Toán 10 LƯƠNG ANH NHẬT - SĐT: 01212588206
________________________________________________________________________
1
ÔN TẬP KIỂM TRA HKII MÔN TOÁN LỚP 10
BÀI TẬP ÔN LUYỆN:
Bài 1: Cho đường tròn (C):
431
22
yx
, và điểm M
4;2
.
1. Viết phương trình đường thẳng (d) qua M và cắt đường tròn (C) tại hai điểm A, B phân
biệt sao cho M là trung điểm AB.
2. Viết phương trình tiếp tuyến của đường tròn (C) biết phương trình này có hệ số góc là
1k
.
Bài 2: Cho đường tròn (C):
0442
22
yxyx
, và điểm M
3;1
1. Viết phương trình đường thẳng (d) qua M và cắt đường tròn (C) tại hai điểm A, B phân
biệt sao cho M là trung điểm AB.
2. Viết phương trình đường tiếp tuyến của đường tròn (C) biết nó song song với đường
thẳng
01143: yx
.
Bài 3: Cho hai đường tròn:
222:C
22
1
yx
và
123:C
22
2
yx
.
Cho điểm M
2;1
, tìm trên (C
1
) điểm A và trên (C
2
) điểm B sao cho M là trung điểm AB.
Bài 4: Cho elip
164:E
22
yx
.
1. Tìm các yếu tố của elip.
2. Tìm điểm M thuộc elip biết M nhìn hai tiêu điểm với một góc 60
0
.
Bài 5: Cho elip
3649:
22
yx
. Hãy viết phương trình đường thẳng (d) qua điểm
M
1;1
sao cho M là trung điểm của AB.
Bài 6: Giải các bất phương trình sau:
a)
821
22
xxx
b)
1
5
34
2
2
xx
xx
c)
1
1
32
x
x
d)
111513
4
xxx
Bài 7: Giải các bất phương trình sau:
a)
xxx 2532
d)
4
11
2
2
x
x
x
b)
943
22
xxx
e)
92
24
13
x
xx
x
c)
0324
22
xxxx
f)
7
2
1
2
2
3
3
x
x
x
x
Bài 8: Cho
03122
2
mxmxmxf
.
a) Định m để
0xf
, vô nghiệm.
b) Tìm m để
0xf
có hai nghiệm
21
, xx
thỏa
21
2
2
2
1
2 xxxx
.
c) Tìm hệ thức giữa các nghiệm độc lập với m, khi
0xf
.
Bài 9: Chứng minh các đẳng thức sau:
a)
x
xx
xxx
3
32
cos
cossin
tantantan1
Toán 10 LƯƠNG ANH NHẬT - SĐT: 01212588206
________________________________________________________________________
2
b)
1sin6sin4cos4cossin3
46688
xxxxx
c)
4
cos2tan1coscot1sin
22
xxxxx
d)
00000
20cos
3
8
60tan50tan40tan30tan
e)
yxyxyxyx
222
sincoscoscos.cos.cos2
Bài 10: Cho
2tan x
. Tính:
a)
xx
xx
22
sin2cos
5cos.sin3
b)
xx
xxx
22
2
sin3cos
cos.sin2sin
ĐỀ THI THỬ:
Bài 1: Cho nđường tròn
0446:C
22
yxyx
, và điểm
1;8
.
1. Viết phương trình tiếp tuyến của
C
kẻ từ A.
2. Gọi M ,N là hai tiếp điểm của các tiếp tuyến kẻ từ A của
C
. Viết phương trình đường
thẳng MN và tính độ dài đoạn thẳng MN.
Bài 2: Cho
02121
2
mxmxmxf
.
1. Định m để phương trình có một nghiệm âm.
2. Tìm hệ thức giữa hai nghiệm của
xf
độc lập với m.
Bài 3: Giải các bất phương trình sau:
1.
1
2
32
2
2
xx
xx
2.
xxxxx 141814274926777
2
Bài 4:
1. Chứng minh biểu thức sau độc lập với biến:
xxxx
x
4sin2cot.4coscot
2
1tan
2
2. Tính giá trị biểu thức sau:
x
xxx
8cot
8sin
1
4sin
1
2sin
1
HẾT