Tải bản đầy đủ (.doc) (3 trang)

Bài tập tích phân trong đề thi TS 02 - 09

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (66.11 KB, 3 trang )

Chuyªn ®Ò TÝch ph©n
§Ò tuyÓn sinh míi
1.
/ 4
2
0
1 2sin
1 sin 2
x
dx
x
π

+

2.


2
0
2
dxxx
3.

−+
2
1
11
dx
x
x


4.

+
e
dx
x
xx
1
ln.ln31
5.


3
2
2
)ln( dxxx
6.
/ 2
0
sin 2 sin
1 3cos
x x
dx
x
π
+
+

7.
/ 2

0
sin 2 cos
1 cos
x x
dx
x
π
+

8.
/ 2
sin
0
( cos ) cos
x
e x x dx
π
+

9.
/ 2
2 2
0
sin 2
cos 4sin
x
dx
x x
π
+


10.


1
0
2
)2( dxex
x
11.

−+

5l n
3ln
32
xx
ee
dx
12.
/ 2
0
sin sin 2 sin 3x x x dx
π

13.
/ 2
4 4
0
cos 2 (sin cos )x x x dx

π
+

14.
/ 2
5
0
cos xdx
π

15.

−+
3
2
48
7
21
dx
xx
x
16.

e
dxxx
1
22
ln
17.


+
3
0
23
1 dxxx
18.

+
e
xdx
x
x
1
3
ln
1
19.


9
1
3
1 dxxx
20.

+−
3
1
2
12 dxxx

21.

+
1
0
2
)1( dxex
x
22.

+
+
3
0
2
35
1
2
dx
x
xx
23.
/ 3
2
/ 4
cos 1 cos
tgx
dx
x x
π

π
+

24.








+

2
1
2
2
1
dx
x
x
25.
2
0
sin
1 cos
x x
dx
x

π
+

26.

+
1
0
1
x
e
dx
27.
/ 4
2
0
xtg x dx
π

28.

+
dx
x
x1
29.


−−+
5

3
)22( dxxx
30.

+
2
0
2
2
)2(
dx
x
ex
x
31.


++
4
1
45
2
x
dx
32.

−−
1
0
22

)124( dxexx
x
33.

+
2
0
5
4
1
dx
x
x
34.


2
0
22
4 dxxx
35.

−++
2
1
22 xx
xdx
36.



+
0
1
1 dxxx
37.

++
1
0
2
252 xx
dx
38.

+
2
1
2
)1ln(
dx
x
x
Biªn so¹n néi dung: ThÇy NguyÔn Cao Cêng - 0904.15.16.50
1
(§HBO3) (§HBO3)
(§H AO4) (§HBO4)
(§HDO4) (§HBO5)
(§HBO5) (§HDO5)
(§HAO6) (§HDO6)
(§HBO6)

(C§SPVP 02)
(C§SPHT 02) (C§SPHT 02)
(C§KTTV03)
(C§SP NT02)
(C§KTKTHD02)
(C§DD 04)
(C§HV04)
(C§SP HP04)
(CSM1 04)
(C§SP HN04)
(C§SP BN04)
(C§SP NB04)
(C§SP BP 04)
(C§SP KT 04)
(C§SP HN 04)
(C§SP HN 04)
(C§GT 04)
(C§GT 04)
(C§GT 04) (C§GT 04)
(C§ KTKT 04) (C§ KTKT CN04)
(C§LK 04) C§HC 04)
(C§ A04) (C§TB 04)
Chuyªn ®Ò TÝch ph©n
39.
/ 2
0
sin 2
cos 1
x
dx

x
π
+

40.
/ 2
0
sin
1 3cos
x
dx
x
π
+

41.

+
3
0
32
.1 dxxx
42.

+
1
0
2
)1(x
xdx

43.
/ 2
2004
2004 2004
0
sin
sin cos
x
dx
x x
π
+

44.
/ 2
3
0
4sin
1 cos
x
dx
x
π
+

45.

+
1
0

23
3 dxxx
46.


+++

3
1
313
3
dx
xx
x
47.


1
0
25
1 dxxx
48.
/ 2
3
0
sin 5
x
e x dx
π


49.

+
3
0
33
.1 dxxx
50.
/ 4
2
0
1 2sin
1 sin 2
x
dx
x
π

+

51.


++
0
1
2
42xx
dx
52.


e
dx
x
x
1
2
ln
53.

+
+
3/7
0
3
13
1
dx
x
x
54.
/ 2
0
cos3
sin 1
x
dx
x
π
+


55.
/ 2
2 2
0
sin
sin 2 cos cos
2
xdx
x
x x
π
+

56.
/ 3
2
2
0
sin
sin 2 cos
x xdx
x x
π

57.

e
dxxx
1

ln
58.
2
/ 4
0
.cosx x dx
π

59.

+
+++
2
0
2
23
4
942
dx
x
xxx
60.

+
1
0
3
)1(x
xdx
61.



e
xx
dx
1
2
ln1
62.
/ 2
3
0
4sin
1 cos
x
dx
x
π
+

63.
/ 4
0
(sin cos ) cos
dx
x x x
π
+

64.

( )
1
2
3
0
1
x
x e x dx+ −

65.

2ln
0
5
2
dxex
x
66.
dx
x
xx

+
+
1
0
3
2
2
)1(

67.
/ 4
0
(1 )sin
2
x
tgx tg xdx
π
+

68.

+
1
0
2
)1ln( dxxx
69.

+
2
1
2
)1ln(
dx
x
x
70.

+

1
0
2
1 dxxx
71.

+
1
0
2
1 x
xdx
72.
/ 2
/ 4
sin cos
1 sin 2
x x
dx
x
π
π

+

73.

+
3
0

2
)5ln( dxxx
74.
/ 2
3
0
cos 2
(sin cos 3)
x
dx
x x
π
− +

75.
/ 4
0
( 1)cosx x dx
π


76.
/ 4
0
cos 2
1 2sin 2
x
dx
x
π

+

Biªn so¹n néi dung: ThÇy NguyÔn Cao Cêng - 0904.15.16.50
2
(C§KTKT 04) (C§CN 04)
(C§ §N 04) (C§LT 04)
(C§TCKT 04) (C§ YT NA04)
(C§ A05) (C§ XD 05)
(C§GT 05) (C§KTKT 05)
(C§KTKT 05) (C§TH 05)
(C§SP HCM05) (C§CT 05)
(C§SP VL 05) (C§BT 05)
(C§SP ST 05) (C§SP ST 05)
(C§ VL 05) (C§CN 05)
(C§SPHN 05) (C§TC 05)
(C§SP VP 05) (C§SP KT05)
(C§ §N05) (C§SP QN05)
(C§ YTTH 05) (C§SP QB 05)
(C§SP QN 05) (C§CN 06)
(C§CKLK 06) (C§NL 06)
(C§HP 06) (C§ YT 06)
(C§TCKT 06) (C§SP HD06)
(§HNV 06) (C§ §D 06)
Chuyªn ®Ò TÝch ph©n
77.

+
2ln
0
2

2
dx
e
e
x
x
78.
/ 2
4
0
4sin
1 cos
x
dx
x
π
+

79.
/ 2
2
0
cos
7 5sin cos
x dx
x x
π
− −

80.

/ 4
2
0
cos
x
dx
x
π

81.


+++

3
1
3
31
3
dx
xx
x
82.


9
1
3
1 dxxx
83.


+
e
dxx
x
x
1
3
ln).
1
(
84.

+ dxxx
32
2
85.

+
1
0
2
3
1
dx
x
x
86.

+

3l n
0
3
)1(
x
x
e
dxe
87.


++
0
1
3
2
)1( dxxex
x
88.

+
2/
0
5
6
3
cossincos1
n
dxxxx
89.

/ 4
0
1 cos 2
x
dx
x
π
+

90.


1
0
23
1 dxxx
91.


5l n
ln
2
2
1
dx
e
e
x
x
92.


1
0
3
2
dxex
x
93.

+
e
dxx
x
x
1
2
.ln.
1
94.

+
3
1
3
xx
dx
95.

+
8l n

3ln
2
.1 dxee
xx
96.
2
0
sinx x dx
π

97.

+
3
1
2
1ln
ln
e
dx
xx
x
98.
/ 2
2
0
(2 1) cosx x dx
π



99.

+++
6
2
1412 xx
dx
100.
/ 2
0
( 1)sin 2x x dx
π
+

101.

−−
10
5
12 xx
dx
102.

+

e
dx
xx
x
1

ln21
ln23
103.
3 2
1
.ln
e
x xdx

(§H D 07) 104.
4
6
0
2
tg x
dx
cos x
π

( §H A08 )
105.
( )
4
0
sin
4
sin 2 2 1 sin cos
x dx
x x x
π

π
 

 ÷
 
+ + +

(§H B08) 105.
2
3
1
ln x
dx
x

( §H D08 )
Biªn so¹n néi dung: ThÇy NguyÔn Cao Cêng - 0904.15.16.50
3
(C§SP QB06) (C§SP QN 06)
(C§SP TN06) (C§SP TV06)
(C§QT KD 06) (C§SP TG06)
(C§ BT 06) (C§BK 06)

×