SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI CHỌN HỌC SINH GIỎI TỈNH
HÀ TĨNH LỚP 9 THCS - NĂM HỌC 2010 - 2011
ĐỀ
CHÍNH THỨC Môn Toán
Thời gian làm bài : 150 phút
Ngày thi: 17 / 03 / 2011
Bài 1. Cho phương trình:
3
3
1 1
x (m 1)(x ) m 3 0
x x
− − + − + − =
.
a) Giải phương trình khi m = 2.
b) Tìm m để phương trình có đúng hai nghiệm dương phân biệt.
Bài 2. a) Cho a, b, c là những số nguyên thỏa mãn điều kiện:
2
2 2 2
1 1 1 1 1 1
.
a b c a b c
+ + = + +
÷
Chứng minh rằng
3 3 3
a b c+ +
chia hết cho 3.
b) Giải phương trình:
3 2
x ax bx 1 0+ + + =
, biết rằng a, b là các số hữu tỉ
và
1 2+
là một nghiệm của phương trình.
Bài 3. Cho x, y là các số nguyên dương, thỏa mãn:
x y 2011+ =
.
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức: P =
2 2
x(x y) y(y x)+ + +
Bài 4. Cho nửa đường tròn tâm O, đường kính AB = 2R, một dây cung MN = R
di chuyển trên nửa đường tròn. Qua M kẻ đường thẳng song song với ON
cắt đường thẳng AB tai E. Qua N kẻ đường thẳng song song với OM cắt
đường thẵng AB tại F.
a) Chứng minh tam giác MNE và tam giác NFM đồng dạng .
b) Gọi K là giao điểm của EN và FM. Hãy xác định vị trí của dây MN để
tam giác MKN có chu vi lớn nhất.
Bài 5. Cho a, b, c là những số dương thỏa mãn:
abc 1=
. Chứng minh :
3 3 3
a b c 3
(1 b)(1 c) (1 c)(1 a) (1 a)(1 b) 4
+ ≥
+ + + + + +
.
_________ Hết ________
Họ và tên thí sinh: Số báo danh: