Tải bản đầy đủ (.pdf) (16 trang)

Bài tập toán cao cấp part 4 pot

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (269.04 KB, 16 trang )

7.3. H`am liˆen tu
.
c 47
nguyˆen) sao cho ta
.
id´o h `a m b ˘a
`
ng h˘a
`
ng sˆo
´
. Do vˆa
.
y n´o liˆen tu
.
cta
.
i x
0
.
Nˆe
´
u x
0
= n l`a sˆo
´
nguyˆen th`ı [n − 0] = n −1, [n +0]=n.T`u
.
d
´o suy
r˘a


`
ng x
0
= n l`a diˆe

m gi´an doa
.
nkiˆe

uI.
V´ı du
.
8. Kha

o s´at su
.
.
liˆen tu
.
c v`a phˆan loa
.
id
iˆe

m gi´an doa
.
ncu

a c´ac
h`am

1) f(x)=
x
2
x
, 2) f(x)=e

1
x
, 3) f(x)=



x nˆe
´
u x  1
lnx nˆe
´
u x>1.
Gia

i
1) H`am f(x)=x nˆe
´
u x = 0 v`a khˆong x´ac d
i
.
nh khi x =0. V`ı ∀a
ta c´o lim
x→a
x = a nˆen khi a =0:

lim
x→a
f(x)=a = f(a)
v`a do vˆa
.
y h`am f(x)liˆen tu
.
c ∀x = 0. Ta
.
id
iˆe

m x = 0 ta c´o gi´an doa
.
n
khu
.

du
.
o
.
.
cv`ıtˆo
`
nta
.
i
lim
x→0

f(x) = lim
x→0
x =0.
2) H`am f(x)=e

1
x
l`a h`am so
.
cˆa
´
pv`ı n´o l`a ho
.
.
pcu

a c´ac h`am
y = −x
−1
v`a f = e
y
.Hiˆe

n nhiˆen l`a h`am f(x) x´ac di
.
nh ∀x =0v`a
do d´o n´o liˆen tu
.
c ∀x =0. V`ı h`am f(x) x´ac di
.

nh trong lˆan cˆa
.
ndiˆe

m
x = 0 v`a khˆong x´ac di
.
nh ta
.
ich´ınh diˆe

m x =0nˆen diˆe

m x =0l`adiˆe

m
gi´an d
oa
.
n. Ta t´ınh f(0 + 0) v`a f(0 − 0).
Ta x´et d˜ay vˆo c`ung b´et`uy ´y (x
n
) sao cho x
n
> 0 ∀n.V`ı
lim
x→∞


1

x
n

= −∞ nˆen lim
x→∞
e

1
x
n
=0. T`u
.
d´o suy r˘a
`
ng lim
x→0+0
e

1
x
=0.
Bˆay gi`o
.
ta x´et d˜ay vˆo c`ung b´e bˆa
´
tk`y(x

n
) sao cho x


0
< 0 ∀n.V`ı
lim
n→∞


1
x

n

=+∞ nˆen lim
x→0
e

1
x

n
=+∞.Dod´o lim
x→0−0
e

1
x
=+∞
t´u
.
cl`af(0 −0)=+∞.
Nhu

.
vˆa
.
y gi´o
.
iha
.
n bˆen tr´ai cu

a h`am f(x)ta
.
id
iˆe

m x = 0 khˆong tˆo
`
n
ta
.
idod´odiˆe

m x =0l`adiˆe

m gi´an doa
.
nkiˆe

uII.
48 Chu
.

o
.
ng 7. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
3) Ta ch´u
.
ng minh r˘a
`
ng f(x)liˆen tu
.
cta
.
id
iˆe

m x = a = 1. Ta lˆa
´
y
ε<|a −1|, ε>0. Khi d´o ε-lˆan cˆa
.
ncu


adiˆe

m x = a khˆong ch´u
.
ad
iˆe

m
x =1nˆe
´
u ε<|a − 1|. Trong ε-lˆan cˆa
.
n n`ay h`am f(x) ho˘a
.
ctr`ung v´o
.
i
h`am ϕ(x)=x nˆe
´
u a<1 ho˘a
.
ctr`ung v´o
.
i h`am ϕ(x)=lnx nˆe
´
u a>1.
V`ı c´ac h`am so
.
cˆa
´

pco
.
ba

n n`ay liˆen tu
.
cta
.
idiˆe

m x = a nˆen h`am f(x)
liˆen tu
.
cta
.
id
iˆe

m x = a =1.
Ta kha

o s´at t´ınh liˆen tu
.
ccu

a h`am f(x)ta
.
idiˆe

m x = a =1. Dˆe


l`am
viˆe
.
cd
´o ta cˆa
`
n t´ınh c´ac gi´o
.
iha
.
nmˆo
.
t ph´ıa cu

a f(x)ta
.
id
iˆe

m x = a =1.
Ta c´o
f(1 + 0) = lim
x→1+0
f(x) = lim
x→1+0
lnx =0,
f(1 − 0) = lim
x→1−0
f(x) = lim

x→1−0
x = lim
x→1
x =1.
Nhu
.
vˆa
.
y f(1 + 0) = f(1 −0) v`a do d´o h`am f(x) c´o gi´an doa
.
nkiˆe

u
Ita
.
i x = a =1.
B
`
AI T
ˆ
A
.
P
Kha

o s´at t´ınh liˆen tu
.
c v`a phˆan loa
.
id

iˆe

m gi´an doa
.
ncu

a h`am
1. f(x)=
|2x − 3|
2x − 3
(DS. H`am x´ac di
.
nh v`a liˆen tu
.
c ∀x =
3
2
;ta
.
i
x
0
=
3
2
h`am c´o gi´an doa
.
nkiˆe

uI)

2. f(x)=



1
x
nˆe
´
u x =0
1nˆe
´
u x =0.
(D
S. H`am liˆen tu
.
c ∀x ∈ R)
3. C´o tˆo
`
nta
.
i hay khˆong gi´a tri
.
a d
ˆe

h`am f(x)liˆen tu
.
cta
.
i x

0
nˆe
´
u:
1) f(x)=



4 · 3
x
nˆe
´
u x<0
2a + x khi x  0.
(DS. H`am f liˆen tu
.
c ∀x ∈ R nˆe
´
u a =2)
7.3. H`am liˆen tu
.
c 49
2) f(x)=



x sin
1
x
,x=0;

a, x =0,x
0
=0.
.
(DS. a =0)
3) f(x)=



1+x
1+x
3
,x= −1
a, x = −1,x
0
= −1.
(DS. a =
1
3
)
4) f(x)=



cos x, x  0;
a(x −1),x>0; x
0
=0.
(DS. a = −1)
4. f(x)=

|sin x|
sin x
(DS. H`am c´o gi´an doa
.
nta
.
i x = kπ, k ∈ Z v`ı:
f(x)=



1nˆe
´
u sin x>0
−1nˆe
´
u sin x<0)
5. f(x)=E(x) − E(−x)
(D
S. H`am c´o gi´an doa
.
nkhu
.

du
.
o
.
.
cta

.
i x = n, x ∈ Z v`ı:
f(x)=



−1nˆe
´
u x = n
0nˆe
´
u x = n.)
6. f(x)=



e
1/x
khi x =0
0 khi x =0.
(D
S. Ta
.
idiˆe

m x = 0 h`am c´o gi´an doa
.
nkiˆe

uII;f(−0) = 0, f(+0) =

∞)
T`ım diˆe

m gi´an doa
.
n v`a t´ınh bu
.
´o
.
c nha

ycu

a c´ac h`am:
7. f(x)=x +
x +2
|x +2|
(D
S. x = −2l`adiˆe

m gi´an doa
.
nkiˆe

uI,δ(−2) = 2)
50 Chu
.
o
.
ng 7. Gi´o

.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
8. f(x)=
2|x − 1|
x
2
−x
3
(DS. x =0l`adiˆe

m gi´an doa
.
nkiˆe

uII,x =1l`adiˆe

m gi´an doa
.
nkiˆe

u
I, δ(1) = −4)
H˜ay bˆo


sung c´ac h`am sau dˆay ta
.
idiˆe

m x =0dˆe

ch´ung tro
.

th`anh
liˆen tu
.
c
9. f(x)=
tgx
x
(DS. f(0) = 1)
10. f(x)=

1+x − 1
x
(D
S. f(0) =
1
2
)
11. f(x)=
sin
2

x
1 − cos x
(DS. f(0) = 2)
12. Hiˆe
.
ucu

a c´ac gi´o
.
iha
.
nmˆo
.
tph´ıa cu

a h`am f(x):
d = lim
x→x
0
+0
f(x) − lim
x→x
0
−0
f(x)
d
u
.
o
.

.
cgo
.
il`abu
.
´o
.
c nha

y cu

a h`am f(x)ta
.
idiˆe

m x
0
.T`ım diˆe

m gi´an doa
.
n
v`a bu
.
´o
.
c nha

y cu


a h`am f(x)nˆe
´
u:
1) f(x)=




1
2
x
2
nˆe
´
u x  2,
x nˆe
´
u x>2.
(D
S. x
0
=2l`adiˆe

m gi´an doa
.
nkiˆe

uI;d =4)
2) f(x)=










2

x nˆe
´
u0 x  1;
4 − 2x nˆe
´
u1<x 2, 5;
2x − 7nˆe
´
u2, 5  x<+∞.
(D
S. x
0
=2, 5l`adiˆe

m gi´an doa
.
nkiˆe

uI;d = −1)
3) f(x)=




2x +5 nˆe
´
u −∞<x<−1,
1
x
nˆe
´
u − 1  x<+∞.
(DS. x
0
=0l`adiˆe

m gi´an doa
.
nkiˆe

uII;diˆe

m x
0
= −1l`adiˆe

m gi´an
doa
.
nkiˆe


uI,d = −4)
7.4. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am nhiˆe
`
ubiˆe
´
n 51
7.4 Gi´o
.
iha
.
nv`aliˆen tu
.
ccu

ah`am nhiˆe
`
u
biˆe
´
n
1. Gia


su
.

u = f(M)=f(x, y) x´ac d
i
.
nh trˆen tˆa
.
pho
.
.
p D. Gia

su
.

M
0
(x
0
,y
0
)l`adiˆe

mcˆo
´
di
.
nh n`ao d´ocu


am˘a
.
t ph˘a

ng v`a x → x
0
, y → y
0
,
khi d´o d iˆe

m M(x, y) → M
0
(x
0
,y
0
). Diˆe
`
u n`ay tu
.
o
.
ng du
.
o
.
ng v´o
.
i khoa


ng
c´ach ρ(M,M
0
)gi˜u
.
ahaidiˆe

m M v`a M
0
dˆa
`
ndˆe
´
n0.Talu
.
u´yr˘a
`
ng
ρ(M,M
0
)=[(x − x
0
)
2
+(y − y
0
)
2
]

1/2
.
Ta c´o c´ac d
i
.
nh ngh˜ıa sau dˆay:
i) Di
.
nh ngh˜ıa gi´o
.
iha
.
n (theo Cauchy)
Sˆo
´
b d
u
.
o
.
.
cgo
.
i l`a gi´o
.
iha
.
ncu

a h`am f(M) khi M → M

0
(hay ta
.
i
diˆe

m M
0
)nˆe
´
u
∀ε>0, ∃δ = δ(ε) > 0:∀M ∈{D :0<ρ(M, M
0
) <δ(ε)}
⇒|f(M) −b| <ε.
ii) D
i
.
nh ngh˜ıa gi´o
.
iha
.
n (theo Heine)
Sˆo
´
b du
.
o
.
.

cgo
.
i l`a gi´o
.
iha
.
ncu

a h`am f(M)ta
.
idiˆe

m M
0
nˆe
´
udˆo
´
iv´o
.
i
d˜ay diˆe

m {M
n
} bˆa
´
tk`yhˆo
.
itu

.
dˆe
´
n M
0
sao cho M
n
∈ D, M
n
= M
0
∀n ∈ N th`ı d˜ay c´ac gi´a tri
.
tu
.
o
.
ng ´u
.
ng cu

a h`am {f(M
n
)} hˆo
.
itu
.
dˆe
´
n b.

K´yhiˆe
.
u:
i) lim
M→M
0
f(M)=b, ho˘a
.
c
ii) lim
x → x
0
y → y
0
f(x, y)=b
Hai di
.
nh ngh˜ıa gi´o
.
iha
.
ntrˆendˆay tu
.
o
.
ng du
.
o
.
ng v´o

.
i nhau.
Ch´u´y.Ta nhˆa
´
nma
.
nh r˘a
`
ng theo di
.
nh ngh˜ıa, gi´o
.
iha
.
ncu

a h`am khˆong
phu
.
thuˆo
.
c v`ao phu
.
o
.
ng M dˆa
`
nt´o
.
i M

0
.Dod´onˆe
´
u M → M
0
theo
c´ac hu
.
´o
.
ng kh´ac nhau m`a f(M)dˆa
`
nd
ˆe
´
n c´ac gi´a tri
.
kh´ac nhau th`ı khi
M → M
0
h`am f(M) khˆong c´o gi´o
.
iha
.
n.
52 Chu
.
o
.
ng 7. Gi´o

.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
iii) Sˆo
´
b du
.
o
.
.
cgo
.
i l`a gi´o
.
iha
.
ncu

a h`am f(M) khi M →∞nˆe
´
u
∀ε>0, ∃R>0:∀M ∈{D : ρ(M, 0) >R}⇒|f(M) − b| <ε.
D
ˆo

´
iv´o
.
i h`am nhiˆe
`
ubiˆe
´
n, c`ung v´o
.
i gi´o
.
iha
.
n thˆong thu
.
`o
.
ng d
˜anˆeuo
.

trˆen (gi´o
.
iha
.
nk´ep !), ngu
.
`o
.
i ta c`on x´et gi´o

.
iha
.
nl˘a
.
p. Ta s˜e x´et kh´ai
niˆe
.
m n`ay cho h`am hai biˆe
´
n u = f(M)=f(x, y).
Gia

su
.

u = f(x, y) x´ac di
.
nh trong h`ınh ch˜u
.
nhˆa
.
t
Q = {(x, y):|x −x
0
| <d
1
, |y − y
0
| <d

2
}
c´o thˆe

tr `u
.
ra ch´ınh c´ac diˆe

m x = x
0
, y = y
0
. Khi cˆo
´
di
.
nh mˆo
.
t gi´a tri
.
y th`ı h`am f(x, y) tro
.

th`anh h`am mˆo
.
tbiˆe
´
n. Gia

su

.

d
ˆo
´
iv´o
.
i gi´a tri
.
cˆo
´
d
i
.
nh y bˆa
´
tk`y tho

a m˜an diˆe
`
ukiˆe
.
n0< |y − y
0
| <d
2
tˆo
`
nta
.

i gi´o
.
iha
.
n
lim
x→x
0
y cˆo
´
di
.
nh
f(x, y)=ϕ(y).
Tiˆe
´
p theo, gia

su
.

lim
y→y
0
ϕ(y)=b tˆo
`
nta
.
i. Khi d´o ngu
.

`o
.
i ta n´oi r˘a
`
ng
tˆo
`
nta
.
i gi´o
.
iha
.
nl˘a
.
p cu

a h`am f(x, y)ta
.
idiˆe

m M
0
(x
0
,y
0
) v`a viˆe
´
t

lim
y→y
0
lim
x→x
0
f(x, y)=b,
trong d´o gi´o
.
iha
.
n lim
x→x
0
y cˆo
´
di
.
nh
0<|y−y
0
|<d
2
f(x, y)go
.
i l`a gi´o
.
iha
.
n trong. Tu

.
o
.
ng tu
.
.
,ta
c´o thˆe

ph´at biˆe

ud
i
.
nh ngh˜ıa gi´o
.
iha
.
nl˘a
.
p kh´ac lim
x→x
0
lim
y→y
0
f(x, y) trong
d´o g i ´o
.
iha

.
n
lim
y→y
0
x cˆo
´
di
.
nh
0<|x−x
0
|<d
1
f(x, y)
l`a gi´o
.
iha
.
n trong.
Mˆo
´
i quan hˆe
.
gi˜u
.
a gi´o
.
iha
.

n k´ep v`a c´ac gi´o
.
iha
.
nl˘a
.
pd
u
.
o
.
.
cthˆe

hiˆe
.
n
trong d
i
.
nh l´y sau dˆay:
7.4. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am nhiˆe

`
ubiˆe
´
n 53
Gia

su
.

ta
.
id
iˆe

m M
0
(x
0
,y
0
) gi´o
.
iha
.
nk´ep v`a c´ac gi´o
.
iha
.
n trong cu


a
c´ac gi´o
.
iha
.
nl˘a
.
pcu

a h`am tˆo
`
nta
.
i. Khi d
´o c´ac gi´o
.
iha
.
nl˘a
.
ptˆo
`
nta
.
iv`a
lim
x→x
0
lim
y→y

0
f(x, y) = lim
y→y
0
lim
x→x
0
= lim
x→x
0
y→y
0
f(x, y).
T`u
.
d
i
.
nh l´y n`ay ta thˆa
´
yr˘a
`
ng viˆe
.
c thay dˆo

ith´u
.
tu
.

.
trong c´ac gi´o
.
i
ha
.
n khˆong pha

i bao gi`o
.
c˜ung d
u
.
o
.
.
cph´ep.
D
ˆo
´
iv´o
.
i h`am nhiˆe
`
ubiˆe
´
ntac˜ung c´o nh˜u
.
ng d
i

.
nh l´y vˆe
`
c´ac t´ınh chˆa
´
t
sˆo
´
ho
.
ccu

a gi´o
.
iha
.
ntu
.
o
.
ng tu
.
.
c´ac di
.
nh l´yvˆe
`
gi´o
.
iha

.
ncu

a h`am mˆo
.
t
biˆe
´
n.
2. T`u
.
kh´ai niˆe
.
m gi´o
.
iha
.
n ta s˜e tr`ınh b`ay kh´ai niˆe
.
mvˆe
`
t´ınh liˆen tu
.
c
cu

a h`am nhiˆe
`
ubiˆe
´

n.
H`am u = f(M)d
u
.
o
.
.
cgo
.
il`aliˆen tu
.
c ta
.
id
iˆe

m M
0
nˆe
´
u:
i) f(M) x´ac di
.
nh ta
.
ich´ınh diˆe

m M
0
c˜ung nhu

.
trong mˆo
.
t lˆan cˆa
.
n
n`ao d´ocu

adiˆe

m M
0
.
ii) Gi´o
.
iha
.
n lim
M→M
0
f(M)tˆo
`
nta
.
i.
iii) lim
M→M
0
f(M)=f(M
0

).
Su
.
.
liˆen tu
.
cv`u
.
adu
.
o
.
.
cdi
.
nh ngh˜ıa go
.
i l`a su
.
.
liˆen tu
.
c theo tˆa
.
pho
.
.
p
biˆe
´

nsˆo
´
.
H`am f(M)liˆen tu
.
c trong miˆe
`
n D nˆe
´
u n´o liˆen tu
.
cta
.
imo
.
idiˆe

mcu

a
miˆe
`
nd
´o.
Diˆe

m M
0
du
.

o
.
.
cgo
.
il`ad
iˆe

m gi´an doa
.
n cu

a h`am f(M)nˆe
´
udˆo
´
iv´o
.
i
d
iˆe

m M
0
c´o ´ıt nhˆa
´
tmˆo
.
t trong ba diˆe
`

ukiˆe
.
n trong di
.
nh ngh˜ıa liˆen tu
.
c
khˆong tho

a m˜an. Diˆe

m gi´an doa
.
ncu

a h`am nhiˆe
`
ubiˆe
´
nc´othˆe

l`a nh˜u
.
ng
diˆe

m cˆo lˆa
.
p, v`a c˜ung c´o thˆe


l`a ca

mˆo
.
tdu
.
`o
.
ng (du
.
`o
.
ng gi´an doa
.
n).
Nˆe
´
u h`am f(x, y)liˆen tu
.
cta
.
id
iˆe

m M
0
(x
0
,y
0

) theo tˆa
.
pho
.
.
pbiˆe
´
nsˆo
´
th`ı n´o liˆen tu
.
c theo t`u
.
ng biˆe
´
nsˆo
´
.Diˆe
`
u kh˘a

ng di
.
nh ngu
.
o
.
.
cla
.

i l`a khˆong
d´ung.
C˜ung nhu
.
dˆo
´
iv´o
.
i h`am mˆo
.
tbiˆe
´
n, tˆo

ng, hiˆe
.
u v`a t´ıch c´ac h`am liˆen
tu
.
c hai biˆe
´
nta
.
id
iˆe

m M
0
l`a h`am liˆen tu
.

cta
.
idiˆe

md´o; thu
.
o
.
ng cu

a hai
h`am liˆen tu
.
cta
.
i M
0
c˜ung l`a h`am liˆen tu
.
cta
.
i M
0
nˆe
´
uta
.
idiˆe

m M

0
h`am
54 Chu
.
o
.
ng 7. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
mˆa
˜
usˆo
´
kh´ac 0. Ngo`ai ra, di
.
nh l´y vˆe
`
t´ınh liˆen tu
.
ccu

a h`am ho
.

.
pvˆa
˜
n
d
´ung trong tru
.
`o
.
ng ho
.
.
p n`ay.
Nhˆa
.
nx´et. Tu
.
o
.
ng tu
.
.
nhu
.
trˆen ta c´o thˆe

tr`ınh b`ay c´ac kh´ai niˆe
.
mco
.

ba

n liˆen quan d
ˆe
´
n gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am ba biˆe
´
n,
C
´
AC V
´
IDU
.
V´ı du
.
1. Ch´u
.
ng minh r˘a
`
ng h`am
f(x, y)=(x + y) sin

1
x
sin
1
y
l`a vˆo c`ung b´e ta
.
id
iˆe

m O(0, 0).
Gia

i. Theo d
i
.
nh ngh˜ıa vˆo c`ung b´e (tu
.
o
.
ng tu
.
.
nhu
.
d
ˆo
´
iv´o
.

i h`am mˆo
.
t
biˆe
´
n) ta cˆa
`
nch´u
.
ng minh r˘a
`
ng
lim
x→0
y→0
f(x, y)=0.
Ta´apdu
.
ng d
i
.
nh ngh˜ıa gi´o
.
iha
.
n theo Cauchy. Ta cho sˆo
´
ε>0t`uy
´yv`ad
˘a

.
t δ =
ε
2
. Khi d´o n ˆe
´
u
ρ

M(x, y),O(0, 0)

=

x
2
+ y
2
<δth`ı |x| <δ,|y| <δ.
Do d
´o
|f(x, y) − 0| =



(x + y) sin
1
x
sin
1
y




 |x| + |y| < 2δ = ε.
Diˆe
`
ud´och´u
.
ng to

r˘a
`
ng
lim
x→0
y→0
f(x, y)=0.
V´ı du
.
2. T´ınh c´ac gi´o
.
iha
.
n sau d
ˆay:
1) lim
x→0
y→2

1+xy


2
x
2
+ xy
, 2) lim
x→0
y→2

x
2
+(y − x)
2
+1− 1
x
2
+(y − 2)
2
,
3) lim
x→0
y→0
x
4
+ y
4
x
2
+ y
2

.
7.4. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am nhiˆe
`
ubiˆe
´
n 55
Gia

i. 1) Ta biˆe

udiˆe
˜
n h`am du
.
´o
.
idˆa
´
u gi´o
.
iha
.

ndu
.
´o
.
ida
.
ng


1+xy

1
xy

2y
x + y
.
V`ı t = xy → 0 khi

x → 0
y → 0

nˆen
lim
x→0
y→2

1+xy

1

xy
= lim
t→0

1+t

1
t
= e.
Tiˆe
´
p theo v`ı lim
x→0
y→2
2
x + y
= 2 (theo di
.
nh l´y thˆong thu
.
`o
.
ng vˆe
`
gi´o
.
iha
.
n
cu


athu
.
o
.
ng), do d´o gi´o
.
iha
.
ncˆa
`
n t`ım b˘a
`
ng e
2
.
2) Ta t`ım gi´o
.
iha
.
nv´o
.
id
iˆe
`
ukiˆe
.
n M(x, y) → M
0
(0, 2). Khoa


ng c´ach
gi˜u
.
a hai diˆe

m M v`a M
0
b˘a
`
ng
ρ =

x
2
+(y − 2)
2
.
Do d´o
lim
x→0
y→2
f(x, y) = lim
ρ→0

ρ
2
+1− 1
ρ
2

= lim
ρ→0

2
+1)−1
ρ
2
(

ρ
2
+1+1)
= lim
ρ→0
1

ρ
2
+1+1
=
1
2
·
3) Chuyˆe

n sang to
.
adˆo
.
cu

.
.
ctac´ox = ρ cos ϕ, y = ρ sin ϕ.Tac´o
x
4
+ y
4
x
2
+ y
2
=
ρ
4
(cos
4
ϕ + sin
4
ϕ)
ρ
2
(cos
2
ϕ + sin
2
ϕ)
= ρ
2
(cos
4

ϕ + sin
4
ϕ).
V`ı cos
4
ϕ + sin
4
ϕ  2nˆen
lim
x→0
y→0
x
4
+ y
4
x
2
+ y
2
= lim
ρ→0
ρ
2
(cos
4
ϕ + sin
4
ϕ)=0.
56 Chu
.

o
.
ng 7. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am sˆo
´
V´ı du
.
3. 1) Ch´u
.
ng minh r˘a
`
ng h`am
f
1
(x, y)=
x −y
x + y
khˆong c´o gi´o
.
iha
.
nta
.

idiˆe

m(0, 0).
2) H`am
f
2
(x, y)=
xy
x
2
+ y
2
c´o gi´o
.
iha
.
nta
.
idiˆe

m(0, 0) hay khˆong ?
Gia

i. 1) H`am f
1
(x, y) x´ac di
.
nh kh˘a
´
pno

.
i ngoa
.
itr`u
.
du
.
`o
.
ng th˘a

ng
x + y =0. Tach´u
.
ng minh r˘a
`
ng h`am khˆong c´o gi´o
.
iha
.
nta
.
i(0, 0). Ta
lˆa
´
y hai d˜ay d
iˆe

mhˆo
.

itu
.
dˆe
´
ndiˆe

m(0, 0):
M
n
=

1
n
, 0

→ (0, 0),n→∞,
M

n
=

0,
1
n

→ (0, 0),n→∞.
Khi d
´othudu
.
o

.
.
c
lim
n→∞
f
1
(M
n
) = lim
n→∞
1
n
−0
1
n
+0
=1;
lim
n→∞
f
1
(M

n
) = lim
n→∞
0 −
1
n

0+
1
n
= −1.
Nhu
.
vˆa
.
y hai d˜ay diˆe

m kh´ac nhau c`ung hˆo
.
itu
.
dˆe
´
ndiˆe

m(0, 0) nhu
.
ng
hai d˜ay gi´a tri
.
tu
.
o
.
ng ´u
.
ng cu


a h`am khˆong c´o c`ung gi´o
.
iha
.
n. Do d
´o
theo di
.
nh ngh˜ıa h`am khˆong c´o gi´o
.
iha
.
nta
.
i(0, 0).
2) Gia

su
.

diˆe

m M(x, y)dˆa
`
ndˆe
´
ndiˆe

m(0, 0) theo du

.
`o
.
ng th˘a

ng
y = kx qua gˆo
´
cto
.
adˆo
.
. Khi d´o ta c´o
lim
x→0
y→0
(y=kx)
xy
x
2
+ y
2
= lim
x→0
kx
2
x
2
+ k
2

x
2
=
k
1+k
2
·
7.4. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am nhiˆe
`
ubiˆe
´
n 57
Nhu
.
vˆa
.
y khi dˆa
`
nd
ˆe
´
ndiˆe


m(0, 0) theo c´ac du
.
`o
.
ng th˘a

ng kh´ac nhau
(tu
.
o
.
ng ´u
.
ng v´o
.
i c´ac gi´a tri
.
k kh´ac nhau) ta thu d
u
.
o
.
.
c c´ac gi´a tri
.
gi´o
.
i
ha

.
n kh´ac nhau, t´u
.
c l`a h`am d˜a cho khˆong c´o gi´o
.
iha
.
nta
.
i(0, 0). 
V´ı d u
.
4. Kha

o s´at t´ınh liˆen tu
.
ccu

a c´ac h`am
1) f(x, y)=
x
2
+2xy +5
y
2
− 2x +1
2) f(x, y)=
1
x
2

+ y
2
− z
3) f(x, y)=
x + y
x
3
+ y
3
Gia

i. 1) Diˆe
`
ukiˆe
.
n liˆen tu
.
ccu

ah`amd˜a cho bi
.
vi pha
.
mta
.
inh˜u
.
ng
diˆe


mcu

am˘a
.
t ph˘a

ng R
2
m`a to
.
adˆo
.
cu

ach´ung tho

a m˜an phu
.
o
.
ng tr`ınh
y
2
−2x +1=0. D´ol`aphu
.
o
.
ng tr`ınh du
.
`o

.
ng parabˆon v´o
.
idı

nh ta
.
idiˆe

m

1
2
, 0

.Nhu
.
vˆa
.
y c´ac d
iˆe

mcu

a parabˆon n`ay l`a nh˜u
.
ng d
iˆe

m gi´an doa

.
n
-d
´ol`adu
.
`o
.
ng gi´an doa
.
ncu

a h`am. Nh˜u
.
ng diˆe

mcu

am˘a
.
t ph˘a

ng R
2
khˆong thuˆo
.
c parabˆon d´ol`anh˜u
.
ng diˆe

m liˆen tu

.
c.
2) H`am d
˜a cho liˆen tu
.
cta
.
imo
.
idiˆe

mcu

a khˆong gian R
3
m`a to
.
adˆo
.
cu

ach´ung tho

a m˜an diˆe
`
ukiˆe
.
n x
2
+ y

2
− z =0. D´o l`a phu
.
o
.
ng tr`ınh
m˘a
.
t paraboloit tr`on xoay. Trong tru
.
`o
.
ng ho
.
.
p n`ay m˘a
.
t paraboloit l`a
m˘a
.
t gi´an d
oa
.
ncu

a h`am.
3) V`ı tu
.

sˆo

´
v`a mˆa
˜
usˆo
´
l`a nh˜u
.
ng h`am liˆen tu
.
cnˆen thu
.
o
.
ng l`a h`am
liˆen tu
.
cta
.
inh˜u
.
ng d
iˆe

mm`amˆa
˜
usˆo
´
x
3
+ y

3
= 0. H`am c´o gi´an doa
.
nta
.
i
nh˜u
.
ng diˆe

mm`ax
3
+ y
3
=0hayy = −x. Ngh˜ıa l`a h`am c´o gi´an doa
.
n
trˆen du
.
`o
.
ng th˘a

ng y = −x.
Gia

su
.

x

0
=0,y
0
= 0. Khi d´o
lim
x→x
0
y→y
0
x + y
x
3
+ y
3
= lim
x→x
0
y→y
0
1
x
2
− xy + y
2
=
1
x
2
0
−x

0
y
0
+ y
2
0
·
T`u
.
d´o suy ra r˘a
`
ng c´ac diˆe

mcu

adu
.
`o
.
ng th˘a

ng y = x (x = 0) l`a
58 Chu
.
o
.
ng 7. Gi´o
.
iha
.

n v`a liˆen tu
.
ccu

a h`am sˆo
´
nhu
.
.
ng d
iˆe

m gi´an doa
.
nkhu
.

d
u
.
o
.
.
c. V`ı
lim
x→0
y→0
x + y
x
3

+ y
3
= lim
x→0
y→0
1
x
2
− xy + y
2
=+∞
nˆen d
iˆe

m O(0, 0) l`a diˆe

m gi´an doa
.
nvˆoc`ung.
B
`
AI T
ˆ
A
.
P
Trong c´ac b`ai to´an sau d
ˆay (1-10) h˜ay t`ım miˆe
`
n x´ac di

.
nh cu

a c´ac
h`am nˆe
´
u:
1. w =

x
2
− y
2
.(DS. |y|  |x|)
2. w =

xy.(DS. x  0,y  0 ho˘a
.
c x  0,y  0)
3. w =

a
2
−x
2
− y
2
.(DS. x
2
+ y

2
 a
2
)
4. w =
1

x
2
+ y
2
− a
2
.(DS. x
2
+ y
2
>a
2
)
5. w =

1 −
x
2
a
2

y
2

b
2
.(DS.
x
2
a
2
+
y
2
b
2
 1)
6. w = ln(z
2
− x
2
− y
2
− 1). (DS. x
2
+ y
2
− z
2
< −1)
7. w = arcsin
x
2
+


xy.(DS. Hai nu
.

a b˘ang vˆo ha
.
n th˘a

ng d´u
.
ng
{0  x  2, 0  y<+∞} v`a {−2  x  0, −∞ <y 0})
8. w =

x
2
+ y
2
− 1 + ln(4 − x
2
− y
2
).
(DS. V`anh tr`on 1  x
2
+ y
2
< 4)
9. w =


sin π(x
2
+ y
2
). (DS. Tˆa
.
pho
.
.
p c´ac v`anh dˆo
`
ng tˆam
0  x
2
+ y
2
 1; 2  x
2
+ y
2
 3; )
10. w =

ln(1 + z − x
2
−y
2
).
(DS. Phˆa
`

n trong cu

amˆa
.
t parab oloid z = x
2
+ y
2
−1).
Trong c´ac b`ai to´an sau d
ˆay (11-18) h˜ay t´ınh c´ac gi´o
.
iha
.
ncu

a h`am
7.4. Gi´o
.
iha
.
n v`a liˆen tu
.
ccu

a h`am nhiˆe
`
ubiˆe
´
n 59

11. lim
x→0
y→0
sin xy
xy
.(D
S. 1)
12. lim
x→0
y→0
sin xy
x
.(D
S. 0)
13. lim
x→0
y→0
xy

xy +1− 1
.(D
S. 2)
14. lim
x→0
y→0
x
2
+ y
2


x
2
+ y
2
+1− 1
.(DS. 2)
Chı

dˆa
˜
n. Su
.

du
.
ng khoa

ng c´ach ρ =

x
2
+ y
2
ho˘a
.
c nhˆan - chia
v´o
.
id
a

.
ilu
.
o
.
.
ng liˆen ho
.
.
pv´o
.
imˆa
˜
usˆo
´
.
15. lim
x→0
y→3

1+xy
2

y
x
2
y + xy
2
.(DS. e
3

)
16. lim
x→0
y→0
x
2
y
x
2
+ y
2
.(DS. 0)
17. lim
x→0
y→5

(x
2
+(y − 5)
2
+1− 1
x
2
+(y − 5)
2
.(DS.
1
2
)
18. lim

x→1
y→0
tg(2xy)
x
2
y
.(DS. 2).
Chu
.
o
.
ng 8
Ph´ep t´ınh vi phˆan h`am mˆo
.
t
biˆe
´
n
8.1 D
-
a
.
oh`am 61
8.1.1 D
-
a
.
o h`am cˆa
´
p1 61

8.1.2 D
-
a
.
o h`am cˆa
´
pcao 62
8.2 Viphˆan 75
8.2.1 Vi phˆan cˆa
´
p1 75
8.2.2 Vi phˆan cˆa
´
pcao 77
8.3 C´ac d
i
.
nh l´y co
.
ba

nvˆe
`
h`am kha

vi. Quy
t˘a
´
c l’Hospital. Cˆong th´u
.

c Taylor . . . . . . 84
8.3.1 C´ac d
i
.
nh l´y co
.
ba

nvˆe
`
h`am kha

vi 84
8.3.2 Khu
.

c´ac da
.
ng vˆo di
.
nh. Quy t˘a
´
c Lˆopitan
(L’Hospitale) . . . . . . . . . . . . . . . . . 88
8.3.3 Cˆong th´u
.
cTaylor 96
8.1. D
-
a

.
o h`am 61
8.1 D
-
a
.
oh`am
8.1.1 D
-
a
.
o h`am cˆa
´
p1
Gia

su
.

h`am y = f(x)x´acdi
.
nh trong δ-lˆan cˆa
.
ncu

adiˆe

m x
0
(U(x

0
; δ)=
{x ∈ R : |x −x
0
| <δ)v`a∆f(x
0
)=f(x
0
+∆x) − f(x
0
) l`a sˆo
´
gia cu

a
n´o ta
.
idiˆe

m x
0
tu
.
o
.
ng ´u
.
ng v´o
.
isˆo

´
gia ∆x = x − x
0
cu

adˆo
´
isˆo
´
.
Theo d
i
.
nh ngh˜ıa: Nˆe
´
utˆo
`
nta
.
i gi´o
.
iha
.
nh˜u
.
uha
.
n
lim
∆x→0

f(x
0
+∆x) − f(x
0
)
∆x
khi ∆x → 0 th`ı gi´o
.
iha
.
nd
´odu
.
o
.
.
cgo
.
il`ad
a
.
o h`am cu

a h`am f(x)ta
.
i
diˆe

m x
0

v`a du
.
o
.
.
cchı

bo
.

imˆo
.
t trong c´ac k´yhiˆe
.
u:
lim
∆x→0
f(x
0
+∆x) − f(x
0
)
∆x

dy
dx

d
dx
f(x) ≡ f


(x) ≡ y

.
Da
.
ilu
.
o
.
.
ng
f

+
(x
0
)=f

(x
0
+ 0) = lim
∆x→0
∆x>0
∆y
∆x
= lim
∆x→0+0
∆y
∆x

v`a
f


(x
0
)=f

(x
0
− 0) = lim
∆x→0
∆x<0
∆y
∆x
= lim
∆x→0−0
∆y
∆x
du
.
o
.
.
cgo
.
il`ada
.
oh`ambˆen pha


i v`a da
.
oh`ambˆen tr´ai cu

a h`am y = f(x)
ta
.
idiˆe

m x
0
nˆe
´
u c´ac gi´o
.
iha
.
nd˜a n ˆe u t ˆo
`
nta
.
i.
Su
.

du
.
ng kh´ai niˆe
.
m gi´o

.
iha
.
nmˆo
.
tph´ıa ta c´o:
D
-
i
.
nh l´y 8.1.1. H`am y = f(x) c´o d
a
.
o h`am ta
.
idiˆe

m x khi v`a chı

khi
c´ac da
.
o h`am mˆo
.
tph´ıa tˆo
`
nta
.
iv`ab˘a
`

ng nhau:
f

(x +0)=f

(x − 0) = f

(x).
H`am f(x) kha

vi nˆe
´
un´oc´oda
.
o h`am f

(x)h˜u
.
uha
.
n. H`am f(x) kha

vi liˆen tu
.
c nˆe
´
ud
a
.
o h`am f


(x)tˆo
`
nta
.
i v`a liˆen tu
.
c. Nˆe
´
u h`am f(x) kha

vi th`ı n´o liˆen tu
.
c. D
iˆe
`
u kh˘a

ng di
.
nh ngu
.
o
.
.
cla
.
i l`a khˆong d´ung.
62 Chu
.

o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo
.
tbiˆe
´
n
8.1.2 D
-
a
.
o h`am cˆa
´
p cao
Da
.
o h`am f

(x)du
.
o
.
.
cgo
.
il`ada
.
o h`am cˆa
´
p1(hay da

.
o h`am bˆa
.
c nhˆa
´
t).
Da
.
o h`am cu

a f

(x)du
.
o
.
.
cgo
.
il`ada
.
o h`am cˆa
´
p hai (hay da
.
o h`am th´u
.
hai)cu

a h`am f(x)v`adu

.
o
.
.
ck´yhiˆe
.
ul`ay

hay f

(x). Da
.
o h`am cu

a
f

(x)du
.
o
.
.
cgo
.
il`ad
a
.
o h`am cˆa
´
p3(hay da

.
o h`am th´u
.
ba)cu

a h`am f(x)
v`a d
u
.
o
.
.
ck´yhiˆe
.
u y

hay f

(x) (hay y
(3)
, f
(3)
(x) v.v
Ta c´o ba

ng da
.
o h`am cu

a c´ac h`am so

.
cˆa
´
pco
.
ba

n
f(x) f

(x) f
(n)
(x)
x
a
ax
a−1
a(a −1)(a −2) ···(a −n +1)x
a−n
,
x>0
e
x
e
x
e
x
a
x
a

x
lnaa
x
(lna)
n
lnx
1
x
(−1)
n−1
(n − 1)!
1
x
n
, x>0
log
a
x
1
xlna
(−1)
n−1
(n − 1)!
1
x
n
lna
, x>0
sin x cos x sin


x +

2

×