ĐẠI HỌC THÁI NGUYÊN
TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP
NGUYỄN TIẾN LUẬT
NGHIÊN CỨU ỨNG DỤNG BIẾN TẦN ĐA MỨC
TRONG TRUYỀN ĐỘNG ĐIỆN
Chun ngành: TỰ ĐỘNG HỐ
Khố học: K10
TĨM TẮT LUẬN VĂN THẠC SỸ KỸ THUẬT
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Cơng trình được hồn thành tại:
KHOA SAU ĐẠI HỌC - ĐẠI HỌC CÔNG NGHIỆP
Người hướng dẫn khoa học: PGS.TS NGUYỄN VĂN LIỄN
Phản biện 1: PGS.TS NGUYỄN NHƯ HIỂN
Phản biện 2: TS. TRẦN TRỌNG MINH
Luận văn được bảo vệ trước Hội đồng chấm luận văn họp tại:
TRƯỜNG ĐẠI HỌC KỸ THUẬT CƠNG NGHIỆP
Vào hồi 11h ngày 22 tháng 11 năm 2009
Có thể tìm hiểu luận văn tại:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Chƣơng I
ĐỘNG CƠ KHÔNG ĐỒNG BỘ VÀ PHƢƠNG PHÁP
ĐIỀU KHIỂN TẦN SỐ
1.1. Mô tả chung về động cơ không đồng bộ.
- Ở đây ta chủ yếu nghiên cứu động cơ không đồng bộ ba pha.
- Động cơ không đồng bộ ba pha là máy điện quay không đồng bộ ba pha. về cấu tạo, động
cơ không đồng bộ gồm 2 phần chính là phần tĩnh hay là stato và phần quay là rôto. Stato
thường gồm 3 cuộn dây đặt lệch nhau 120° trong khơng gian.
Rơto phân làm 2 loại chính: rơto dây quấn và rơto lồng sóc. Rơto dây quấn là kiểu rơto có
dây quấn giống ở stato, dây quấn rôto được đặt và các rãnh của lõi sắt rôto. Cịn rơto lồng
sóc thì khơng dùng dây quấn mà dùng các thanh dẫn bằng đồng hay nhôm, các thanh dẫn
này được nối ngắn mạch với nhau ở mỗi đầu bằng vịng ngắn mạch.
a
b
c
a
b
c
Hình 1.1. Động cơ khơng đồng bộ. a) Rơ to lồng sóc, b) Rơto dây quấn
- Động cơ không đồng bộ được sử dụng rộng rãi trong thực tế sản xuất. Ưu điểm nổi bật
của loại động cơ này là cấu tạo đơn giản đặc biệt là động cơ rơto lồng sóc; so với động cơ
một chiều động cơ khơng đồng bộ có giá thành hạ, vận hành tin cậy, chắc chắn. Ngồi ra
động cơ khơng đồng bộ có thể dùng trực tiếp lưới điện xoay chiều 3 pha nên không cần bộ
biến đổi như động cơ điện 1 chiều.
Nhược điểm của động cơ không đồng bộ là điểu chỉnh tốc độ và khống chế các quá
trình quá độ khó khăn; riêng với động cơ khơng đồng bộ rơto lồng sóc thì các chỉ tiêu khởi
động xấu hơn.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
1
1.2. Phƣơng trình đặc tính cơ của động cơ khơng đồng bộ:
- Sơ đồ thay thế của động cơ không đồng bộ:
Để thành lập phương trình đặc tính cơ của động cơ không đồng bộ ta sử dụng sơ đồ thay
thế. Trên hình 1.2 là sơ đồ thay thế gần đúng một pha của động cơ không đồng bộ với các
giả thiết sau:
+ Ba pha động cơ là đối xứng, khe hở khơng khí là đồng đều.
+ Các thơng số của động cơ không đổi, nghĩa là không phụ thuộc vào nhiệt độ, tần số,
dịng điện rơto, mạch từ khơng bão hồ. Nên điện kháng X1, X2 khơng đổi.
+ Dịng điện từ hố khơng phụ thuộc vào tải mà chỉ phụ thuộc vào điện áp đặt ở stato động
cơ.
+ Bỏ qua cả tổn thất ma sát, tổi thất trong lõi thép.
+ Điện áp lưới hoàn toàn sin và đối xứng 3 pha.
I2
I1
X1
X'2
R1
Xm
I3
U1
R'2/s
Rm
Hình 1.2. Sơ đồ thay thế động cơ khơng đồng bộ
- Trong sơ đồ:
+U1: Trị số hiệu dụng của điện áp pha stato.
+Iµ, I1, I2: Các dịng điện từ hố, stato và rơto đã quy đổi về stato.
+Xσ, X1σ, X2σ : Điện kháng mạch từ hoá, điện kháng tản stato và rôto đã quy đổi về stato.
+ s: Độ trượt của động cơ: S
1
1
+ f1: Tần số của điện áp nguồn đặt vào stato.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
2
+ω: Tốc độ góc của động cơ.
+Pp: Số đơi cực từ động cơ.
Từ sơ đồ thay thế ta có:
1
1
I1 U f 1.
2
2
' 2
R X R R2 X 2
1
nm
s
(1.1)
Trong đó: Xnm=X1σ+X’2σ: Điện kháng ngắn mạch
Biểu thức (1) là phương trình đặc tính của dịng điện stato.
+ Khi ω=0, s=1 thì I1=I1nm
+ Khi ω=ω1, s=0 thì: I 1
U f1
R02 X 02
I
+ I1nm: Dòng điện ngắn mạch stato.
+ I: Dịng điện từ hố có tác dụng tạo ra từ trường quay từ hố lõi sắt động cơ. Ta cũng
tìm được dịng điện rơto quy đổi về stato:
'
I2
U f1
R
(1.2)
2
'
2
X nm
1 R2 / 2
- Phương trình đặc tính cơ của động cơ:
Để tìm phương trình đặc tính cơ của động cơ ta dựa vào điều kiện cân bằng công suất
trong động cơ.
Công suất điện từ chuyển từ stato sang rơto:
P12=Mdt.ω1
Trong đó: Mdt: là mơmen điện từ của động cơ
Bỏ qua các tổn thất phụ thì : Mdt=Mcơ =M
Cơng suất đó chia làm hai phần:
Pcơ: Cơng suất cơ đưa ra trên trục động cơ
ΔP2: Công suất tổn hao đồng trong rơto.
P12=Pcơ+ΔP2
=>M.ω1=M.+ΔP2
Do đó: ΔP2=M(ω1-ω)=M.ω1.s
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
3
Mặt khác: ΔP2=3.I’22.R2’
'
R2
3.I .
s
M
'2
2
1
Từ đó ta có: M
'
3U12 .R2
(1.3)
' 2
R2
2
1 R1 X nm .s
s
Xác định cực trị bằng cách tính
dM
0
ds
Từ đó suy ra:
+
+
S th
M th
'
R2
(1.4)
2
R12 X nm
U 12f
(1.5)
2
21 ( R1 R12 X nm )
Trong hai biểu thức trên dấu + ứng với trạng thái động cơ. Dấu - ứng với trạng thái máy
phát. Do đó Mth ở chế độ máy phát lớn hơn ở chế độ động cơ.
Ở đây nghiên cứu hệ truyền động với động cơ không đồng bộ nên ta quan tâm nhiều tới
trạng thái làm việc động cơ nên đường đặc tính cơ lúc này thường biểu diễn trong khoảng
0
Phương trình đặc tính cơ của động cơ khơng đồng bộ có thể biểu diễn đơn gian hơn bằng
các lập tỉ số giữa (1.3) và (1.5) ta có:
M
Trong đó: a
2.M th (1 a.sth )
s sth
a.sth
sth
s
R1
'
R2
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
4
Sdm
Sth
M
Mdm Mkd
Mth
Hình 1.3. Đặc tính cơ động cơ khơng đồng bộ
Từ phương trình đặc tính cơ ta thấy các thơng số ảnh hưởng tới đặc tính cơ:
-
Ảnh hưởng điện trở, điện kháng mạch stato
-
Ảnh hưởng điện trở mạch rôto
-
Ảnh hưởng điện áp lưới cấp cho động cơ
-
Ảnh hưởng của tần số lưới cấp cho động cơ f1.
1.3. Mơ hình động cơ khơng đồng bộ.
1.3.1. Mơ hình động cơ khơng đồng bộ trong không gian ba pha.
- Quy ước: A,B, C chỉ thứ tự pha các cuộn dây rôto và a,b,c chỉ thứ tự các cuộn dây stato.
Giả thiết:
-
Cuộn dây stato, rơto đối xứng 3 pha.
-
Dây quấn stato được bố trí sao cho từ thơng khe hở có phân bố dạng hình sin dọc
theo chu vi khe hở khơng khí.
-
Tham số khơng đổi.
-
Mạch từ chưa bão hồ.
-
Khe hở khơng khí δ đồng đều.
-
Nguồn 3 pha cấp hình sin và đối xứng (lệch pha góc 2л/3).
Phương trình cân bằng điện áp của mỗi cn dây k như sau:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
5
Trong đó: k là thứ tự cuộn dây A, B, C rôto và a,b,c stato.
U k I k Rk d
k
dt
Ψk là từ thơng móc vịng của mỗi cuộn dây thứ k.Ψk=∑Ljkij.
nếu i=k: ta có điện cảm tự cảm , j≠k: ta có điện cảm hỗ cảm.
Ví dụ: Ψa=La aia+Labib+Lacic+LaAiA+LaBiB+LaCiC
L là điện cảm chính của dây quấn pha động cơ không đồng bộ.
Lσ là điện cảm tản
Ns là số vịng dây quấn stato
Nr là số vịng dây quấn rơto
s
Ls Ls
1
L
L
Lr .N r2 Lr
r
1
L
LN s2
a
b
c
A
B
C
ia
i s ib
ic
i A
ir i B ,
iC
RS
Rs 0
0
0
a
b
c
A
B
C
RS
0
0
0
RS
u
u s a ,
u
Rr
Rr 0
0
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
6
u A
u r u B
u C
0
Rr
0
0
0
Rr
1
1
1 s 2
2
1
1
Ls L.
1 s
2
2
1
1
1 s
2
2
1
1
1 r
2
2
N r2 1
1
Ls 2 L.
1 r
Ns 2
2
1
1
1 r
2
2
cos
cos( 2 3) cos( 2 3)
cos( 2 3)
Lm ( ) M .
cos
cos( 2 3)
cos( 2 3) cos( 2 3)
cos
s Ls
t
r Lm ( )
Lm ( )
Lr
d
u s R S LS dt
u d t
r
Lm ( )
dt
M ist
i
x s
i
r
d
Lm ( ) i
dt
x s
d ir
R r Lr
dt
d
{Lm ( )ir }
d
Các hệ phương trình trên là các hệ phương trình vi phân phi tuyến có hệ số biến thiên theo
thời gian vì góc quay θ phụ thuộc thời gian:
0 t dt
Kết luận: nếu mơ tả tốn học như trên thì rất phức tạp nên cần đơn giản giảm bớt đi.
Tới năm 1995 Kơvacs(Liên Xơ) đề xuất phép biến đổi tuyến tính khơng gian vectơ và
Park(Mỹ) đưa ra phép biến đổi d,q.
1.3.2. Phép biến đổi tuyến tính khơng gian vectơ:
Trong máy điện ba pha thường dùng cách chuyển các giá trị tức thời của điện áp thành
các vectơ không gian. Lấy một mặt phẳng cắt động cơ theo hướng vng góc với trục và
biển diễn từ không gian thành mặt phẳng. Chọn trục thực của mặt phẳng trùng với trục pha
a.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
7
+1(
is
Ia
i s
+j(
is
a ib
.
2
a . ic
Hình 1.4 Tương quan giữa hệ toạ độ αβ và toạ độ pha a,b,c
Ba vectơ dòng điện stato i a, ib, ic tổng hợp lại và đại diện bởi một vectơ quay trịn is. Véctơ
khơng gian của dòng điện stato:
2
is ia aib a 2 ic
3
ae
j
2
3
Muốn biết is cần biết các hình chiếu của nó lên các trục toạ độ: isα , isβ.
is=isα + jisβ
isa Reis
i s Imi s
1
2ia ib ic
3
3
ib ic
3
Theo cách thức trên có thể chuyển vị từ 6 phương trình (3rơto, 3 stato) thành nghiên
cứu 4 phương trình.
Phép biến đổi từ 3 pha (a,b,c) thành 2 pha(α,β) được gọi là phép biến đổi thuận. Còn
phép biến đổi từ 2 pha thành 3 pha được gọi là phép biến đổi ngược.
Đơn gian hơn, khi chiếu is lên một hệ trục xy bất kỳ quay với tốc độ ω k:
θk = θ 0 + ω k t
+ Nếu ωk=0, θ0=0: đó là phép biến đổi với hệ trục (biến đổi tĩnh)
+ Nếu ωk=ω1, θ0 tự chọn bất kỳ (để đơn giản một phương trình x trùng ψ r để ψry=0): phép
biến đổi d,q.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
8
Chuyển sang hệ toạ độ quay bất kỳ:
Các hệ toạ độ được mơ tả như sau:
x
Ia
k
is
2
a
a.ib
y
Hình 1.5 Hệ toạ độ quay bất kỳ.
d
Pha B
q
i s
i
s
isd
isq
r
s
Pha A
is
Pha C
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
9
Hình 1.6. Các đại lượng is và r của động cơ trên các hệ toạ độ
- Các phương trình chuyển đổi hệ toạ độ:
a, b, c -> αβ
i sa ia
is
1
ia ib
3
αβ d,q
Isd=isαcosθ +isβsinθ
Isq = isβcosθ +isαsinθ
αβ a,b,c
ia = isa
1
i sa 3.i s
2
1
ic i sa 3.i s
2
ib
D,q → αβ
is isd cos isq sin
is isd sin isq cos
- Hệ phương trình cơ bản của động cơ trong không gian vectơ:
Để dễ theo dõi ta ký hiệu:
Chỉ số trên s: Xét trong hệ toạ độ stato(toạ độ α,β)
f: trong toạ độ trường (fied) từ thông rôto(toạ độ dq)
r: toạ độ gắn với trục rôto
Chỉ số dưới: s: đại lượng mạch stato
r: toạ độ gắn với trục rơto.
Phương trình mơmen:
mM
3
p( r i )
2
Phương trình chuyển động:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
10
mM mc
J d
p dt
Phương trình điện áp cho ba cuộn dây stato:
sa (t )
u sa (t ) Rs i sa (t ) d
u sb (t ) Rs i sb (t ) d
u sc (t ) Rs i sc (t ) d
dt
sb (t )
dt
sc (t )
dt
Tương tự như vectơ dòng điện ta có vectơ điện áp:
u s (t ) 2 / 3 u sa (t ) u sb (t ).e j120 u c(t ).e 240
Sử dụng khái niệm vectơ tổng ta nhận được phương trình vectơ:
u ss Rs .iss d
-
ss
dt
Khi quan sát ở hệ toạ độ α,β:
Đối với mạch rơto ta cũng có được phương trình như trên, chỉ khác là do cấu tạo các lồng
sóc là ngắn mạch nên ur=0(quan sát trên toạ độ gắn với trục rôto)
Từ thông stato và rôto được tính như sau:
0 Rr irr d
rr
dt
s i s L s i r Lm
r i s Lm i r Lr
Trong đó Ls: điện cảm stato Ls=LσS +Lm(LσS: Điện cảm tiêu tán phía stato)
Lr: điện cảm rơto Lr=Lαr+Lm(Lσr: Điện cảm tiêu tán phía rơto)
(Phương trình từ thơng khơng cần đến chỉ số hệ toạ độ vì các cuộn dây stato và rơto có cấu
tạo đối xứng nên điện cảm không đổi trong mọi hệ toạ độ).
1.4. Điều khiển tần số động cơ không đồng bộ:
1.4.1.Các phƣơng pháp điểu khiển tốc độ động cơ khơng đồng bộ:
Từ phương trình đặc tính cơ của động cơ:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
11
M
3U 12
'
R2
s
' 2
R2
2
1 R1 X nm
s
Ta có thể dựa vào đó để điểu khiển mômen bằng cách thay đổi các thông số như điện áp
cung cấp, điện trở phụ, tốc độ trượt và tần số nguồn.
Tới nay đã có các phương pháp điều khiển chủ yếu sau:
Tổn thất
Kinh tế
Điều chỉnh
điện áp
Stato
stato
Điều chỉnh
tần số
nguồn cấp
Stato
~
=
=
~
Điều
chỉnh
bằng pp
xung điện
trở rơto
P
8
Rơ to
Điều chỉnh
cơng suất
trượt
Pn
Pn
K
NL
CL
Hình 1.7. Các phương pháp điều khiển
a. Điều khiển điện áp stato:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
12
Do mômen động cơ không đồng bộ tỉ lệ với bình phương điện áp stato, do đó có thể
điều chỉnh được mômen và tốc độ không đồng bộ bằng cách điều chỉnh điện áp stato trong
khi giữ nguyên tần số. Đây là phương pháp đơn giản nhất, chỉ sử dụng một bộ biến đổi
điện năng(biến áp, tiristor) để điều chỉnh điện áp đặt vào các cuộn stato. Phương pháp này
kinh tế nhưng họ đặc tính cơ thu được khơng tốt, thích hợp với phụ tải máy bơm, quạt gió.
b. Điều khiển điện trở rôto:
Sử dụng trong cơ cấu dịch chuyển cầu trục, quạt gió, bơm nước: bằng việc điểu khiển
tiếp điểm hoặc tiristor làm ngắn mạch/hở mạch điện trở phụ của rôto ta điều khiển được
tốc độ động cơ, phương pháp này có ưu điểm mạch điện an tồn, giá thành rẻ. Nhược
điểm: đặc tính điểu chỉnh khơng tốt, hiệu suất thấp, vùng điều chỉnh không rộng.
c. Điều chỉnh công suất trượt:
Trong các trường hợp điều chỉnh tốc độ động cơ khơng đồng bộ bằng cách làm
mềm đặc tính và để ngun tốc độ khơng tải lý tưởng thì cơng suất trượt ΔP s=sPdt được
tiêu tán trên điện trở mạch rôto, ở các hệ thống truyền động điện công suất lớn, tổn hao
này là đáng kể, vì thế để vừa điều chỉnh được tốc độ truyền động, vừa tận dụng được công
suất trượt người ta sử dụng các sơ đồ công suất trượt(sơ đồ nối tầng/nối cấp).
P1=Pcơ+Ps=P1(1-s)+sP1=const.
Nếu lấy Ps trả lại lưới thì tiết kiệm được năng lượng.
- Khi điều chỉnh với ω<ω1: được gọi là điều chỉnh nối cấp dưới đồng bộ(lấy năng lượng P s
ra phát lên lưới).
- Khi điều chỉnh với ω>ω1 (s<0): điều chỉnh công suất trượt trên đồng bộ (nhận năng lượng
Ps vào) hay còn gọi là điều chỉnh nối cấp trên đồng bộ hoặc truyền động động cơ hai
nguồn cung cấp.
- Nếu tái sử dụng năng lượng Ps để tạo Pcơ: được gọi là truyền động nối câp cơ. Phương
pháp này khơng có ý nghĩa nhiều vì khi ω giảm cịn 1/3.ω 1 thì Ps=2/3.P1 tức là công suất
một chiều dùng để tận dụng Ps phải gần bằng động cơ chính(xoay chiều), nếu khơng thì lại
khơng nên điều chỉnh sâu ω xuống. Trong thực tế không sử dụng phương pháp này.
d. Điều khiển tần số nguồn cấp stato:
Nguyên lý chung của điều khiển tần số:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
13
Xuất phát từ công thức: 1
2f
P
;
1 (1 s)
Trong đó: ω1 tốc độ đồng bộ
f tần số nguồn
p số đôi cực
s hệ số trượt
f > f dm
f = f dm
f < f dm
M
Hình 1.8. Đặc tính cơ động cơ không đồng bộ khi điều chỉnh tần số.
Với một động cơ khi đã chế tạo thì số đơi cực (Pp) cố định do đó khi thay đổi tần số f
thì dẫn đến tốc độ thay đổi và sẽ dẫn đến tốc độ động cơ thay đổi.
Khi điều chỉnh tần số động cơ không đồng bộ thường phải điều chỉnh cả điện áp, dịng
điện hoặc từ thơng trong mạch stato do trở kháng, từ thơng, dịng điện…của động cơ bị
thay đổi.
- Khi điều chỉnh tần số, giả sử điện áp là điện áp định mức(Udm):
+ Nếu giảm tần số f < fđm(trong khi giữ U=Udm) thì từ thơng ψ tăng lên, dẫn đến dịng từ
hóa tăng lên, lúc này lõi thép bị bão hồ làm cho máy nóng làm việc sẽ kém đi, dẫn đến
hiệu suất thấp, nóng mạch từ. Vì vậy, để đảm bảo một chỉ tiêu mà khơng làm động cơ bị
q dịng, cần phải điều chỉnh cả điện áp động cơ, cụ thể là giảm điện áp cùng với việc
giảm tần số theo quy luật nhất định.
+ Nếu tăng tần số vì điện áp U1=Udm(điện áp định mức là lớn nhất). Lúc này từ thông θ
động cơ sẽ giảm xuống làm cho momen động cơ giảm, dẫn đến tốc độ động cơ giảm rất
nhiều. Trường hợp mơmen động cơ yếu có thể làm cho động cơ khơng quay được.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
14
Khi tần số tăng (f > fdm )thì mơmen tới hạn giảm.
M th
1
f12
- Điều chỉnh tần số động cơ không đồng bộ là phương pháp điều chỉnh kinh tế, tuy vậy nó
địi hỏi kỹ thuật cao và phức tạp. Điều này xuất phát từ bản chất và nguyên lý làm việc của
động cơ là phần cảm và phần ứng khơng tách biệt. có hai hướng tiếp cận là:
+ Hướng thứ nhất coi stato là phần cảm tạo ra từ thơng ψ s, cịn mơmen là do tác động của
từ thơng ψs và dịng điện ir.
+ Hướng thứ hai coi rôto là phần cảm tạo ra từ thông ψ r cịn mơmen là do tác động của ψr
và dịng điện stato is.
Lịch sử điều khiển tần số động cơ không đồng bộ xuất phát từ thông số ψ s, thông qua
các giá trị biên độ của đại lượng điện áp và dòng điện stato, ngày nay gọi là điểu khiển vô
hướng.
- Luật điều chỉnh giữ khả năng quá tải không đổi:
Để đảm bảo một số chỉ tiêu điều chỉnh mà khơng làm động cơ bị q dịng thì cần phải
điều chỉnh cả điện áp. Đối với biến tần nguồn áp thường có yêu cầu giữ cho khả năng quá
tải về mômen là không đổi trong suốt dải điều chỉnh tốc độ. Luật điều chỉnh là u s f s1 x / 2
với x phụ thuộc tải. Khi x=0 (Mc=const, ví dụ cơ cấu nâng hàng) thì luật điều chỉnh là us/fs
=const.
- Luật điều chỉnh tần số-điện áp giữ từ thông không đổi:
Ở hệ thống điều khiển điện áp/tần số, sức điện động stato động cơ được điều chỉnh tỉ lệ với
tần số đảm bảo duy trì từ thơng khe hở khơng đổi. Động cơ có khả năng sinh mơmen như
nhau ở mọi tần số định mức. Có thể điều chỉnh tốc độ ở hai vùng:
Vùng dưới tốc độ cơ bản: giữ từ thông không đổi thông qua điều khiển tỷ số sức điện động
khe hở/tần số là hằng số.
Vùng trên tốc độ cơ bản: giữ công suất động cơ khơng đổi, điện áp được duy trì khơng đổi,
từ thơng động cơ giảm theo tốc độ.
- Điều chỉnh từ thông:
Trong chế độ định mức, từ thông là định mức và mạch từ có cơng suất tối đa. Luật điều
chỉnh tần số-điện áp là luật giữ gần đúng từ thông không đổi trên tồn dải điều chỉnh. Tuy
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
15
nhiên từ thơng động cơ, trên mỗi đặc tính, cịn phụ thuộc vào rất nhiều vào độ trượt s, tức
là phụ thuộc mơmen tải trên trục động cơ. Vì thế trong các hệ điều chỉnh yêu cầu chất
lượng cao cần tìm cách bù từ thơng.
Do đó I s
r
Lm
1 (T1r ) 2 nên nếu muốn giữ từ thông ψr khơng đổi thì dịng điện phải
được điều chỉnh theo tốc độ trượt. Phương pháp này có nhược điểm là mỗi động cơ phải
cài đặt một sensor đo từ thông không thích hợp cho sản xuất đại trà và cơ cấu đo gắn trong
đó bị ảnh hưởng bởi nhiệt độ và nhiễu.
Nếu điều chỉnh cả biên độ và pha của dòng điện thì có thể điều chỉnh được từ thơng rơto
mà không cần cảm biến tốc độ.
-Điều chỉnh tần số nguồn dòng điện.
Phương pháp điều chỉnh này sử dụng biến tân nguồn dịng. Biến tần nguồn dịng có
ưu điểm là tăng được công suất đơn vị máy, mạch lưc đơn giản mà vẫn thực hiện hãm tái
sinh động cơ. Nguồn điện một chiều cấp cho nghịch lưu phải là nguồn điện điều khiển. Để
tạo nguồn điện một chiều thường dùng chỉnh lưu điều khiển hoặc băm xung áp một chiều
có bộ điều chỉnh dịng điện có cấu trúc tỷ lệ-tích phân(PI), mạch lọc là điện kháng tuyến
tính có trị số điện cảm đủ lớn.
1.4.2. Điều khiển vectơ động cơ không đồng bộ:
Một số hệ thống yêu cầu chất lượng điều chỉnh động cao thì các phương pháp điều
khiển kinh điển khó đáp ứng được. Hệ thống điều khiển định hướng theo từ trường cịn gọi
là điều khiển vectơ, có thể đáp ứng các yêu cầu điều chỉnh trong chế độ tĩnh và động.
Nguyên lý điều khiển vectơ dựa trên ý tưởng điều khiển vectơ động cơ không đồng bộ
tương tự như điều khiển động cơ một chiều. Phương pháp này đáp ứng được yêu cầu điều
chỉnh của hệ thống trong quá trình quá độ cũng như chất lượng điều khiển tối ưu mômen.
Việc điều khiển vectơ dựa trên định hướng vectơ từ thơng rơto có thể cho phép điều khiển
tác rời hai thành phần dịng stato, từ đó có thể điều khiển độc lập từ thông và mômen động
cơ. Kênh điều khiển từ thơng thường gồm một mạch vịng điều chỉnh dịng điện sinh từ
thơng. Do đó hệ thống truyền động điện động cơ khơng đồng bộ có thể tạo được các đặc
tính tĩnh và động cao, có thể so sánh được với động cơ một chiều.
- Nguyên lý điều khiển vectơ:
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
16
Dựa trên ý tưởng điều khiển động cơ không đồng bộ tương tự như điều khiển động cơ
một chiều. Động cơ một chiều có thể điều khiển độc lập dịng điện kích từ và dịng phần
ứng để đạt được mơmen tối ưu theo cơng thức tính mơmen:
M KI - KI kt I -
Iu
Iu
Ids*
Uu
ĐM
Mạch điều
khiển và mạch
nghịch lưu
Iqs*
CKT
ĐK
Hình 1.9 Sự tương quan giữa điều khiển động cơ một chiều và điều khiển vectơ
Tương tự ở điều khiển động cơ không đồng bộ, nếu ta sử dụng công thức:
M=KmψrIqs=KmIdsIqs(khi chọn trục d trùng với chiều vectơ từ thơng rơto)
Thì có thể điều khiển M bằng cách điều chỉnh tốc độ đơc lập các thành phần dịng điện
trên hai trục vng góc của hệ toạ độ quay đồng bộ với vectơ từ thông rôto. Lúc này vấn
đề điều khiển động cơ khơng đồng bộ tương tự như dịng điều khiển động cơ điện một
chiều. Ở đây thành phần dòng điện ids đóng vai trị tương tự như dịng điện kích từ động cơ
một chiều(ikt) và thành phần dòng iqs tương tự như dòng phần ứng động cơ một chiều(iu).
Các thành phần có thể tính được nhờ sử dụng khái niệm vectơ khơng gian. Với ý tưởng
định nghĩa vectơ khơng gian dịng điện của động cơ được mô tả ở hệ toạ độ quay với tốc
độ ωs, các đại lượng dòng điện điện áp, từ thông sẽ là các đại lượng một chiều.
q
q
Is2
Iqs1
Is1
Is1
Iqs2
Is2
Iqs
s1
s2
d
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
Ids
r
s2
17
s1
Ids1 Ids2
r
d
Hình 1.10. Điều khiển độc lập hai thành phần dịng điện: Mơmen và kích từ
- Điều khiển trực tiếp mơmen:
Ra đời vào những năm cuối thập kỷ 90 của thế kỉ XX, thực hiện được đáp ứng nhanh. Vì
ψr có qn tính cơ nên khơng biến đổi nhanh được, do đó ta chú trọng thay đổi ψ s khơng
thay đổi ψr. Phương pháp này khơng điều khiển theo q trình mà theo điểm làm việc. Nó
khắc phục nhược điểm của điều khiển định hướng trường vectơ rôto ψ r cấu trúc phức tạp,
đắt tiền, độ tin cậy thấp(hiện nay đã có vi mạch tích hợp cao, độ chính xác cao), việc đo
dòng điện qua cảm biến gây chậm trễ, đáp ứng momen của hệ điều khiển vectơ chậm(cở
10ms) và ảnh hưởng của bão hoà mạch từ tới Rs lớn.
1.4.3. Luật điều chỉnh giữ khả năng quá tải không đổi.
Luật điều chỉnh giữ khả năng quá tải không đổi hay điều chỉnh điện áp-tần số với từ thông
là hàm của mômen tải thuộc phương pháp điều chỉnh vô hướng. Phương pháp này sử dụng
bộ biến tần-động cơ không đồng bộ rôto lồng sóc. Ta giả thiết điện áp và dịng điện đầu ra
của bộ biến tần là hình sin, có biên độ và tần số có thể thay đổi được thì nhìn vào sơ đồ
thay thế và các biểu thức tính tốn mơmen, dịng điện…ta thấy khi điều chỉnh tần số thì trở
kháng của động cơ thay đổi, do đó khi điều chỉnh tần số thì ta phải điều chỉnh cả điện áp
để đảm bảo động cơ khơng bị q dịng và đảm bảo khả năng sinh mômen theo yêu cầu
đặc tính tải.
Mơmen lớn nhất mà động cơ khơng đồng bộ sinh ra được(với tần số và điện áp nhất
định)chính là mômen tới hạnh, như vậy khả năng quá tải về mômen là λM=Mth/Mc
nếu bỏ qua điện trở dây quấn stato thì biểu thức mơmen tới hạn tính như sau:
U
M th K th
f
2
Trong đó Kth là hằng số phụ thuộc vào thông số của động cơ.
Điều kiện để giữ hệ số quá tải về mômen không đổi là:
M M th / M c
M thdm
M cdm
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
18
dm
dm
M
Mc
0
Mcdm
Mth
Mthdm
Hình 1,11. Đặc tính cơ điều chỉnh tần số theo luật giữ khả năng quá tải không đổi.
Từ hai biểu thức trên ta có thể tính được:
0
U sdm
0 dm
.
M
M thdm
Dạng đặc tính cơ thống kê của các máy sản xuất dạng gần đúng:
Khi hệ ổn định thì M=Mc và động cơ khơng đồng bộ rơto lồng sóc có đặc tính cơ cứng nên
có thể xem ω=ω1, từ đó ta có:
Us
1
U ódm 1dm
1 x / 2
f
f
dm
1 x / 2
Hay ở dạng đơn vị tương đối:
U * f *(1 x / 2 )
nếu gần đúng thì ta có
U1
s nên có thể coi luật điều khiển này là luật từ thông là hàm
f1
của mômen tải:
s* M c*
1.4.4. Điều khiển điện áp-tần sô giữ từ thông động cơ không đổi.
Từ thơng móc vịng qua khe hở khơng khí ψ δ được tính.
1 U1
R1
* I1 ( jX1 * )
C1 f1dm f1
f1
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
19
Trong đó C1: hệ số phụ thuộc vào kết cấu máy điện.
f1đm: tần số định mức, f1* : tần số đơn vị tương đối
*
Nếu bỏ qua thành phần sụt áp trên điện trở stato ta có
U 1*
tương ứng với quy luật
f1*
U1
= hằng số đã nêu ở mục (3-2), bị suy giảm ở vùng tần số thấp khi sụt áp trên điện trở
f1
stato có thể so sánh với điện áp stato U1. Điều này dẫn đến momen động cơ suy giảm theo
tần số. Để đảm bảo từ thống ψσ*
U 1*
* tương ứng với quy luật U 1 =hằng số đã nêu ở mục
f1
f1
(3-2), bị suy giảm ở vùng tấn số thấp khi sụt áp trên điện trở stato có thể so sánh với điện
áp stato U1. Điều này dẫn đến mômen động cơ suy giảm theo tần số. Để đảm bảo từ thông
ψσ không đổi ta cần bù điện áp rơi trên điện trở stato.
Giải pháp thực hiện trong thực tế hay dùng là phát hàm U1(f1) với dịng điện khơng
tải I10. Khi động cơ mang tải bù thêm lượng điện áp tỷ lệ với sụt áp trên điện trở stato ct.
Như vậy tại giá trị tần số đầu vào f1 giá trị điện áp sẽ có hai thành phần:
Thành phần thứ nhất U11 lấy từ hàm quan hệ U1(f1), thành phần thứ 2 tỷ lệ với dịng
điện tả U12~I1.
Dạng đặc tính cơ theo luật điều khiển điện áp tần số giữ từ thông động cơ không đổi
được vẽ trên
M
Mth
0
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
20
Hình 1.12. Đặc tính cơ điều khiển điện áp - tần số giữ từ thông động cơ không đổi
Nhận xét: Phương pháp điều khiển U1(f1) giữ từ thông không đổi đơn giản dễ thực hiện.
Vì vậy, phần lớn biến tần cơng nghiệp thường sử dụng giải pháp này.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
21
Chƣơng II
CẤU TRÚC BỘ BIẾN TẦN ĐA MỨC DÙNG TRONG TRUYỀN ĐỘNG ĐIỆN
TRUNG ÁP
A. Cấu trúc bộ biến tần đa mức.
2.1. Khái niệm
Bộ nghịch lưu có nhiệm vụ chuyển đổi năng lượng từ nguồn điện một chiều sang
dạng năng lượng điện xoay chiều để cung cấp cho tải xoay chiều. Bộ nghịch lưu áp là một
bộ nghịch lưu có nguồn một chiều cung cấp là nguồn áp và đối tượng điều khiển ở ngõ ra
là điện áp.
Linh kiện trong bộ nghịch lưu áp có vai trị như một khóa dùng để đóng, ngắt dịng
điện qua nó. Trong các ứng dụng với cơng suất vừa và nhỏ, có thể sử dụng transitor BJT,
MOSFET, IGBT làm khóa và ở phạm vi cơng suất lớn có thể sử dụng GTO, IGCT …
2.2. Phân loại bộ nghịch lƣu áp
Bộ nghịch lưu áp dựa theo các tiêu chí khác nhau có thể phân loại như sau:
- Theo số pha điện áp đầu ra: một pha, ba pha.
- Theo số bậc điện áp giữa một đầu pha tải và một điểm điện thế chuẩn trên mạch
(phase to pole voltage): hai mức (two level), đa mức (multilevel).
- Theo cấu trúc của bộ nghịch lưu: dạng nối tầng (cascade inverter), dạng điôt kẹp
(diode clamped inverter), dạng flying capacitor …
- Theo phương pháp điều chế:
+ Phương pháp điều rộng.
+ Phương pháp điều biên.
+ Phương pháp điều chế độ rộng xung dùng sóng mang (CBPWM).
+ Phương pháp điều chế độ rộng xung cải biến (SFO-PWM).
+ Phương pháp điều chế vectơ không gian (SVPWM).
2.3. Nghịch lƣu áp đa mức
Sự tiến bộ gần đây trong việc nâng cao tính năng dịng, áp của các thiết bị chuyển
mạch như IGBT, IGCT, GTO đã thúc đẩy việc sử dụng các bộ nghịch lưu nguồn áp trong
lĩnh vực công suất lớn. Các bộ nghịch lưu với dòng điện lớn và điện áp cao ngày càng ứng
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
22
dụng rộng rãi trong truyền động xoay chiều, trong truyền tải điện xoay chiều như bộ bù
tĩnh (static var compensator).
Cấu trúc chung của bộ nghịch lưu áp nhiều mức (đa mức) là có nhiều bộ gồm sáu
chuyển mạch thơng thường trong nghịch lưu ba pha để tổng hợp điện áp hình sin từ một số
mức điện áp từ nguồn áp của tụ điện. Lý do sử dụng các khóa chuyển mạch này là dịng
điện bị phân chia trong các khóa chuyển mạch và cho phép làm việc với công suất định
mức lớn hơn cơng suất từng khóa riêng rẽ.
2.4. Các cấu trúc cơ bản của bộ nghịch lƣu áp đa mức
2.4.1. Bộ nghịch lưu điôt kẹp (diode clamped multilevel inverter)
2.4.1.1. Cấu trúc
Bộ nghịch lưu điôt kẹp sử dụng các điôt kẹp và các tụ điện một chiều mắc nối tầng để
tạo ra điện áp có nhiều mức. Bộ nghịch lưu này có thể có cấu trúc: 3, 4 hay 5 mức, nhưng
thường sử dụng nhiều nhất trong các truyền động cơng suất lớn, điện áp trung bình
(medium voltage drives) là bộ nghịch lưu 3 mức (three level neutral point clamped: 3LNPC).
Hình 2.1: Bộ nghịch lưu điơt kẹp 3 mức
Cấu trúc của một bộ nghịch lưu điôt kẹp 3 mức như hình 2.1. Pha A của bộ nghịch
lưu gồm có 4 khóa bán dẫn S1 đến S4 và 4 điơt mắc song song ngược D1 đến D4. Điện áp
vào một chiều của bộ nghịch lưu thường được chia bởi 2 tụ điện nối tầng C d1 và Cd2, để tạo
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
23