNH THỰC NGHIỆM DVR
Xây dựng thực nghiệm là công việc rất cần thiết trong nghiên cứu và có ý
nghĩa rất lớn để khẳng định những nghiên cứu lý thuyết là đúng đắn. Mục tiêu
xây dựng mô hình thí nghiệm trong luận án này là để thí nghiệm kiểm tra khả
năng của DVR cùng với cấu trúc và thật toán điều khiển được đề xuất ở
chương ba trong bù lõm và các nhiễu loạn điện áp.
5.1 Xây dựng bàn thí nghiệm.
Bàn thí nghiệm được xây dựng dựa trên:
- Phần lực: Bao gồm tải, máy biến áp nguồn, máy biến áp nối tiếp, bộ lọc
LC, bộ biến đổi VSC, bộ chỉnh lưu không điều khiển, các phần tử tạo lõm.
- Phần điều khiển: Bao gồm máy tính, bộ điều khiển dSPACE, Panen kết
nối, Phần mềm điều khiển hệ thống dSPACE
Hình 5.2 là bàn thí nghiệm DVR được triển khai.

Hình 5.2 Mô hình thực nghiệm DVR được triển khai tại Viện Kỹ thuật điều khiển và Tự
động hóa Trường ĐHBK Hà Nội
5.2 Cài đặt thuật toán điều khiển.

Thuật toán điều khiển của DVR trong mô hình thực nghiệm chính là thuật
toán điều khiển được nghiên cứu đề xuất ở chương 3. Thuật toán được triển
khai trên Matlab/Simulink được thể ở hình 5.2, sau đó được phiên dịch dưới
dạng chương trình và cài đặt thực hiện thông qua hệ thống dSPACE 1104.
Chương trình sau khi dịch thực hiện trong thời gian cho phép xác lập chu kỳ
lấy mẫu 25 μs.
5.3 Kết quả nghiên cứu thí nghiệm
5.3.1 Kiểm tra khả năng đồng bộ lưới
Qua kết quả đồng bộ lưới của DVR cho thấy tại thời điểm bắt đầu lõm và
kết thúc lõm điện áp tín hiệu ra thêta(=t) của PLL vẫn đảm bảo tính ổn định,
chứng tỏ kha năng bám góc pha lưới của PLL để đảm bảo động bộ điện áp
chèn vào của DVR vào lưới là tốt.
22

5.3.2 Kiểm tra khả năng bù lõm của DVR ở chế độ tĩnh
Các kết quả kiểm tra khả năng bù lõm điện áp của DVR ở chế độ tĩnh.










5.3.3 Kiểm tra khả năng bù lõm của DVR ở chế độ động.
Các kết quả kiểm tra khả năng bù lõm điện áp của DVR ở chế độ động







5.4 Tóm tắt và kết luận
Quá trình thực nghiệm được tiến hành theo những trình tự đã được chỉ ra
và bắt đầu từ cấp điện áp thấp nhất từ (2550)V. Việc tạo lõm điện áp cũng
thực hiện với độ sâu lõm ban đầu chỉ 15%U
sđm
. Để thử nghiệm chế độ bù của
DVR được bắt đầu từ việc nạp tụ trong khoảng thời gian 15 phút, sau đó thực
Hình 5.5b Điện áp chèn vào của DVR
u
inj
abc
trong khi bù lõm điện áp

Hình 5.5f Thành phần dq của điện áp chèn
vào bởi DVR u
inj
dq
trong khi bù lõm điện áp

Hình 5.5c Điện áp tải u
L
,
abc
được duy trì
trong khi điện áp nguồn bị sụt xuống còn
50% do lõm

Hình 5.5g Thành phần dq của điện áp tải
u
L
dq
được duy trì khi điện áp nguồn bị sụt
còn 50% do lõm

Hình 5.5a Điện áp nguồn u
s,abc
trong khi
lõm điện áp

Hình 5.5e Thành phần dq của điện áp
nguồn u
s
dq
trong khi lõm điện áp

Hình 5.6c Điện áp chèn vào u
inj
,
abc
của DVR tại thời điểm bắt đầu và cuối bù lõm điện áp
Hình 5.6a Điện áp nguồn u
s,abc
tại điểm đầu và cuối của lõm điện áp

Hình 5.6f Điện áp tải u
L
,

abc
được bù tại thời điểm đầu và cuối của lõm điện áp

23

hiện tạo lõm điện áp trong khoảng thời gian từ 1,6805s đến 3,208s, khi lõm
được phát hiện DVR ngay lập tức thực hiện chế độ bù để khôi phục điện áp
trên tải. Quá trình thực nghiệm được tiến hành tương tự cho đến khi đạt chế độ
định mức với cấp điện áp 380V, độ sâu của lõm điện áp đạt 50%U
sđm
.
Qua kết quả thực nghiệm cho thấy DVR có thể khôi phục điện áp tải trong
khoảng thời gian một chu kỳ điện áp lưới (0,02s) trong điều kiện độ sâu lõm
điện áp 50%U
sđm
, điện áp tải được khôi phục sau một chu kỳ giống như điện
áp trước lõm, không phát hiện thấy có hiện tượng nhảy góc pha và méo dạng
điện áp tại thời điểm ban đầu và kết thúc quá trình bù. lượng quá điều chỉnh
cũng được giới hạn trong phạm vi cho phép.
Như vậy những kết quả nghiên cứu về lý thuyết ở các chương trước đã
được triển khai áp dụng thông qua mô hình thực nghiệm này. Một lần nữa
khẳng định những kết luận về cấu trúc phần lực, thuật toán điều khiển DVR là
chính xác, giải pháp áp dụng DVR để bù lõm điện trong các xí nghiệp công
nghiệp là hoàn toàn phù hợp.
KẾT LUẬN VÀ KIẾN NGHỊ
Luận án “Nghiên cứu điều khiển bộ khôi phục điện áp động (DVR) để bù
lõm điện áp cho phụ tải quan trọng trong xí nghiệp công nghiệp” đã giải
quyết các vấn đề về cấu hình phần lực và phương pháp điều khiển DVR nhằm
khôi phục điện áp tải, đảm bảo cho các phụ tải nhạy cảm hoàn toàn không bị
chịu tác động của lõm, dâng điện áp từ phía nguồn cấp. Nghiên cứu đã chỉ ra

các điều kiện để có thể đưa vào ứng dụng thiết bị DVR một cách hiệu quả nhất
trong các xí nghiệp công nghiệp thông qua một trường hợp thực tế.
 Các công việc đã thực hiện trong luận án
- Đã chỉ ra được nguyên nhân, phân tích được đặc điểm, nguồn gốc của
lõm điện áp và chức năng của DVR trong việc bù lõm điện áp.
- Phân tích lựa chọn được các thành phần lực trong cấu hình DVR, xây
dựng cấu hình DVR phù hợp với vị trí kết nối ở cấp trung áp.
- Phát triển cấu trúc và thuật toán điều khiển DVR đáp ứng điều kiện bù
lõm điện áp cân bằng và lõm điện áp mất cân bằng.
- Khảo sát thực trạng lưới điện và các biến cố điện áp tác động trực tiếp
đến hoạt động của các thiết bị điện trong một xí nghiệp công nghiệp. Đưa ra
các điều kiện và thủ tục để áp dụng DVR cho các xí nghiệp công nghiệp.
- Thiết kế và xây dựng mô hình mô phỏng DVR nối lưới bảo vệ một phụ
tải nhạy cảm điển hình thực tế ở cấp 6,3kV tại nhà máy xi măng Hoàng Mai.
- Thực hiện thành công mô hình thực nghiệm (trong phòng thí nghiệm) và
triển khai thuật toán điều khiển đề xuất cho DVR áp dụng trong bù lõm điện áp
và giảm thiểu nhiễu loạn điện áp.
 Những đóng mới trong nghiên cứu này được đưa ra.
 Luận văn đã đề xuất cấu trúc điều khiển cho bộ khôi phục điện áp động
(DVR), có thể áp dụng cho cả ba chiến lược bù lõm điện áp, bù khôi phục như
24

trước khi xảy ra lõm, bù lõm đồng pha, hoặc bù tối ưu về tiêu tốn công suất
(bù vượt pha). Hệ thống điều khiển vector, thực hiện trên hệ tọa độ đồng bộ
0dq và hệ tọa độ tĩnh 0αβ. Cấu trúc hai mạch vòng, mạch vòng dòng điện bên
trong và mạch vòng điện áp bên ngoài, đảm bảo khả năng bù độc lập thành
phần thứ tự thuận và thành phần thứ tự nghịch, đáp ứng được yêu cầu bù các
lõm điện áp cân bằng, mất cân bằng một pha, hai pha, không phụ thuộc vào
phụ tải. Hệ thống điều khiển đã cải thiện tốt hơn đặc tính động học của DVR
trong bù lõm điện áp, thời gian tác động nhanh từ 0.002s đến 0.02s trong điều

kiện tải định mức với độ sâu lõm điện áp thay đổi từ 10%U
sđm
đến 50%U
sđm
,
không sai lệch tĩnh và hạn chế lượng quá điều chỉnh. Đảm bảo yêu cầu làm
việc ổn định của DVR tương ứng với toàn dải thay đổi của phụ tải, dòng điện
qua VSC được kiểm soát, đảm bảo bộ biến đổi không bị quá dòng trong trường
hợp có sự biến động hoặc ngắn mạch phía tải.
 Khảo sát và xác định được lõm điện áp là nguyên nhân chính tác động
và gây dừng máy đến các phụ tải nhạy cảm quan trọng như tổ hợp Biến tần-
Động cơ quạt ID trong ngành công nghiệp xi măng. Kết quả khảo sát đã chỉ ra
các điều kiện để có thể đưa vào ứng dụng thiết bị DVR một cách hiệu quả nhất
thông qua một trường hợp thực tế điển hình.
 Xây dựng mô hình mô phỏng cho một lưới điện phân phối, gồm các
trạm biến áp 110 kV, 110/22 kV, 22/6.3 kV. Thanh cái 6.3 kV cấp điện cho
một phụ tải nhạy cảm quan trọng công suất 2400kVA, được bảo vệ khỏi lõm
điện áp bởi DVR. Qua đó đã kiểm chứng tải được bảo vệ hoàn toàn khỏi các
lõm điện áp có nguyên nhân xuất phát tại các vị trí khác nhau trên lưới điện.
 Xây dựng mô hình thực nghiệm (trong phòng thí nghiệm) với các thuật
toán điều khiển được cài đặt trên bộ xử lý tín hiệu dSPACE card DS11040,
qua đó kiểm tra được khả năng làm việc của hầu hết các chức năng thiết kế của
DVR.
 Kiến nghị
Về hướng phát triển liên quan đến chủ đề của luận án này tác giả dự định:
- Nghiên cứu ứng dụng hệ thống DVR để làm việc theo kiểu ổn định liên
tục trong lưới có điện áp dưới 1000V.
- Cải thiện thuật toán tính điện áp mẫu, chú ý đến tối ưu hóa sự trao đổi
công suất tích cực giữa hệ thống DVR và lưới nguồn cung cấp trong các chế
độ làm việc khác nhau.

- Nghiên cứu áp dụng DVR ngoài việc bù lõm/dâng điện áp còn có khả
năng bù mất đối xứng điện áp, bù méo dạng điện áp và làm việc với chức năng
bộ lọc tích cực.
- Xây dựng ứng dụng các thuật toán điều khiển tạo khả năng thực hiện hệ
thống điều khiển dựa vào các hệ thống chuyên dụng với bộ xử lý DSP.

×