Tải bản đầy đủ (.pdf) (13 trang)

Bài giảng điện tử số part 1 pps

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (401.86 KB, 13 trang )

TRNG I HC BÁCH KHOA À NNG
KHOA N T VIN THÔNG
oOo
BÀI GING
N T S 1
à Nng, 08 / 2007
Chng 1. H thng sm và khái nim v mã Trang 1
Chng 1
 THNG SM VÀ KHÁI NIM V MÃ
1.1. H THNG SM
1.1.1. Hm
1. Khái nim
m là tp hp các phng pháp gi và biu din các con s bng các kí hiu có giá tr s
ng xác nh gi là các ch s.
2. Phân loi
Có th chia các hm làm hai loi: hm theo v trí và hm không theo v trí.
a. Hm theo v trí:
m theo v trí là hm mà trong ó giá tr s lng ca ch s còn ph thuc vào v trí ca
nó ng trong con s c th.
Ví d: H thp phân là mt hm theo v trí. S 1991 trong h thp phân c biu din bng
2 ch s “1” và “9”, nhng do v trí ng ca các ch s này trong con s là khác nhau nên s mang
các giá tr s lng khác nhau, chng hn ch s “1”  v trí hàng n v biu din cho giá tr s
ng là 1 song ch s “1”  v trí hàng nghìn li biu din cho giá tr s lng là 1000, hay ch s
“9” khi  hàng chc biu din giá tr là 90 còn khi  hàng trm li biu din cho giá tr là 900.
b. Hm không theo v trí:
m không theo v trí là hm mà trong ó giá tr s lng ca ch s không ph thuc vào
 trí ca nó ng trong con s.
m La Mã là mt hm không theo v trí. Hm này s dng các ký t “I”, “V”, “X”
 biu din các con s, trong ó “I” biu din cho giá tr s lng 1, “V” biu din cho giá tr s
ng 5, “X” biu din cho giá tr s lng 10 mà không ph thuc vào v trí các ch s này ng
trong con s c th.


Các hm không theo v trí s không c  cp n trong giáo trình này.
1.1.2. C s ca hm
t s A bt k có th biu din bng dãy sau:
A= a
m-1
a
m-2
a
0
a
-1
a
-n
Trong ó a
i
là các ch s, (
1
m
n
i

÷

=
); i là các hàng s, i nh: hàng tr, i ln: hàng già.
Giá tr s lng ca các ch s a
i
s nhn mt giá tr nào ó sao cho tha mãn bt ng thc sau:
1Na0
i

−≤≤
(a
i
nguyên)
N c gi là c s ca hm.  s ca mt hm là s lng ký t phân bit c s
ng trong mt hm. Các h thng sm c phân bit vi nhau bng mt c s N ca h
m ó. Mi ký t biu din mt ch s.
Bài ging K THUT S Trang 2
Trong i sng hng ngày chúng ta quen s dng hm thp phân (decimal) vi N=10. Trong
 thng s còn s dng nhng hm khác là hm nh phân (binary) vi N=2, hm bát phân
(octal) vi N=8 và hm thp lc phân (hexadecimal) vi N=16.
- H nh phân : N =2 ⇒ a
i
= 0, 1.
- H thp phân : N =10 ⇒ a
i
= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- H bát phân : N =8

a
i
= 0, 1, 2, 3, 4, 5, 6, 7.
- H thp lc phân : N =16 ⇒ a
i
= 0, 1, 2, …8, 9, A, B, C,D, E, F.
Khi ã xut hin c s N, ta có th biu din s A di dng mt a thc theo c s N, c ký
hiu là A
(N)
:
A

(N)
= a
m-1
.N
m-1
+ a
m-2
.N
m-2
+ + a
0
.N
0
+ a
-1
.N
-1
+ + a
-n
.N
-n
Hay:


−=
=
1m
ni
i
i(N)

NaA
(1.1)
i N=10 (h thp phân):
A
(10)
= a
m-1
.10
m-1
+ a
m-2
.10
m-2
+ + a
0
.10
0
+ + a
-n
.10
-n
1999,959
(10)
=1.10
3
+ 9.10
2
+ 9.10
1
+ 9.10

0
+ 9.10
-1
+ 5.10
-2
+ 9.10
-3
i N=2 (h nh phân):
A
(2)
= a
m-1
.2
m-1
+ a
m-2
.2
m-2
+ + a
0
.2
0
+a
-n
2
-n
1101
(2)
= 1.2
3

+1.2
2
+ 0.2
1
+ 1.2
0
= 13
(10)
i N=16 (h thp lc phân):
A
(16)
= a
m-1
.16
m-1
+ a
m-2
.16
m-2
+ + a
0
.16
0
+ a
-1
16
-1
+ + a
-n
16

-n
3FF
(16)
= 3.16
2
+ 15.16
1
+ 15.16
0
= 1023
(10)
i N=8 (h bát phân):
A
(8)
= a
m-1
.8
m-1
+ a
m-2
.8
m-2
+ + a
0
.8
0
+ a
-1
.8
-1

+ + a
-n
.8
-n
376
(8)
= 3.8
2
+ 7.8
1
+ 6.8
0
= 254
(10)
Nh vy, biu thc (1.1) cho phép i các s bt k h nào sang h thp phân (h 10).
1.1.3. i c s
1. i t c s d sang c s 10
 chuyn i mt s hm c s d sang hm c s 10 ngi ta khai trin con s trong c
 d di dng a thc theo c s ca nó (theo biu thc 1.3).
Ví d 1.1
i s 1101
(2)
 h nh phân sang h thp phân nh sau:
1011
(2)
= 1.2
3
+ 0.2
2
+ 1.2

1
+ 1.2
0
= 11
(10)
2. i t c s 10 sang c s d
 chuyn i mt s t c s 10 sang c s d (d = 2, 8, 16) ngi ta ly con s trong c s 10
chia liên tip cho d n khi thng s bng không thì dng li. Kt qu chuyn i có c trong
m c s d là tp hp các s d ca phép chia c vit theo th t ngc li, ngha là s d
u tiên có trng s nh nht. (xem ví d 1.2)
Chng 1. H thng sm và khái nim v mã Trang 3
Ví d 1.2:
t lun: Gi d
1
, d
2
, ,d
n
ln lt là d s ca phép chia s thp phân cho c s d  ln th 1, 2,
3, 4, , n thì kt qu chuyn i mt s t hm c s 10 (thp phân) sang hm c s d s là:
d
n
d
n-1
d
n-2
d
1
,
ngha là d s sau cùng ca phép chia là bít có trng s cao nht (MSB), còn d su tiên là bít

có trng s nh nht (LSB).
Trong các ví d trên, c s ca hm c ghi  dng ch s bên di. Ngoài ra cng có th ký
 ch phân bit nh sau:
B - H nh phân (Binary) O - H bát phân (Octal)
D - H thp phân (Decmal) H - H thp lc phân (Hexadecimal)
Ví d: 1010B có ngha là 1010
(2)
37FH có ngha là 37F
(16)
& Quy tc chuyn i gia các hm c s 2, 8, 16 ?
1.2. HM NH PHÂN VÀ KHÁI NIM V MÃ
1.2.1. Hm nh phân
1. Khái nim
m nh phân, còn gi là hm c s 2, là hm trong ó ngi ta ch s dng hai kí hiu
0 và 1  biu din tt c các s. Hai ký hiu ó gi chung là bit hoc digit, nó c trng cho mch
n t có hai trng thái n nh hay còn gi là 2 trng thái bn ca FLIP- FLOP (ký hiu là FF).
Trong hm nh phân ngi ta quy c nh sau:
- Mt nhóm 4 bít gi là 1 nibble.
- Mt nhóm 8 bít gi là 1 byte.
- Nhóm nhiu bytes gi là t (word), có th có t 2 bytes (16 bít), t 4 bytes (32 bít),
 hiu rõ hn mt s khái nim, ta xét s nh phân 4 bít: a
3
a
2
a
1
a
0
. Biu din di dng a thc
theo c s ca nó là:

a
3
a
2
a
1
a
0 (2)
= a
3
.2
3
+ a
2
.2
2
+ a
1
.2
1
+ a
0
.2
0
Trong ó:
- 2
3
, 2
2
, 2

1
, 2
0
(hay 8, 4, 2, 1) c gi là các trng s.
- a
0
 c gi là bit có trng s nh nht, hay còn gi bit có ý ngha nh nht (LSB - Least
Significant Bit), còn gi là bít tr nht.
1023 16
63 16
3 16
0
15
15
3
A
(10)
=1023

A
(16)
=3FFH
13
2
6 2
3
2
1
1
0

1
2
0
1
A
(10)
=13

A
(2)
=1101
Bài ging K THUT S Trang 4
- a
3
 c gi là bit có trng s ln nht, hay còn gi là bít có ý ngha ln nht (MSB - Most
Significant Bit), còn gi là bít già nht.
Nh vy, vi s nh phân 4 bit a
3
a
2
a
1
a
0
trong ó mi ch s a
i
(i t 0 n 3) ch nhn c hai
giá tr {0,1} ta có 2
4
= 16 t hp nh phân phân bit.

ng sau ây lit kê các t hp mã nh phân 4 bít cùng các giá tr s thp phân, s bát phân và s
thp lc phân tng ng.
& T bng này hãy cho bit mi quan h gia các s trong h nh phân vi các s trong h
bát phân (N=8) và h thp lc phân (N=16)? Tó suy ra phng pháp chuyn i nhanh gia các
 này?
 thp phân a
3
a
2
a
1
a
0
S bát phân S thp lc phân
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
00
01
02
03
04
05
06
07
10
11
12
13
14
15

16
17
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
ng 1.1. Các t hp mã nh phân 4 bít
 chuyn i gia các h thng s m khác nhau gi vai trò quan trng trong máy tính s.
Chúng ta bit rng 2
3
= 8 và 2
4
= 16, t bng mã trên có th nhn thy mi ch s trong h bát phân
ng ng vi mt nhóm ba ch s (3 bít) trong h nh phân, mi ch s trong h thp lc phân
ng ng vi mt nhóm bn ch s (4 bít) trong h nh phân. Do ó, khi biu din s nh phân
nhiu bit trên máy tính  tránh sai sót ngi ta thng biu din thông qua s thp phân hoc thp
c phân hoc bát phân.
Ví d 1.3

: Xét vic biu din s nh phân 1011111011111110
(2)
.
1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0
y, có th biu din : 137376
(8)
theo h bát phân
hoc : BEFE
(H)
theo h thp lc phân.
67
3
7
3
1
EFEB
Chng 1. H thng sm và khái nim v mã Trang 5
& Vi s nh phân n bít có bao nhiêu t hp nh phân khác nhau? Xét trng hp s nh
phân 8 bít (n=8) a
7
a
6
a
5
a
4
a
3
a
2

a
1
a
0
có bao nhiêu t hp nh phân (t mã nh phân) khác nhau?
2. Các phép tính trên s nh phân
a. Phép cng
 cng hai s nh phân, ngi ta da trên qui tc cng nh sau:
0 + 0 = 0 nh 0
0 + 1 = 1 nh 0
1 + 0 = 1 nh 0
1 + 1 = 0 nh 1
Ví d 1.4
:
3

0011
2

0010
5

0101 = 1.2
2
+ 1.2
0
= 5
(10)
b. Phép tr
0 - 0 = 0 mn 0

0 - 1 = 1 mn 1
1 - 0 = 1 mn 0
1 - 1 = 0 mn 0
Ví d 1.5
:
7

0111
5

0101
2

0010 = 0.2
3
+ 0.2
2
+ 1.2
1
+ 0.2
0
= 2
(10)
c. Phép nhân
0 . 0 = 0
0 . 1 = 0
1 . 0 = 0
1 . 1 = 1
Ví d 1.6
:

7

0111
5

0101
35 0111
0000
0111
0000
0100011 = 1.2
5
+ 1.2
1
+ 1.2
0
= 35
(10)
d. Phép chia
0 : 1 = 0
1 : 1 = 1
u ý: Khi chia s chia phi khác 0
+
+
-
-
x
x
Bài ging K THUT S Trang 6
Ví d 1.7: 10 5


1010 101
2 101 10
(2)
= 2
(10)
00
0
ng dng thanh ghi dch thc hin phép toán nhân hai, chia hai:
1.2.2. Khái nim v mã
1. i cng
Trong i sng hàng ngày, con ngi giao tip vi nhau thông qua mt h thng ngôn ng qui
c, nhng trong máy tính và các h thng s ch x lý các d liu nh phân. Do ó, mt vn t
ra là làm th nào to ra mt giao din d dàng gia ngi và máy tính, ngha là máy tính thc hin
c nhng bài toán do con ngi t ra.
Vì các máy tính s hin nay ch hiu các s 0 và s 1, nên bt k thông tin nào di dng các ch
, ch cái hoc các ký t phi c bin i thành dng s nh phân trc khi nó có thc x
lý bng các mch s.
 thc hin u ó, ngi ta t ra vn  v mã hóa d liu. Nh vy, mã hóa là quá trình
bin i nhng ký hiu quen thuc ca con ngi sang nhng ký hiu quen thuc vi máy tính.
Nhng s liu ã mã hóa này c nhp vào máy tính, máy tính tính toán x lý và sau ó máy tính
thc hin quá trình ngc li là gii mã  chuyn i các bít thông tin nh phân thành các ký hiu
quen thuc vi con ngi mà con ngi có th hiu c.
Các lnh vc mã hóa bao gm:
- Mã hóa s thp phân
- Mã hóa ký t
- Mã hóa tp lnh
- Mã hóa ting nói
- Mã hóa hình nh v v
Phn tip theo chúng ta kho sát lnh vc mã hóa n gin nht là mã hóa s thp phân bng

cách s dng các t mã nh phân. Vic mã hóa ký t, tp lnh, ting nói, hình nh u da trên c
 mã hóa s thp phân.
0 0 0 0 0 1 011 0
0 0 0 0 0 0 111
Thanh ghi ban u
Thanh ghi sau khi dch trái 1 bít
ch trái 1 bít

nhân 2
0 0 0 0 0 0 10 1 1
0
Thanh ghi sau khi dch phi 1 bít
ch phi 1 bít

chia 20

Hình 1.1. ng dng thanh ghi dch thc hin phép toán nhân và chia 2
Chng 1. H thng sm và khái nim v mã Trang 7
2. Mã hóa s thp phân
a. Khái nim
Trong thc t mã hóa s thp phân ngi ta s dng các s nh phân 4 bit (a
3
a
2
a
1
a
0
) theo quy
c sau:

0

0000 ; 5

0101
1→ 0001 ; 6 → 0110
2

0010 ; 7

0101
3→ 0011 ; 8 → 1000
4→ 0100 ; 9 → 1001
Các s nh phân dùng  mã hóa các s thp phân c gi là các s BCD (Binary Coded
Decimal: S thp phân c mã hóa bng s nh phân).
b. Phân loi
Khi s dng s nh phân 4 bit  mã hóa các s thp phân tng ng vi 2
4
= 16 t hp mã nh
phân phân bit.
Do vic chn 10 t hp trong 16 t hp  mã hóa các ký hiu thp phân t 0 n 9 mà trong
thc t xut hin nhiu loi mã BCD khác nhau.
c dù tn ti nhiu loi mã BCD khác nhau, nhng có th chia làm hai loi chính: Mã BCD có
trng s và mã BCD không có trng s.
b1. Mã BCD có trng s là loi mã cho phép phân tích thành a thc theo trng s ca nó. Mã
BCD có trng sc chia làm 2 loi là: mã BCD t nhiên và mã BCD s hc.
Mã BCD t nhiên là loi mã mà trong ó các trng s thng c sp xp theo th t tng
n. Ví d: Mã BCD 8421, BCD 5421.
Mã BCD s hc là loi mã mà trong ó có tng các trng s luôn luôn bng 9.Ví d: BCD
2421, BCD 5121, BCD8 4-2-1

c trng ca mã BCD s hc là có tính cht i xng qua mt ng trung gian. Do
y,  tìm t mã BCD ca mt s thp phân nào ó ta ly bù (o) t mã BCD ca s bù 9
ng ng.
Ví d xét mã BCD 2421. ây là mã BCD s hc (tng các trng s bng 9), trong ó s 3
(thp phân) có t mã là 0011, s 6 (thp phân) là bù 9 ca 3. Do vy, có th suy ra t mã ca 6
ng cách ly bù t mã ca 3, ngha là ly bù 0011, ta s có t mã ca 6 là 1100.
b2. Mã BCD không có trng s là loi mã không cho phép phân tích thành a thc theo trng
 ca nó. Các mã BCD không có trng s là: Mã Gray, Mã Gray tha 3.
c trng ca mã Gray là b mã trong ó hai t mã nh phân ng k tip nhau bao gi cng ch
khác nhau 1 bit.
Ví d:
Các bng di ây trình bày mt s loi mã thông dng.
Mã Gray: 2

0011
3

0010
4

0110
Còn vi mã BCD 8421:
3

0011
4

0100
Bài ging K THUT S Trang 8
ng 1.2: Các mã BCD t nhiên.

BCD 8421 BCD 5421 BCD quá 3
a
3
a
2
a
1
a
0
b
3
b
2
b
1
b
0
c
3
c
2
c
1
c
0
 thp
phân
0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1 0 1 0 0 1
0 0 1 0 0 0 1 0 0 1 0 1 2

0 0 1 1 0 0 1 1 0 1 1 0 3
0 1 0 0 0 1 0 0 0 1 1 1 4
0 1 0 1 1 0 0 0 1 0 0 0 5
0 1 1 0 1 0 0 1 1 0 0 1 6
0 1 1 1 1 0 1 0 1 0 1 0 7
1 0 0 0 1 0 1 1 1 0 1 1 8
1 0 0 1 1 1 0 0 1 1 0 0 9
ng 1.3: Các mã BCD s hc
BCD 2421 BCD 5121 BCD 84-2-1
a
3
a
2
a
1
a
0
b
3
b
2
b
1
b
0
c
3
c
2
c

1
c
0
 thp
phân
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 1 1
0 0 1 0 0 0 1 0 0 1 1 0 2
0 0 1 1 0 0 1 1 0 1 0 1 3
0 1 0 0 0 1 1 1 0 1 0 0 4
1 0 1 1 1 0 0 0 1 0 1 1 5
1 1 0 0 1 1 0 0 1 0 1 0 6
1 1 0 1 1 1 0 1 1 0 0 1 7
1 1 1 0 1 1 1 0 1 0 0 0 8
1 1 1 1 1 1 1 1 1 1 1 1 9
ng 1.4
: BCD t nhiên và mã Gray.
BCD 8421 BCD quá 3 Mã Gray Gray quá 3
a
3
a
2
a
1
a
0
c
3
c
2

c
1
c
0
G
3
G
2
G
1
G
0
g
3
g
2
g
1
g
0
 thp
phân
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0 1
0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 2
0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1 3
0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 4
0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 5
0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 6
0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 7

1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 0 8
1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 9
Chng 1. H thng sm và khái nim v mã Trang 9
Chú ý: Mã Gray c suy ra t mã BCD 8421 bng cách: các bit 0,1 ng sau bit 0 ( mã
BCD 8421) khi chuyn sang mã Gray c gi nguyên, còn các bit 0,1 ng sau bit 1 ( mã BCD
8421) khi chuyn sang mã Gray thì o bít, ngha là t bit 1 thành bit 0 và bit 0 thành bit 1.
3. Mch nhn dng s BCD 8421:
ch nhn dng s BCD 8421 nhn tín hiu vào là các bít a
3
, a
2
, a
1
ca s nh phân 4 bít
a
3
a
2
a
1
a
0
, u ra y c quy nh nh sau:
- Nu y = 1 thì a
3
a
2
a
1
a

0
không phi s BCD 8421
- Nu y = 0 thì a
3
a
2
a
1
a
0
là s BCD 8421
Nh vy, nu mt s nh phân 4 bit không phi là mt s BCD 8421 thì ngõ ra y = 1. T bng
1.1 ta thy mt s nh phân 4 bít không phi là s BCD 8421 khi bít a
3
luôn luôn bng 1 và (bit a
1
ng 1 hoc bít a
2
bng 1).
Suy ra phng trình logic ca ngõ ra y: y = a
3
(a
1
+ a
2
) = a
3
a
1
+ a

3
a
2
 logic:
ng do vic xut hin s BCD nên có hai cách nhp d liu vào máy tính: nhp s nh phân,
nhp bng mã BCD.
 nhp s BCD thp phân hai ch s thì máy tính chia s thp phân thành các các và mi
các c biu din bng s BCD tng ng. Chng hn: 11
(10)
có thc nhp vào máy tính
theo 2 cách:
- S nh phân : 1011
- Mã BCD : 0001 0001
4. Các phép tính trên s BCD
a. Phép cng
Do s BCD ch có t 0 n 9 nên i vi nhng s thp phân ln hn s chia s thp phân thành
nhiu các, mi các c biu din bng s BCD tng ng.
Ví d 1.8
Cng 2 s BCD mt các:
5

0101 7

0111
3

0011 5

0101
8 1000 12 1100

0110
0001 0010
ch nhn dng
 BCD 8421
y
a
3
a
2
a
1
a
1
a
2
a
3
y
a
1
a
2
a
3
y
 hiu chnh
+ + + +
+
Bài ging K THUT S Trang 10
Có hai trng hp phi hiu chnh kt qu ca phép cng 2 s BCD 8421:

- Khi kt qu ca phép cng là mt s không phi là s BCD 8421
- Khi kt qu ca phép cng là mt s BCD 8421 nhng li xut hin s nh bng 1.
Vic hiu chnh c thc hin bng cách cng kt qu vi s hiu chnh là 6 (0110
2
).
 ví d 1.8 ã xem xét trng hp hiu chnh khi kt qu không phi là mt s BCD 8421.
Trng hp hiu chnh khi kt qu là mt s BCD 8421 nhng phép cng li xut hin s nh bng
1 c xem xét trong ví d sau ây:
Ví d 1.9
Hiu chnh kt qu cng 2 s BCD mt các khi xut hin s nh bng 1:
8

1000
9

1001
17 1 0001
0110
0001 0111
b. Phép tr
Phép toán tr 2 s BCD c thc hin theo quy tc sau ây:
A - B = A +
B
Trong ó
B
là s bù 2 ca B.
Ví d 1.10
Thc hin tr 2 s BCD mt các:
7


0111 0111
5

0101 1010
2 0010 1 0001
1
0010
u ý:
- Bù 1 ca mt s nh phân là ly o tt c các bít ca só (bit 0 thành 1, bit 1 thành 0).
- Bù 2 ca mt s nh phân bng s bù 1 cng thêm 1 vào bít LSB.
Xét các trng hp m rng sau ây:
1. Thc hin tr 2 s BCD 1 các mà s b tr nh hn s tr ?
2. M rng cho cng và tr 2 s BCD nhiu các ?
 hiu chnh (6)
+ +
t qu là s BCD 8421 nh
ng
i xut hin s nh bng 1
t qu sau khi hiu chnh là 17
Bù 1 ca 5
- -
+
+
ng 1 LSB  có bù 2 ca 5
i s nh
t qu cui cùng
Chng 2. i s BOOLE Trang 11
Chng 2
I S BOOLE
2.1. CÁC TIÊN  VÀ NH LÝ I S BOOLE

Trong các mch s, các tín hiu thng c cho  2 mc n áp, ví d: 0V và 5V. Nhng linh
kin n t dùng trong mch s làm vic  mt trong hai trng thái, ví d Transistor lng cc
(BJT) làm vic  hai ch là tt hoc dn bão hoà… Do vy,  mô t các mch s ngi ta dùng
 nh phân (binary), hai trng thái ca các linh kin trong mch sc mã hoá tng ng là 0
hoc 1.
t b môn i s phát trin t cui th k 19 mang tên ngi sáng lp ra nó: i s Boole, còn
c gi là i s logic, thích hp cho vic mô t mch s. i s Boole là công c toán hc quan
trng  phân tích và thit k các mch s, c dùng làm chìa khoá i sâu vào mi lnh vc liên
quan n k thut s.
2.1.1. Các tiên  ca i s Boole
Cho mt tp hp B hu hn trong ó ta trang b các phép toán + (cng logic), x (nhân logic), -
(bù logic/nghch o logic) và hai phn t 0 và 1 lp thành mt cu trúc i s Boole (c là Bun).
∀ x,y ∈ B thì: x+y ∈ B, x*y ∈ B và tha mãn 5 tiên  sau:
1. Tiên  giao hoán
∀x,y ∈ B: x + y = y + x
2. Tiên  phi hp
∀x,y,z ∈ B: (x+y)+z = x+(y+z) = x+y+z
(x.y).z = x.(y.z) = x.y.z
3. Tiên  phân phi
∀x,y, z ∈ B: x.(y + z ) = x.y + x.z
x + (y.z) = (x + y).(x + z)
4. Tiên  v phn t trung hòa
Trong tp B tn ti hai phn t trung hòa là phn t n v và phn t không. Phn tn v
ký hiu là 1, phn t không ký hiu là 0.
∀x ∈ B: x + 1 = 1
x . 1 = x
x + 0 = x
x . 0 = 0
5. Tiên  v phn t bù
∀x ∈ B, bao gi cng tn ti phn t bù tng ng, ký hiu

x
, sao cho luôn tha mãn:
x +
x
= 1 và x.
x
= 0
Bài ging N T S 1 Trang 12
u B = B* = {0,1} (B* ch gm 2 phn t 0 và 1) và tha mãn 5 tiên  trên thì cng lp thành
u trúc i s Boole nhng là cu trúc i s Boole nh nht.
2.1.2. Các nh lý c bn ca i s Boole
1. Vn i ngu trong i s Boole
Hai mnh  (hai biu thc, hai nh lý) c gi là i ngu vi nhau nu trong mnh  này
ngi ta thay phép toán cng thành phép toán nhân và ngc li, thay 0 bng 1 và ngc li, thì s
suy ra c mnh  kia.
Khi hai mnh i ngu vi nhau, nu 1 trong 2 mnh c chng minh là úng thì mnh
 còn li là úng. Di ây là ví d v các cp mnh i ngu vi nhau.
Ví d 2.1
: x.(y+z) = (x.y) + (x.z)
x + (y.z) = (x+y).(x+z)
Ví d 2.2
: x +
x
= 1
x.
x
= 0
2. Các nh lý
a. nh lí 1 (nh lý v phn t bù là duy nht)
∀x, y ∈ B, ta có:

xy
0x.y
1yx
=⇒
=
=
+





là duy nht (x và y là 2 phn t bù ca nhau)
Phn t bù ca mt phn t bt k là duy nht.
b. nh lí 2 (lý v sng nht ca phép cng và phép nhân logic)
∀x ∈ B, ta có:
x + x +. . . . . + x = x
x. x. x. . . . . . x = x
c. nh lý 3 (nh lý v phnh hai ln)
∀x ∈ B, ta có:
x
= x
d. nh lí 4 (nh lý De Morgan)
∀x, y, z ∈ B, ta có:
zyx zyx =++
zyxx.y.z ++=
 qu:
∀x, y, z ∈ B, ta có:
x + y + z =
zyx ++ = z.y.x

x. y. z = x.y.z = zyx ++
e. nh lí 5 (nh lý dán)
∀x, y ∈ B, ta có:
x. (
x
+ y) = x.y
x + (
x
.y) = x + y
Hai m
nh  này là i ngu
Hai m
nh  này là i ngu

×