Tải bản đầy đủ (.pdf) (24 trang)

tóm tắt nghiên cứu tối ưu một số thông số hệ thống treo ô tô khách sử dụng tại việt nam

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.27 MB, 24 trang )


1
MỞ ĐẦU

Tính cấp thiết của luận án
Khi ô tô chuyển động có rất nhiều yếu tố gây ra dao động làm mất tính an
toàn và êm dịu chuyển động. Đây là hai chỉ tiêu động lực học quan trọng,
không thể tách rời nhưng lại mâu thuẫn với nhau trong quá trình chuyển động,
được quyết định chủ yếu bởi chất lượng của hệ thống treo. Tuy nhiên, trong
hầu hết các thiết kế mới ô tô khách và nghiên cứu cải thiện hệ thống treo ô tô ở
nước ta hiện nay thường tập trung chủ yếu vào chỉ tiêu độ êm dịu mà ít quan
tâm đến an toàn chuyển động. Trên cơ sở lý thuyết tối ưu hóa đa mục tiêu, bài
toán thiết kế tối ưu hệ thống treo ô tô với hai hàm mục tiêu đồng thời là độ an
toàn và êm dịu chuyển động có thể được giải quyết nhanh chóng nhờ các phần
mềm tiên tiến.
Xuất phát từ những thực trạng trên, đề tài “Nghiên cứu tối ưu các thông số
hệ thống treo ô tô khách sử dụng tại Việt Nam” nhằm nghiên cứu hoàn thiện
kết cấu hệ thống treo để nâng cao độ êm dịu và an toàn chuyển động là thực sự
cần thiết và có ý nghĩa khoa học trong điều kiện thực tế của Ngành Công
nghiệp Ô tô Việt Nam.
Mục đích nghiên cứu của luận án
Mục đích cơ bản của luận án là xây dựng phương pháp thiết kế tối ưu các
thông số của hệ thống treo ô tô khách sản xuất lắp ráp và sử dụng trong nước
dựa trên lý thuyết tối ưu hóa đa mục tiêu.
Đối tƣợng và phạm vi nghiên cứu
Đối tượng nghiên cứu của luận án là hệ thống treo ô tô Huyndai County HD
29 E3.
Phạm vi nghiên cứu của luận án là một số thông số kỹ thuật của hệ thống
treo như: độ cứng của phần tử đàn hồi, thanh ổn định, ghế người lái và lốp xe;
hệ số cản của giảm chấn.
Phƣơng pháp nghiên cứu


Phương pháp nghiên cứu của luận án là kết hợp giữa nghiên cứu lý thuyết
và đánh giá thực nghiệm.
Ý nghĩa khoa học và thực tiễn
Có thể coi luận án là một trong những nghiên cứu đầu tiên về tối ứu hóa đa
mục tiêu trong thiết kế kỹ thuật ở Việt Nam. Thông qua việc nghiên cứu lý
thuyết tối ưu hóa đa mục tiêu, luận án góp phần hoàn thiện phương pháp tính
toán thiết kế hệ thống treo nhằm nâng cao độ êm dịu và an toàn chuyển động
của ô tô khách sản xuất lắp ráp và sử dụng trong nước, đồng thời giới thiệu một
phương pháp thiết kế ô tô khoa học dựa trên các công cụ tính toán hiện đại.
Bên cạnh những đóng góp giá trị về mặt lý thuyết, kết quả nghiên cứu của
luận án còn có thể được ứng dụng để nâng cao chất lượng sản phẩm của các
doanh nghiệp sản xuất lắp ráp ô tô trong nước, giúp các doanh nghiệp có một
nhãn quan toàn diện về chất lượng sản phẩm hiện tại để chế tạo ra những sản
phẩm có chất lượng ngang tầm thế giới trong tương lai.


2
Bố cục luận án
Xuất phát từ mục đích, đối tượng, phạm vi và phương pháp nghiên cứu.
Ngoài phần mở đầu và kết luận chung, bố cục của luận án gồm các chương như
sau:
Chương 1: Tổng quan vấn đề nghiên cứu
Chương 2: Cơ sở lý thuyết tối ưu hệ thống treo ô tô khách
Chương 3: Xây dựng mô hình dao động và tối ưu một số thông số hệ thống
treo ô tô khách Hyundai County HD 29 E3
Chương 4: Thí nghiệm

Chƣơng 1
TỔNG QUAN VẤN ĐỀ NGHIÊN CỨU


Ô tô là một hệ dao động phức tạp, bao gồm nhiều bộ phận được liên kết với
nhau, mỗi bộ phận có khối lượng và đặc tính dao động riêng. Khi xe chuyển
động, có rất nhiều yếu tố gây ra dao động của khối lượng được treo và không
được treo. Trong đó mấp mô không đều có tính ngẫu nhiên của bề mặt đường
được coi là nguồn kích thích chính, tác động lên bánh xe qua hệ thống treo gây
ra dao động của khối lượng được treo.
Như vậy, nghiên cứu hệ thống treo của xe ô tô là nghiên cứu dao động của
khối lượng được treo và khối lượng không được treo, hay nói cách khác là
nghiên cứu dao động của xe ô tô nhằm khử bỏ tới mức thấp nhất các dao động
để đảm bảo các chỉ tiêu làm việc của xe.
1.1. Tình hình nghiên cứu dao động ôtô
Có thể thấy, nội dung lĩnh vực nghiên cứu dao động ô tô bao hàm các vấn
đề sau: chỉ tiêu đánh giá dao động, mô hình dao động, các yếu tố gây dao động
và thí nghiệm dao động.
1.1.1. Các chỉ tiêu đánh giá dao động ôtô
Có nhiều chỉ tiêu khác nhau để đánh giá dao động ô tô: chỉ tiêu về độ êm
dịu chuyển động, chỉ tiêu về an toàn chuyển động, chỉ tiêu về không gian làm
việc của hệ thống treo.
1.1.1.1. Chỉ tiêu đánh giá độ êm dịu chuyển động
Có nhiều chỉ tiêu để đánh giá độ êm dịu chuyển động. Trong đó gia tốc dao
động kể đến đồng thời biên độ, tần số dao động và có ảnh hưởng trực tiếp đến
lái xe, hành khách, hàng hóa. Vì vậy, gia tốc dao động là chỉ tiêu quan trọng có
tính chất quyết định đến độ êm dịu chuyển động. Trong giới hạn cho phép, luận
án chỉ tập trung nghiên cứu đánh giá độ êm dịu chuyển động theo chỉ tiêu gia
tốc dao động.
Cơ sở để xác định chỉ tiêu về gia tốc dao động chính là giá trị bình phương
trung bình (root mean square - RMS) của gia tốc, Mitschke [54,55]:
Tùy thuộc vào điều kiện và mục đích nghiên cứu, có thể đánh giá độ êm dịu
chuyển động theo giá trị bình phương trung bình của gia tốc người lái, gia tốc
thẳng đứng thân xe, gia tốc lắc ngang, gia tốc lắc dọc hoặc có thể đánh giá theo


3
giá trị bình phương trung bình của tất cả các gia tốc kể trên theo biểu thức toán
học sau:
2 2 2 2
1
0 0 0 0
1 1 1 1 1
( ) ( ) ( ) ( )
4
T T T T
d
f Z t dt Z t dt t dt t dt
T T T T



   



   
(1.1)
1.1.1.2. Chỉ tiêu đánh giá an toàn chuyển động
Có nhiều chỉ tiêu để đánh giá an toàn chuyển động. Tuy nhiên, tải trọng
động thẳng đứng tác dụng giữa bánh xe với mặt đường là nguyên nhân chính
gây mất an toàn chuyển động (mất tính điều khiển).
Khi ôtô chuyển động trên đường có biên dạng mang đặc tính ngẫu nhiên thì
dáng điệu của tải trọng thẳng đứng của bánh xe F
z

(t) cũng mang đặc tính ngẫu
nhiên. Các giá trị của F
z
(t) dao động xung quanh vị trí giá trị trung bình
z
F
(gọi
là kỳ vọng toán học), theo kết quả thử nghiệm thì giá trị này bằng giá trị tải
trọng tĩnh đặt trên bánh xe F
zt
.
Tải trọng thẳng đứng của bánh xe F
z
(t) được xác định bằng tổng của tải
trọng tĩnh và tải trọng động giữa bánh xe và bề mặt đường:
( ) ( )
z zt zd
F t F F t
(1.2)
Phương sai của tải trọng thẳng đứng bánh xe được xác định theo biểu thức
sau đây:
22
22
0 0 0
1 1 1
( ) ( ) ( )
T T T
F F z z zt zd z zd
D F t F dt F F t F dt F t dt
T T T


   
      
   
  
(1.3)
Do đó, sai lệch bình phương trung bình của tải trọng thẳng đứng bánh xe
chính bằng giá trị bình phương trung bình của tải trọng động, được xác định
theo biểu thức toán học sau:
 
2
2
00
11
S ( ) ( )
TT
F F zd z z zd
D RM F F t F dt F t dt
TT


    


(1.4)
Theo quan điểm về an toàn chuyển động thì sai lệch bình phương trung
bình
FF
D



càng nhỏ càng tốt, có nghĩa là:
min
F



Có thể đánh giá chỉ tiêu an toàn chuyển động đối với ô tô có bốn bánh xe
theo biểu thức toán học tổng quát sau:
4
2
2
1
0
11
4
T
zdi
i
f F dt
T










(1.5)
1.1.2. Mô hình dao động
Có nhiều loại mô hình dao động ô tô khác nhau như mô hình ¼, mô hình ½
và mô hình không gian. Tuy nhiên, trong quá trình chuyển động, dưới các tác
động ngẫu nhiên của mặt đường và các lực quán tính do sự thay đổi các chế độ
chuyển động, nên thân xe sẽ dao động tịnh tiến theo phương thẳng đứng và dao
động góc quanh các trục lắc dọc và trục lắc ngang. Chuyển động phức tạp này
của thân xe có ảnh hưởng không nhỏ đến dao động của người lái, dao động của

4
cầu xe và các bánh xe. Để mô hình dao động sát với mô hình thực tế nhất, luận
án tập trung nghiên cứu mô hình dao động của ô tô khách trong không gian. Cho
phép nghiên cứu đồng thời dao động của người lái, dao động của thân xe, cầu xe
và các bánh xe dưới tác dụng kích thích ngẫu nhiên của biên dạng mặt đường và
các thành phần lực quán tính theo phương dọc và phương ngang tác dụng lên
thân xe trong quá trình chuyển động. Trong mô hình, có xét đến ảnh hưởng của
hệ thống thanh ổn định ngang đối với cầu trước và cầu sau.
1.1.3. Các yếu tố gây dao động
Khi ô tô chuyển động có nhiều yếu tố gây ra dao động, các yếu tố có thể kể
đến là: nội lực trong ôtô; các ngoại lực xuất hiện trong quá trình sử dụng như
tăng tốc, phanh, quay vòng; điều kiện ngoại cảnh như gió, bão; mấp mô mặt
đường. Trong các yếu tố kể trên mấp mô của đường là nguyên nhân chính gây
ra dao động của ô tô.
1.1.4. Thí nghiệm dao động ôtô
Thí nghiệm ôtô có bốn dạng: thí nghiệm đặc tính cụm để xác định thuộc
tính vật lý của chúng, thường áp dụng đối với các nhà máy chế tạo; thí nghiệm
xe trên bệ thử; thí nghiệm xe trên đường thực; thí nghiệm bằng mô hình lý
thuyết.
Ở Việt Nam, nguồn ngân sách phục vụ nghiên cứu khoa học rất hạn hẹp. Vì
vậy, để thuận tiện cho mục đích nghiên cứu, luận án lựa chọn phương pháp thí

nghiệm trên mô hình lý thuyết.
1.2. Tình hình nghiên cứu tối ƣu hệ thống treo ô tô khách
Trong hầu hết các nghiên cứu về hệ thống treo được công bố, các tác giả
thường tính toán các thông số của hệ thống treo trên cơ sở đảm bảo chỉ tiêu độ
êm dịu mà chưa quan tâm đến chỉ tiêu an toàn chuyển động. Tuy nhiên, khi
tăng độ êm dịu lại có thể gây mất an toàn chuyển động. Trong những năm gần
đây các công trình nghiên cứu hệ thống treo tập trung chủ yếu vào việc ứng
dụng các thành tựu kỹ thuật điều khiển điện tử để thiết kế hệ thống treo có điều
khiển. Có thể nói việc ứng dụng kỹ thuật điều khiển điện tử vào thiết kế hệ
thống treo có điều khiển có rất nhiều ưu điểm. Tuy nhiên, thiết kế hệ thống treo
có điều khiển rất phức tạp và đặc biệt là giá thành hệ thống treo có điều khiển
rất cao so với hệ thống treo bị động, do vậy hệ thống treo có điều khiển chỉ phù
hợp cho những xe con du lịch đời mới. Ở nước ta, do điều kiện hạn hẹp về kinh
phí, trình độ công nghệ chưa cao nên hệ thống treo bị động vẫn được sử dụng
là chủ yếu. Do vậy, nghiên cứu thiết kế tối ưu đối với hệ thống treo bị động
trên ô tô nói chung và trên ô tô khách sản xuất lắp ráp trong nước là một nhu
cầu cấp thiết trong điều kiện như hiện nay.
1.3. Nhiệm vụ của luận án
Nghiên cứu cơ sở lý thuyết tối ưu hóa đa mục tiêu và các phương pháp giải
bài toán tối ưu hóa đa mục tiêu để tối ưu hệ thống treo ô tô khách.
Nghiên cứu xây dựng mô hình dao động của ô tô khách trong không gian.
Trên cơ sở mô hình dao động, nghiên cứu ứng dụng phần mềm Matlab -
Simulink xây dựng mô hình mô phỏng dao động của ô tô khách, mô hình này
cho phép nghiên cứu đồng thời các đặc trưng động lực học của ô tô trong

5
những điều kiện chuyển động khác nhau; lựa chọn phương pháp tối ưu hóa đa
mục tiêu thích hợp, xây dựng thuật toán và giải bài toán tối ưu hóa đồng thời
hai hàm mục tiêu an toàn và êm dịu chuyển động nhằm xác định các thông số
tối ưu của hệ thống treo ô tô khách sản xuất lắp ráp tại Việt Nam.

Tiến hành thí nghiệm xác định các thông số đầu vào và so sánh kết quả thí
nghiệm với kết quả khảo sát trên mô hình để chuẩn hóa mô hình lý thuyết.

Chƣơng 2
CƠ SỞ LÝ THUYẾT TỐI ƢU
HỆ THỐNG TREO Ô TÔ KHÁCH

2.1. Thông số thiết kế
Các thông số của một hệ kỹ thuật như khối lượng, mô men quán tính, độ
cứng của phần tử đàn hồi, hệ số cản của giảm chấn và các kích thước hình học
quyết định toàn bộ tính chất động lực học của hệ. Trong các thông số trên, một
số thông số không thể thay đổi giá trị do các ràng buộc kỹ thuật và được coi
như những hằng số thiết kế. Các thông số khác có thể được thay đổi trong
phạm vi giới hạn nhất định để tạo ra những đặc tính động lực học khác nhau
của hệ được chọn làm thông số thiết kế (biến thiết kế) và được biểu diễn bằng
véctơ các thông số thiết kế, Deb [32], [33]:
12
, , , ,
T
h l u
h
p p p   


p p p p
(2.1)
Trong đó: h là số thông số thiết kế , p
l
và p
u

tương ứng là véc tơ giới hạn
dưới và giới hạn trên của các thông số thiết kế,
, 1(1)
lu
i i i
p p p i h  
.
2.2. Hàm mục tiêu (tiêu chuẩn tối ƣu)
Đối với một hệ động lực học, chúng ta thường mong muốn các thông số ra
( ), ( ), ( )tttyyy
của hệ dưới một kích thích
()th
nào đó phải nằm trong giới hạn
cho phép hoặc dao động ít nhất quanh một giá trị xác định theo yêu cầu đặt ra.
Hàm mục tiêu thường sử dụng là độ lệch chuẩn của thông số khảo sát (thông số
đầu ra) y(t) so với giá trị mong muốn
y
cho trước nào đó với khoảng thời gian
khảo sát là T, theo công thức tổng quát của Bestle [50]:
2
0
1
: ( ) ( )
T
f y t y d t
T





(2.2)








Khi nghiên cứu động lực học phương tiện, y(t) có thể là giá trị tải trọng
động từ bánh xe tác dụng xuống nền đường, còn
y
là giá trị tải trọng tĩnh, Hình
y(t)
y(t)
T
t
y

0
Hình 2.1: Thông số ra và giá trị mong muốn

6
2.1. Trường hợp các thông số khảo sát là gia tốc, vận tốc hay biên độ dịch
chuyển của thân xe hoặc cầu xe, giá trị mong muốn
0y 
, khi đó công thức
(2.2) biểu thị giá trị bình phương trung bình của các đại lượng khảo sát.
2.3. Các điều kiện ràng buộc
Điều kiện ràng buộc là các đẳng thức và bất đẳng thức mô tả mối quan hệ

giữa các thông số thiết kế và khoảng xác định của mỗi thông số. Điều kiện ràng
buộc có thể biểu diễn ở dạng các phương trình ràng buộc
( ) 0, 1(1) ,
j
g j lp
bất
phương trình ràng buộc
( ) 0, 1(1) ,
k
h k mp
hay đơn giản là miền giới hạn của các
thông số thiết kế
, 1(1) .
lu
i i i
p p p i h  
, Bestle [50]:
2.4. Bài toán tối ƣu đa mục tiêu
Quá trình tối ưu hóa một cách hệ thống và đồng thời các hàm mục tiêu
khác nhau được gọi là tối ưu hóa đa mục tiêu. Nhiệm vụ của bài toán tối ưu
hóa đa mục tiêu tổng quát là xác định véc tơ thông số thiết kế
T
12
, , ,
h
p p p


p=
, để tối thiểu véc tơ hàm mục tiêu

T
12
, , ,
n
f f f


f
, ràng buộc
bởi hệ các phương trình
() 0gp
và bất phương trình
() 0hp
, giới hạn biên đối
với thông số thiết kế là
,
lu
pp
:
 
T
12
min ( ) ( ), ( ), , ( ) ,
: , , ( ) , ( ) , .
n
h l m l u
f f f
P
P




       

00
f p p p p
p g h g p h p p p p
p
(2.3)
Véc tơ hàm mục tiêu có thể đạt được
()fp
được biểu thị bằng ánh xạ từ
véc tơ thông số thiết kế p thuộc miền thông số thiết kế P sang miền mục tiêu F
(Hình 2.2). Ánh xạ của các hàm mục tiêu
( ), 1(1)
i
f i np
, tương ứng với các giá
trị
Pp
xác định không gian mục tiêu hay miền mục tiêu có thể đạt được.
 
: ( ) ,
n
FP  f p p
(2.4)









Hình 2.2: Ánh xạ từ miền thông số thiết kế sang miền mục tiêu

2.5. Tập nghiệm tối ƣu Edgeworth - Pareto (EP)
Một điểm
EP
Pp
được gọi là nghiệm tối ưu EP nếu không tồn tại một
điểm
Pp
nào thỏa mãn điều kiện
( ) ( ),
EP
ii
f f ipp

( ) ( )
EP
jj
ffpp
dù chỉ
một
j
. Những điểm thỏa mãn điều kiện trên thuộc tập nghiệm tối ưu EP.
p
2


p
1

f
2

f
1

p
f(p)
Ánh xạ f
Miền mục tiêu F

Miền thông số P

h
IR
n
IR

7

:
EP EP
PPp

 

: ( )

EP
P f fp p p
(2.5)
( ) ( )
EP
ffpp
được hiểu là:
   
( ) ( ) ( ) ( )
EP EP
ii
f f i f f   p p p p











Hình 2.3: Tập nghiệm tối ưu
EP
P
và tập mục tiêu tối ưu
EP
F



Trong tập nghiệm tối ưu EP thì
EP
P
không nhất thiết phải nằm trên biên
của miền nghiệm chấp nhận được
P
nhưng tập các mục tiêu tối ưu
: ( )
EP EP
F  fp
luôn xác định trên biên của không gian mục tiêu
F
, vì thế
EP
F

còn được gọi là biên Pareto được thể hiện qua Hình 2.3. Cần lưu ý rằng tất cả
những điểm thuộc tập nghiệm tối ưu EP
EP
P
đều là nghiệm của bài toán tối ưu
hóa đa mục tiêu. Do vậy, người thiết kế phải quyết định lựa chọn một kết quả
thích hợp phù hợp với yêu cầu cụ thể của từng bài toán.
2.6. Phƣơng pháp hàm chặn (


Constraint Method) giải bài toán tối ƣu hóa
hai mục tiêu
Những nghiên cứu của Bestle [50] chỉ ra rằng, bản chất của phương pháp

hàm chặn là lựa chọn một mục tiêu
()
h
f p
để tối ưu trong khi các mục tiêu còn
lại được đưa vào dạng bất đẳng thức ràng buộc:
min ( )
r
h
P
f
p
p
với
 
 
: ( ) , \
r
i i n
P P f i I r

   pp
(2.6)
Đối với bài toán tối ưu hai mục tiêu thì phương pháp hàm chặn có thể được
biểu diễn như sau:
2
2
min ( )
P
f

p
p
với
 
2
11
: ( )P P f

  pp
(2.7)









Hình 2.4: Phương pháp hàm chặn đối với bài toán tối ưu hai mục tiêu
P
EP
F
EP
p
2

p
1


f
2

f
1

Ánh xạ f
Miền mục tiêu F
Miền thông số P
h
IR
n
IR
F
1
*

F
2
*

f
1
*

f
2
*

f

2

f
1

f
1
*

F
1
*

1


F
EP

f
1
2*

F
2
*

f
2
*


f
2
1*

f ( p
*
)
f (
P
2
)
(:)PF  f

8

Từ Hình 2.4, ta có thể hình dung được quá trình làm việc của phương pháp
hàm chặn đối với trường hợp tối ưu hai mục tiêu. Với
2
f
là mục tiêu cần tối ưu
trong khi
1
f
được xem như một ràng buộc với
11
f


, bài toán tối ưu hóa đa

mục tiêu được đưa về dạng tối ưu hóa một mục tiêu, bằng cách tối thiểu hóa
một hàm mục tiêu riêng lẻ
2
f
và bổ xung thêm điều kiện ràng buộc
11
f


. Với
ràng buộc này, không gian mục tiêu ban đầu có thể bị giảm còn
22
()FP f
, là
phần phía trên, bên trái của không gian
F
và được giới hạn bởi
1

. Nghiệm
của bài toán phụ thuộc nhiều vào giá trị của rằng buộc
1

.
Nếu
**
1 1 1 1
: ( )ff

p

được lựa chọn, khi giá trị của
1

thay đổi, sẽ không có
một nghiệm nào khả thi đối với bài toán đã cho. Mặt khác, nếu
2* *
1 1 1 2
: ( )ff

p

được lựa chọn thì toàn bộ không gian khảo sát là khả thi và kết quả là bài toán
tìm được nghiệm
*
2
F
.
Điểm
*
1
F

*
2
F
là các điểm tối ưu độc lập của từng hàm mục tiêu
1
f

2

f
.
Khi tối thiểu riêng hàm mục tiêu
2
f
thì giá trị nhỏ nhất của nó là
*
2
f
, tương
ứng với giá trị này ta sẽ xác định được một điểm
*
2
p
thuộc miền thông số. Thay
chính giá trị của
*
2
p
vào hàm mục tiêu
1
f
ta được
2*
1
f
:
**
2 2 2
* 2*

1 2 1
min ( )
( ):
P
f f P
ff

  

p
pp
p
(2.8)
Từ đó xác định được điểm
*
2
F
trên miền mục tiêu, đó là
* 2* *
2 1 2
( , )F f f
.
Đối với điểm
*
1
F
, tối thiểu riêng hàm mục tiêu
1
f
thì giá trị nhỏ nhất của nó


*
1
f
, tương ứng với giá trị này ta xác định được một điểm
*
1
p
thuộc miền
thông số. Thay chính giá trị của
*
1
p
vào hàm mục tiêu
2
f
ta được
1*
2
f
:
**
1 1 1
* 1*
2 1 2
min ( )
( ):
P
f f P
ff


  

p
pp
p
(2.9)
Tương tự, cũng có thể xác định được điểm
*
1
F
trên miền mục tiêu, đó là
* * 1*
1 1 2
( , )F f f
.
Một lợi thế đáng chú ý của phương pháp hàm chặn là những nghiệm tối ưu
Edgeworth - Pareto có thể được tìm thấy ngay cả khi không gian mục tiêu
không lồi. Hơn thế nữa những nghiệm tối ưu này có thể được phân bố đều trên
biên Pareto bằng cách thay đổi những giá trị của
1

trong khoảng giá trị nhỏ
nhất và lớn nhất của hàm mục tiêu
1
f
. Số điểm tối ưu (N) trên biên Pareto
(
EP
F

) nằm giữa các điểm tối ưu riêng
**
21
,FF
có thể được xác định bởi việc lựa
chọn giá trị rằng buộc
1

như sau:

9
2*
1 1 1k
fk

  
với
1(1)kN
(2.10)
2* *
11
1
:
1
ff
N





với
* * 2* *
1 1 1 1 1 2
: ( ), : ( )f f f fpp
(2.11)
*
i
p
biểu thị những điểm tối ưu độc lập của hàm mục tiêu
()
i
f p
được tối thiểu

*
i
f
.
*
: min ( ), 1,2
ii
P
f f i


p
p
(2.12)
Công thức trên có nghĩa là
1


giảm dần từ
2*
1
f
về
*
1
f
với một hiệu số không
đổi là
1


.
Phương pháp hàm chặn

có nhiều ưu điểm, đặc biệt là có thể tìm ra được
các nghiệm tối ưu Pareto trong vùng không gian mục tiêu lõm.
Kết luận chƣơng 2
Khái quát được bài toán tối ưu hóa đa mục tiêu và các phương pháp giải bài
toán tối ưu hóa đa mục tiêu. Trong đó, tập trung nghiên cứu kỹ phương pháp
hàm chặn

, làm cơ sở cho việc xây dựng thuật toán và giải bài toán tối ưu hóa
các thông số hệ thống treo ô tô khách.

Chƣơng 3
XÂY DỰNG MÔ HÌNH DAO ĐỘNG VÀ TỐI ƢU
MỘT SỐ THÔNG SỐ HỆ THỐNG TREO

ÔTÔ KHÁCH HYUNDAI COUNTY HD 29 E3

Để tối ưu các thông số hệ thống treo ô tô khách, trước hết cần xây dựng mô
hình vật lý, mô hình toán và mô hình mô phỏng dao động của ô tô khách trong
không gian. Mô hình này cho phép nghiên cứu đồng thời các đặc trưng động
lực học của ô tô trong những điều kiện chuyển động khác nhau. Ứng dụng
phương pháp tối ưu đa mục tiêu trong thiết kế kỹ thuật, xây dựng thuật toán và
giải bài toán tối ưu đồng thời hai hàm mục tiêu an toàn và êm dịu chuyển động
nhằm xác định các thông số tối ưu của hệ thống treo ô tô khách Hyundai
County HD 29 E3.
3.1. Xây dựng mô hình dao động ô tô khách
3.1.1. Các giả thiết khi xây dựng mô hình
Bỏ qua ảnh hưởng của các nguồn dao động trên ô tô như động cơ và hệ
thống truyền lực; phân bố khối lượng đối xứng theo trục dọc xe; khối lượng
được treo và cầu xe được coi là cứng tuyệt đối; các phần tử đàn hồi và giảm
chấn trong mô hình có đặc tính tuyến tính; bánh xe luôn tiếp xúc với mặt
đường có biên độ mấp mô tương ứng q
i
(i = 1,2,3,4).
3.1.2. Mô hình dao động của ô tô khách trong không gian
Với các giả thiết nêu trên, mô hình vật lý dao động của ô tô khách trong
không gian có xét đến dao động của người lái có thể được xây dựng như mô tả
trên Hình 3.1.


10
























Trong mô hình, người lái và ghế ngồi được xem như là một chất điểm có
khối lượng m
d
liên kết với thân xe qua phần tử đàn hồi có độ cứng c
d
và phần tử
giảm chấn có hệ số cản k
d
. Thân xe có khối lượng m
s
và các mô men quán tính

khối lượng J
x
, J
y
. Đặc trưng quán tính của cầu trước và cầu sau là khối lượng
m
uf
, m
ur
và mô men quán tính khối lượng J
uf
, J
ur
. Hệ thống treo phụ thuộc có hệ
số cản k
si
và độ cứng c
si
liên kết các cầu xe với thân xe. Tác dụng của thanh ổn
định phía trước và phía sau được đặc trưng bằng độ cứng chống xoắn c
af
và c
ar
.
Liên kết giữa các cầu với mặt đường được thực hiện thông qua các bánh xe có độ
cứng c
ui
. Các bánh xe luôn tiếp xúc với mặt đường có biên độ mấp mô tương
ứng q
i

(i = 1,2,3,4).
Mô hình có 8 bậc tự do, gồm:
- Dịch chuyển theo phương thẳng đứng của người lái Z
d
;
- Ba chuyển động của thân xe là dịch chuyển theo phương thẳng đứng của
trọng tâm Z, góc lắc dọc Θ và góc lắc ngang Φ; ba chuyển động này được mô
tả bằng véc tơ các tọa độ suy rộng của thân xe: y
s
= [Z, Ф, Θ]
T
;
- Bốn bậc tự do của khối lượng không được treo là dịch chuyển thẳng đứng
Z
uf
, Z
ur
và dịch chuyển góc Φ
uf
, Φ
ur
của cầu trước và cầu sau được biểu diễn
qua véc tơ các tọa độ suy rộng của khối lượng không được treo: y
u
= [Z
uf
, Z
uf
,
Ф

uf
, Ф
ur
]
T
.
Tám bậc tự do của mô hình có thể được biểu diễn bằng véc tơ các tọa độ
suy rộng của mô hình: z = [Z
d
, Z, Ф, Θ, Z
uf
, Z
uf
, Ф
uf
, Ф
ur
]
T
= [Z
d
, y
s
T
, y
u
T
]
T
.

l
f

l
r

2t
r

q
2

x
C

z
s4

z
s2

z
s1

z
s3

h
r


z
u3

z
u4

z
u2

y
C





q
4

q
3

v
c
u4

c
u3

k

s
4

k
s3

c
s3

c
s4

c
u2

c
s2

m
s
, J
x
, J
y

c
ar

m
d


r
yd

Z
h
p

2b
r

r
xd

k
d

c
d

Z
ur ,

ur

Z
d

m
ur

, J
ur

m
uf
, J
uf

2t
f

S
3

B
4
S
4
A
3

A
4

2a
r

sx
ma


sy
ma

2s
r

B
2
S
2

B
3

Hình 3.1: Mô hình dao động của ôtô khách trong không gian


C

11
Ngoại lực tác dụng lên mô hình là các kích thích từ mặt đường q
i
ở bốn
bánh xe và các lực quán tính đặt tại trọng tâm: F
jx
= m
s
a
x
theo phương dọc và

F
jy
= m
s
a
y
theo phương ngang.
Theo nguyên lý Đalămbe, hệ phương trình dao động tương ứng với 8
bậc tự do của mô hình như sau:
 
 
 
 
4
1
4
2
1
4
2
1
2
1
4
3
2
1
,
,
,

,

,



,


d d d
s si d
i
x s r si syi af ar d yd s y r
i
y s p si sxi d xd s x p
i
uf uf si ui
i
ur ur si ui
i
uf uf si syi ui uyi af
ii
m Z F
m Z F F
J m h F r M M F r m a h
J m h F r F r m a h
m Z F F
m Z F F
J F r F r M











  
      
   


  






2
1
44
33
,
.
ur ur si syi ui uyi ar
ii
J F r F r M





























  





(3.1)
Trong đó phương trình đầu tiên biểu diễn dao động của người lái, ba
phương trình tiếp theo mô tả dao động của thân xe (khối lượng được treo) và
bốn phương trình cuối cùng thể hiện các dao động của cầu trước và cầu sau
(khối lượng không được treo).
Các ký hiệu: F
d
biểu diễn lực liên kết giữa ghế lái và thân xe, F
si
và F
ui
biểu diễn lực liên kết của hệ thống treo tại vị trí bánh xe thứ i và lực liên kết
giữa các bánh xe thứ i với mặt đường (i = 1,2,3,4); M
af
và M
ar
biểu diễn mô
men chống lắc sinh ra do hệ thống ổn định ngang ở cầu trước và cầu sau; r
s

r
u
là tọa độ của các điểm đặt lực được cho trong Bảng 3.1.

Bảng 3.1: Tọa độ của các điểm đặt lực








3.1.3. Biểu diễn hệ phương trình dao động dưới dạng ma trận
Để thuận tiện cho việc phân tích và khảo sát mô hình, hệ phương trình dao
động (3.1) cần được biểu diễn ở dạng ma trận dựa trên các quan hệ hình học
giữa các chuyển vị và một số phép biến đổi.
Tọa độ
i
r
sxi
r
syi
r
uxi
r
uyi
Bánh trước trái
1
l
f
s
f
l
f
t
f
Bánh trước phải

2
l
f
-s
f
l
f
-t
f
Bánh sau trái
3
-l
r
s
r
-l
r
t
r
Bánh sau phải
4
-l
r
-s
r
-l
r
-t
r


12

  M z K z C z Q u
(3.2)
Trong đó:
 
T
81
, , , , , ,
d uf ur uf ur
Z Z Z Z
   



z
x
là véc tơ các tọa độ suy rộng;
 
T
T
TT
1 2 3 4
71
0, , 0, , , , , ,
s y r s x p
m a h m a h q q q q


  



su
u q q
x
là véc tơ các ngoại lực suy
rộng hay véc tơ các kích thích;
Các ma trận khối lượng M, ma trận hệ số cản K, ma trận độ cứng C và ma
trận ngoại lực Q.
3.1.4. Biểu diễn phương trình dao động ở dạng không gian trạng thái
Để thuận tiện cho việc phân tích và khảo sát hệ phương trình chuyển động
bằng phần mềm Matlab - Simulink, phương trình ma trận (3.2) được biểu diễn
dưới dạng phương trình không gian trạng thái như sau:
,
.





x Ax Bu
y D x E u
(3.3)
x là véc tơ trạng thái, bao gồm các tọa độ suy rộng z và đạo hàm bậc nhất của

z
:
 
   
T

TT
16 1
16 1 16 1
, ;
   

  
   

   
zz
x z z x
zz
x
xx
(3.4)
y là véc tơ các thông số ra (thông số đánh giá) bao gồm gia tốc dao động
của người lái
d
Z
; gia tốc dao động thân xe
, , Z

; tải trọng động ở các bánh
xe
zdi
F
và chuyển dịch tương đối của khối lượng được treo và không được treo
tại các vị trí bánh xe
zi si ui

zz  
.
 
T
1 2 3 4 1 2 3 4
12 1
, , , ,
d zd zd zd zd z z z z
Z Z F F F F


    

y , , , , , , ,
x
(3.5)
Trong đó các thành phần gia tốc dao động đặc trưng cho các chỉ tiêu đánh
giá độ êm dịu chuyển động của ô tô được xác định thông qua đạo hàm bậc hai
của véc tơ tọa độ suy rộng:
   
 
T
4 4 4 4
1 4 8
, , , ,
d
ZZ








I 0 z
G
xx
x
(3.6)
Tải trọng động ở các bánh xe cùng phương, ngược chiều và cùng độ lớn với
các lực liên kết giữa bánh xe với mặt đường và được xác định như sau:
   
 
TT
1 2 3 4 1 2 3 4
2
4 3 4 4
2 4 7
, , , , , , ,
,
zd zd zd zd u u u u
F F F F F F F F
.

   
   

     



u fu u u fu u
C G z C 0 I u C G z C G u
G
xx
x
(3.7)
Các ma trận trạng thái A, B và ma trận thông số đánh giá D, E được xác
định như sau:


13
Fzd
Body Motions
ax
u
y
-ms*hp
ms*hr
Vertical Vibrations
z_dd
Total Loads
Fz
theta _dd
phi _dd
zs_dd
Suspension deftections
delta _z
0
Static Loads
Fzt

State-Space
x' = Ax+Bu
y = Cx+Du
Speed
v
Road Excitations
qu
Long .acc.
du /dt
Lateral acc .
ay
Dynamic Loads
Fzd
Driver Vibration
zd_dd
ys _dd
zs _dd
phi_dd
theta_dd
   
 
 
 
 
 
 
 
 
8 8 8 8 8 7
1 1 1

16 16 16 7
1 1 1
1 1 1
2
48
4
48
12 7
12 16
, ,
, .
  
  
   

   
   
   




  








u fu u
fs
0 I 0
AB
M C M K M Q
G M C G M K G M Q
D C G 0 E C G
0
G0
x x x
xx
x
x7
x
x
x
(3.8)
3.2. Mô hình mô phỏng dao động của ô tô khách trong không gian
Dựa vào mô hình toán và hệ phương trình không gian trạng thái, có thể thiết
lập mô hình Matlab - Simulink giải hệ phương trình dao động của ôtô khách
trong không gian, được giới thiệu trên Hình 3.2. Gồm khối các thông số đầu
vào “inputs” mô tả véc tơ các ngoại lực suy rộng hay véc tơ các kích thích u;
khối mô hình “model” biểu diễn hệ phương trình dao động ô tô khách ở dạng
không gian trạng thái; khối các thông số ra “outputs” xác định véc tơ các thông
số ra hay thông số đánh giá của mô hình y.






















3.3. Tối ƣu hóa hệ thống treo ô tô khách Hyundai County HD 29 E3
3.3.1. Bài toán tối ưu hóa hệ thống treo ô tô khách
Để xây dựng bài toán tối ưu đa mục tiêu, trước hết cần xác định các
hàm mục tiêu và thông số thiết kế phù hợp với mục đích nghiên cứu. Nhiệm vụ
của bài toán tối ưu đa mục tiêu hệ thống treo ô tô khách là xác định các thông
số của hệ thống treo nhằm giảm thiểu dao động của thân xe, đảm bảo độ êm
dịu cho người lái và hành khách; đồng thời hạn chế sự thay đổi của tải trọng
Hình 3.2: Mô hình dao động ô tô khách 8 bậc tự do trong Matlab - Simulink

a) inputs b) model c) outputs


14
động ở các bánh xe, đảm bảo an toàn chuyển động của ô tô thông qua khả năng

duy trì sự tiếp xúc giữa bánh xe với mặt đường.
Chỉ tiêu về độ êm dịu và an toàn chuyển động có thể được xác định bằng
các biểu thức toán học sau đây:
2 2 2
2
0
1
2
1 1 1
/,
00
2
4
11
, .
4
1
d
T
zdi
TT
Z dt Z dt m s
TT
F dt N
T
i
f
f



















(3.9)
Thông số thiết kế của bài toán được chọn là độ cứng ghế người lái c
d
; hệ số
cản của giảm chấn k
sf
, k
sr
; độ cứng nhíp c
sf
, c
sr
và độ cứng của các thanh ổn
định ngang c

af
, c
ar
của hệ thống treo cầu trước và cầu sau.
Ràng buộc của bài toán tối ưu là giới hạn của các thông số thiết kế được xác
định trên cơ sở những thay đổi có thể thực hiện được trong điều kiện thực tế, giới
hạn chuyển dịch tương đối của khối lượng được treo và không được treo tại các
vị trí bánh xe:
 
max max 0,05
su
zz
và độ võng tĩnh của hệ thống treo cầu
trước và cầu sau:
/ 2 0,10; /2 0,10
sf sr
m g c m g c
sr
sf

.
Bài toán tối ưu đa mục tiêu ô tô khách có thể viết ở dạng tổng quát như sau:


T
12
T
T
, : , ,
, , , , , ,

71
25000, 5000, 5000, 100000, 100000, 0, 0
:
100000, 15000, 15000, 300000, 300000, 15000, 15
d sf sr sf sr af ar
min f f
c k k c c c c
P
P




  







lu
l
u
f(p) f(p)
p p p p
p
p
p
x

 
T
.
000
max max 0,05
/ 2 0,10
/ 2 0,10
sf sf
sr sr
m g c
m g c


















su

zz
(3.10)
Nhiệm vụ của bài toán là xác định tập hợp nghiệm tối ưu Edworth-Pareto
p
*

P
EP
. Mô hình Matlab - Simulink (Hình 3.2) với các thông số kỹ thuật của
ô tô khách Hyundai County HD 29 E3 sản xuất lắp ráp tại Việt Nam (Phụ lục
1,2) được sử dụng để đánh giá các chỉ tiêu êm dịu và an toàn chuyển động
trong quá trình tối ưu. Ô tô được mô phỏng chuyển động thẳng đều với vận tốc
v = 13km/h, gia tốc theo phương dọc và ngang a
x
= 0, a
y
= 0, các bánh xe bên
trái leo qua mấp mô dạng xung hình thang cân có chiều cao q
1max
= q
3max
=
0.1m. Thời gian trễ của tín hiệu q
3
là t
d
= (l
f
+ l
r

)/v.
3.3.2. Kết quả tối ưu sử dụng phương pháp hàm chặn

Nội dung của phương pháp là đưa bài toán tối ưu hai mục tiêu trở về bài
toán tối ưu một mục tiêu là chỉ tiêu an toàn chuyển động f
2
, còn chỉ tiêu độ êm
dịu f
1
được biểu diễn dưới dạng bất phương trình ràng buộc giới hạn bởi hàm
chặn ε, Tuấn Anh [25]:

15
   
 
2
11
2
2
, : .min f P P f
P

  

p p p
p
(3.11)
Để giải bài toán, trước hết cần xác định các cực tiểu riêng F
1
*

và F
2
*
nhờ
các bài toán tối ưu hóa các mục tiêu riêng biệt f
1
và f
2
, Phụ lục 3.
Sau khi giải các bài toán trên với giá trị ban đầu (điểm xuất phát) p
0
= p
l
, có
thể xác định vị trí của các cực tiểu riêng trong miền mục tiêu nhờ các véc tơ:
T
T
*
1 1min 2max
T
T
*
2 1max 2min
, 0.5755, 1206 ,
, 0.6058, 1144 .
ff
ff











f
f
(3.12)
Chia miền giá trị của f
1
thành N = 19 điểm cách đều giữa hai điểm mút f
1min
và f
1max
. Khoảng cách giữa các điểm được xác định theo công thức:
2* *
1max 1min
11
1
0.6058 0.5755
: 0.001515
1 1 19 1
ff
ff
NN





    
  
(3.13)






Hình 3.3: Tập nghiệm tối ưu trong miền không gian mục tiêu
Tập nghiệm tối ưu Edworth - Pareto trong miền mục tiêu biểu diễn trên
Hình 3.3 là kết quả nhận được sau khi giải N bài toán tối ưu đơn (3.11) tương
ứng với giá trị của các hàm chặn ε
1k
thay đổi từ f
1max
đến f
1min
, Phụ lục 4. Giá trị
cụ thể của bài toán tối ưu hệ thống treo ô tô khách Hyundai County HD 29 E3
chỗ ngồi được cho trong Bảng 3.2. Cần lưu ý rằng tất cả các điểm trên Hình
3.3 với các giá trị tương ứng cho trong Bảng 3.2 đều là nghiệm tối ưu EP. Phụ
thuộc điều kiện hoạt động của ô tô khách, ta có thể chọn nghiệm tối ưu được
khoanh tròn như trên Hình 3.3 làm kết quả cuối cùng của bài toán tối ưu hệ
thống treo ô tô khách Hyundai County HD 29 E3. Từ đó có thể xác định các
giá trị tối ưu của thông số thiết kế p
*
và hàm mục tiêu
*

f

tương ứng với
nghiệm được lựa chọn như sau:
T
*
T
*
100000, 7265,11297, 106193, 154709, 6711, 5683 ,
0.5906, 1171 .






p
f
(3.14)
So với ô tô nguyên thủy:
T
T
52537, 7733, 9804, 193844, 177007, 5000, 5000 ,
1.032, 1245 .







p
f
(3.15)
Nghiem toi uu
lua chon

16
Cả hai chỉ tiêu về êm dịu và an toàn chuyển động của ô tô khách sau khi tối
ưu hệ thống treo đều được cải thiện rõ rệt.

Bảng 3.2: Kết quả tối ưu hệ thống treo ô tô khách Hyundai County HD 29 E3


























3.4. Đánh giá dao động của ô tô khách với hệ thống treo tối ƣu trong miền
thời gian
3.4.1. Dao động ô tô dưới kích động của mấp mô mặt đường
3.4.1.1. Kích thích mặt đƣờng dạng xung
Ô tô được mô phỏng chuyển động thẳng với vận tốc không đổi, a
x
= a
y
= 0,
mấp mô dạng xung đơn vị có chiều cao q
1
= q
3
= 0,1[m], q
2
= q
4
= 0.

TT
Mục tiêu
Thông số thiết kế tối ưu
f
1


f
2

c
d

k
sf

k
sr

c
sf

c
sr

c
af

c
ar

[m/s
2
]
[N]
[N/m]

[Ns/m]
[N/m]
[Nm/rad]
1
0,5755
1206
100000
6981
10493
106193
154709
8
0
2
0,5770
1197
100000
7014
10217
106193
154709
712
986
3
0,5785
1190
100000
7061
10022
106193

154709
1094
2133
4
0,5801
1186
100000
7143
10031
106193
154709
1748
2889
5
0,5816
1183
100000
7261
10218
106193
154709
2559
3353
6
0,5831
1181
100000
7358
10434
106193

154709
3285
3784
7
0,5846
1180
100000
7402
10663
106193
154709
4005
4206
8
0,5861
1178
100000
7387
10884
106193
154709
4737
4618
9
0,5876
1176
100000
7345
11069
106193

154709
5443
5001
10
0,5891
1174
100000
7276
11211
106193
154709
6118
5358
11
0,5906
1171
100000
7265
11297
106193
154709
6711
5683
12
0,5921
1168
100000
7234
11347
106193

154709
7281
6002
13
0,5936
1165
100000
7206
11361
106193
154709
7817
6313
14
0,5952
1161
100000
7180
11344
106193
154709
8323
6617
15
0,5967
1157
100000
7152
11303
106193

154709
8800
6911
16
0,5982
1154
100000
7120
11244
106193
154709
9251
7194
17
0,5997
1151
100000
7080
11173
106193
154709
9675
7461
18
0,6012
1148
100000
7027
11096
106193

154709
10073
7708
19
0,6027
1145
100000
6956
11021
106193
154709
10439
7930
20
0,6042
1144
100000
6839
11260
106193
154709
10465
8648
21
0,6058
1144
100000
6901
11200
106193

154709
10519
8551
Hình 3.4: Gia tốc dao động của người lái, thân xe và sự thay đổi tải trọng
bánh xe với kích thích mặt đường dạng xung, v = 10km/h


17
Có thể thấy giá trị của gia tốc và tải trọng đạt cực đại tại thời điểm các bánh
xe bên trái bắt đầu leo lên mấp mô, Hình 3.4.
Bảng 3.3: Các chỉ tiêu đánh giá dao động ô tô trước và sau khi tối ưu
với kích thích mặt đường dạng xung

TT
Vận tốc
v [km/h]
Hệ thống treo Ô tô
Hyundai County 29 E3
Chỉ tiêu êm dịu
f
1
[m/s
2
]
Chỉ tiêu an toàn
f
2
[N]
1
5[km/h]

Hệ thống treo nguyên thủy
0,9910
1519,0
Hệ thống treo tối ưu
0,7574
1119,8068
Tỷ lệ thay đổi
-23,57%
-26,28%
2
10[km/h]
Hệ thống treo nguyên thủy
0,5571
871,3508
Hệ thống treo tối ưu
0,4230
645,9323
Tỷ lệ thay đổi
-24,08%
-25,87%
3
20[km/h]
Hệ thống treo nguyên thủy
0,2892
525,4681
Hệ thống treo tối ưu
0,2191
390,5804
Tỷ lệ thay đổi
-24,23%

-25,66%
4
40[km/h]
Hệ thống treo nguyên thủy
0,1432
279,3483
Hệ thống treo tối ưu
0,1093
237,2226
Tỷ lệ thay đổi
-23,67%
-15,08%
5
80[km/h]
Hệ thống treo nguyên thủy
0,0743
150,0964
Hệ thống treo tối ưu
0,0552
128,5426
Tỷ lệ thay đổi
-25,67%
-14,36%

3.4.1.2. Kích thích mặt đƣờng ngẫu nhiên
Biên độ kích thích ngẫu nhiên của mặt đường ngẫu nhiên được mô phỏng
theo tiêu chuẩn ISO với chất lượng đường trung bình. Kết quả mô phỏng và đánh
giá dao động của ô tô trước và sau tối ưu được thể hiện trong Bảng 3.4.

Bảng 3.4: Các chỉ tiêu đánh giá dao động ô tô trước và sau khi tối ưu

với kích thích mặt đường ngẫu nhiên

TT
Vận tốc
v [km/h]
Hệ thống treo Ô tô
Hyundai County 29 E3
Chỉ tiêu êm dịu
f
1
[m/s
2
]
Chỉ tiêu an toàn
f
2
[N]
1
5[km/h]
Hệ thống treo nguyên thủy
0,6858
1738,4
Hệ thống treo tối ưu
0,5120
1337,7
Tỷ lệ thay đổi
-25,34%
-23,06%
2
10[km/h]

Hệ thống treo nguyên thủy
0,9540
2578,2
Hệ thống treo tối ưu
0,7121
2065,9
Tỷ lệ thay đổi
-25,36%
-19,87%
3
20[km/h]
Hệ thống treo nguyên thủy
1,3188
3902,3
Hệ thống treo tối ưu
0,9911
3306,4
Tỷ lệ thay đổi
-24,85%
-15,26%
4
40[km/h]
Hệ thống treo nguyên thủy
1,6436
5063,3
Hệ thống treo tối ưu
1,2199
4492,2
Tỷ lệ thay đổi
-25,78%

-11,27%
5
80[km/h]
Hệ thống treo nguyên thủy
1,8605
6527,9
Hệ thống treo tối ưu
1,3931
5854,9
Tỷ lệ thay đổi
-25,12%
-10,30%

3.4.2. Dao động ô tô dưới kích động của lực quán tính
3.4.2.1. Dao động của ô tô khi phanh
Ô tô được mô phỏng phanh trên đường bằng phẳng với vận tốc ban đầu v
0

= 50km/h đến khi dừng hẳn, gia tốc dọc chậm dần đều a
x
= 5m/s
2
.
Kết quả mô phỏng được thể hiện trên Hình 3.5. Các thông số dao động có
giá trị lớn tại thời điểm bắt đầu và kết thúc quá trình phanh. Gia tốc lắc ngang
thân xe

có giá trị rất nhỏ so với gia tốc lắc dọc

. Do tác dụng của lực

quán tính khi phanh, các bánh xe cầu trước được tăng tải trong khi các bánh
xe cầu sau bị giảm tải.

18



Bảng 3.5: Các chỉ tiêu đánh giá dao động ô tô trước và sau tối ưu khi phanh

TT
Vận tốc trƣớc
khi phanh
Hệ thống treo Ô tô
Hyundai County 29 E3
Chỉ tiệu êm dịu
f
1
[m/s
2
]
Chỉ tiêu an toàn
f
2
[N]
1
50[km/h]
Hệ thống treo nguyên thủy
0,1003
360,3723
Hệ thống treo tối ưu

0,0948
359,7957
Tỷ lệ thay đổi
-5,5%
-0,16%

3.4.2.2. Dao động của ô tô khi quay vòng
Ô tô được mô phỏng quay vòng trên đường bằng phẳng với vận tốc không
đổi v
0
= 30km/h, gia tốc ngang tăng dần từ 0 đến giá trị ổn định a
y
= 5m/s
2
. Kết
quả mô phỏng được thể hiện trên Hình 3.6. Sự thay đổi giá trị được bắt đầu tại
thời điểm biến đổi gia tốc ngang, gia tốc lắc ngang thân xe có giá trị lớn hơn
nhiều so với thành phần gia tốc dao động thẳng đứng và gia tốc lắc dọc thân
xe. Do ảnh hưởng của lực quán tính ly tâm nên có sự phân bố lại tải trọng giữa
các bánh xe bên trái và các bánh xe bên phải, các bánh xe bên trái giảm tải
trong khi các bánh xe bên phải được tăng tải.


Hình 3.5: Gia tốc dao động của người lái, thân xe và
sự thay đổi của tải trọng bánh xe khi phanh

Hình 3.6: Gia tốc dao động của người lái, thân xe và
sự thay đổi của tải trọng bánh xe khi quay vòng, a
y
= 5m/s

2



19
Bảng 3.6: Các chỉ tiêu đánh giá dao động ô tô trước va sau tối ưu khi quay vòng
TT
Gia tốc
ngang
a
y
[m/s
2
]
Hệ thống treo Ô tô
Hyundai County 29 E3
Chỉ tiêu êm dịu
f
1
[m/s
2
]
Chỉ tiêu an toàn
f
2
[N]
1
3m/s
2


Hệ thống treo nguyên thủy
0,0157
1466,1
Hệ thống treo tối ưu
0,0145
987,1251
Tỷ lệ thay đổi
-7,55%
-32,67%
2
4m/s
2

Hệ thống treo nguyên thủy
0,0147
1917,0
Hệ thống treo tối ưu
0,0137
1288,7991
Tỷ lệ thay đổi
-6,52%
-32,77%
3
5m/s
2

Hệ thống treo nguyên thủy
0,0134
2348,2
Hệ thống treo tối ưu

0,0126
1570,711
Tỷ lệ thay đổi
-5,71%
-33,11%
4
6m/s
2

Hệ thống treo nguyên thủy
0,0159
2760,1
Hệ thống treo tối ưu
0,0144
1852,3031
Tỷ lệ thay đổi
-9,33%
-32,89%
5
7m/s
2

Hệ thống treo nguyên thủy
0,0129
3151,6
Hệ thống treo tối ưu
0,0125
2108,1052
Tỷ lệ thay đổi
-3,42%

-33,12%

3.5. Đánh giá dao động của ô tô khách với hệ thống treo tối ƣu trong miền
tần số
Xét ảnh hưởng của biên độ mặt đường q
1
= 0,1[m] đến các thông số ra, giả
thiết các kích thích khác có giá trị bằng không (q
2
= q
3
= q
4
= a
x
= a
y
= 0). Các
hàm truyền đạt được xác định như sau:
12
14 24 34 44 54 64
1 1 1 1 1 1
3 4 3
1 2 4
74 84 94 104 114 124
1 1 1 1 1 1
, , , , , ,
, , , , , .
d zd zd
zd zd z

z z z
Z F F
Z
W W W W W W
q q q q q q
FF
W W W W W W
q q q q q q

     

  
     
(3.16)
3.5.1. Dao động của người lái và thân xe


















Hình 3.7: Gia tốc dao động của người lái và thân xe, q
1
= 0,1m


20
3.5.2. Sự thay đổi của tải trọng bánh xe

3.5.3. Chuyển dịch tương đối của khối lượng được treo và không được treo
tại các vị trí bánh xe

Hình 3.8: Sự thay đổi tải trọng bánh xe, q
1
= 0,1m

Hình 3.8: Chuyển dịch tương đối của khối lượng được treo
và không được treo tại các vị trí bánh xe, q
1
= 0,1m


21
Kết luận Chƣơng 3
Xây dựng được mô hình vật lý, mô hình toán và mô hình mô phỏng dao động
của ô tô khách trong không gian có xét đến dao động của người lái và ảnh hưởng
của thanh ổn định ngang cầu trước, cầu sau. Trên cơ sở mô hình mô phỏng dao
động tám bậc tự do của ôtô khách trong không gian và phương pháp hàm chặn (ε
- Constraint Method), xây dựng thuật toán giải bài toán tối ưu hóa đồng thời hai

hàm mục tiêu an toàn và êm dịu chuyển động để xác định các thông số tối ưu
của hệ thống treo ô tô khách Hyundai County HD 29 E3 sản xuất lắp ráp tại
Việt Nam. Các kết quả tối ưu hệ thống treo trong miền thời gian với các chế độ
chuyển động khác nhau và trong miền tần số đều cho thấy các chỉ tiêu về êm
dịu và an toàn chuyển động của ô tô được cải thiện rõ rệt so với hệ thống treo
nguyên thủy.

Chƣơng 4: THÍ NGHIỆM

4.1. Mục đích thí nghiệm
Xác định thông số đầu vào cho bài toán lý thuyết, đồng thời kết quả thí
nghiệm là cơ sở để chuẩn hóa mô hình lý thuyết.
4.2. Đối tƣợng thí nghiệm
Thí nghiệm được thực hiện trên ô tô khách Huyndai County HD 29 E3 sản
xuất lắp ráp tại Việt Nam.
4.3. Các thông số cần đo
Các loại khối lượng của ô tô chọn khảo sát; độ cứng hệ thống treo, lốp, ghế
lái; hệ số cản giảm chấn của hệ thống treo và ghế lái; gia tốc dao động tại các
vị trí trên xe.
Kết quả thí nghiệm đo các loại khối lượng; độ cứng hệ thống treo, lốp, ghế
lái; hệ số cản giảm chấn của hệ thống treo và ghế lái tham khảo trong Phụ lục
2, Đặng Việt Hà [5]. Trong chương này NCS chỉ trình bày quá trình thí nghiệm
đo gia tốc dao động tại các vị trí trên xe ô tô.
4.4. Trang thiết bị phục vụ thí nghiệm
Thiết bị đo dao động LMS, loại 16 kênh cùng với gói phầm mềm đi kèm là
sản phẩm được sản xuất tại Vương Quốc Bỉ, Hình 4.1.



Hình 4.1: Bộ thu thập dữ liệu cùng máy tính xách tay chạy các phần mềm



4.5. Tiến hành thí nghiệm
- Thí nghiệm được thực hiện tại Học viện KTQS với điều kiện đường bê
tông khô, chiều dài 200 [m], độ dốc bằng 0;

22
0 1 2 3 4 5 6 7
-60
-40
-20
0
20
40
60
time(s)

" [deg/s
2
]
0 1 2 3 4 5 6 7
-30
-20
-10
0
10
20
30
time(s)


" [deg/s
2
]
0 1 2 3 4 5 6 7
-2
-1.5
-1
-0.5
0
0.5
1
time(s)
gia toc tai trong tam phan treo (m/s2)
0 1 2 3 4 5 6 7
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
time(s)
gia toc tai ghe lai (m/s2)
- Ôtô chuyển động với vận tốc không đổi v = 13[km/h] (a
x
= a
y

= 0);



Hình 4.2: Xe và các thành viên tham gia thí nghiệm

- Các bánh xe bên trái phía người lái lần lượt leo qua mấp mô dạng xung
hình thang cân có chiều cao q
1
= q
3
= 0,1[m];
- Các bánh xe bên phải chuyển động trên đường bằng (q
2
= q
4
= 0);
- Thời gian trễ của tín hiệu q
3
là t
d
= (l
f
+ l
r
)/v.
Thí nghiệm được tiến hành với việc đo gia tốc dao động tại một số vị trí
trên ô tô.
4.6. Kết quả thí nghiệm




















Hình 4.3: Gia tốc dao động người lái và thân xe




23
4.7. Sử dụng các kết quả thí nghiệm để chuẩn hóa mô hình lý thuyết
4.8. So sánh kết quả thu đƣợc từ mô hình lý thuyết đã đƣợc chuẩn hóa và
kết quả thu đƣợc từ thí nghiệm
Kết quả tính toán từ các giá trị thu được từ mô hình lý thuyết đã được chuẩn
hóa và giá trị thu được từ thí nghiệm cho ta các giá trị sai số tương đối như sau:
Z


= 7,32 (%);
Zd

= 5,47 (%);


= 6,25 (%);


= 4,16 (%).
Kết luận chƣơng 4
Chương 4 đã thực hiện được những nội dung cơ bản sau:
Đo và tính toán gia tốc dao động tại vị trí vị trí người lái
d
Z
, gia tốc tại
trọng tâm thân xe
Z
, gia tốc lắc dọc

và lắc ngang

của ô tô khách
Hyundai County HD 29 E3.
Những kết quả thí nghiệm này là cơ sở cho việc chuẩn hóa mô hình lý
thuyết được xây dựng ở Chương 3.
Kết quả tính toán sai số tương đối giữa giá trị thu được từ lý thuyết ứng với
mô hình đã được chuẩn hóa và giá trị thu được từ thí nghiệm cho thấy độ tin
cậy của mô hình lý thuyết. Trên cơ sở đó, có thể sử dụng mô hình lý thuyết để

nghiên cứu các đặc trưng động lực học cơ bản của ôtô trong những điều kiện
chuyển động khác nhau và là cơ sở khoa học để thiết kế tối hệ thống treo ô tô
khách.

KẾT LUẬN CHUNG

Nghiên cứu tối ưu các thông số hệ thống treo ô tô khách sản xuất lắp ráp và
sử dụng tại Việt Nam là rất cần thiết trong giai đoạn hiện nay. Luận án đã hoàn
thành được các mục tiêu nghiên cứu và đóng góp được những kết quả mới sau
đây:
1. Xây dựng được mô hình vật lý, mô hình toán và mô hình mô phỏng dao
động của ô tô khách trong không gian cho phép nghiên cứu đồng thời dao động
của người lái, dao động của thân xe và các bánh xe dưới tác dụng kích thích
ngẫu nhiên của biên dạng mặt đường và các thành phần lực quán tính theo
phương dọc và phương ngang tác dụng lên thân xe trong quá trình chuyển động.
Đặc biệt, mô hình đã đề cập đến các yếu tố ảnh hưởng của hệ thống thanh ổn
định ngang cầu trước và cầu sau đối với dao động của ô tô. Kết quả nghiên cứu
được công bố trong các công trình [2], [3], [4].
2. Luận án là một trong những nghiên cứu đầu tiên về tối ứu hóa đa mục
tiêu trong thiết kế kỹ thuật ở Việt Nam. Dựa trên mô hình dao động không gian
8 bậc tự do của ô tô khách có xét đến dao động của người lái, lựa chọn phương
pháp giải bài toán tối ưu đồng thời hai hàm mục tiêu an toàn và êm dịu chuyển
động nhằm xác định các thông số tối ưu của hệ thống treo:
c
d
= 100000 [N/m], k
sf
= 7265 [Ns/m], k
sr
= 11297 [Ns/m],

c
sf
= 106193 [N/m], c
sr
= 154709 [N/m], c
af
= 6711 [Nm/rad],
c
ar
= 5683 [Nm/rad], f
1
= 0,5906 [m/s
2
], f
2
= 1171 [N].

24
Các kết quả khảo sát dao động của ô tô khách Hyundai County HD 29 E3
trong miền thời gian ứng với các chế độ chuyển động khác nhau và trong miền
tần số cho thấy các chỉ tiêu về êm dịu và an toàn chuyển động của ô tô được cải
thiện rõ rệt so với hệ thống treo nguyên thủy, Bảng 3.3 - 3.6. Kết quả nghiên
cứu còn được công bố trong các công trình [1], [5].
3. Tiến hành thí nghiệm làm cơ sở cho việc chuẩn hóa mô hình lý thuyết.
Các kết quả tính toán sai số tương đối giữa giá trị thu được từ lý thuyết và thí
nghiệm (
Z

= 7,32 %;
Zd


= 5,47 %;


= 6,25 %;


= 4,16 %) cho thấy độ
tin cậy của mô hình lý thuyết. Trên cơ sở đó, có thể sử dụng mô hình lý thuyết
để nghiên cứu các đặc trưng động lực học cơ bản của ôtô trong những điều
kiện chuyển động khác nhau và là cơ sở khoa học để thiết kế tối ưu hệ thống
treo ô tô khách nói riêng và ô tô nói chung.
4. Thông qua việc nghiên cứu tối ưu hóa thiết kế hệ thống treo ô tô khách
sản xuất lắp ráp và sử dụng trong nước, luận án giới thiệu một phương pháp
thiết kế ô tô khoa học dựa trên các công cụ lý thuyết và tính toán hiện đại. Các
kết quả của luận án có thể được ứng dụng để nghiên cứu thiết kế tối ưu hệ
thống treo trên các loại xe ô tô khác nhau . Bên cạnh những đóng góp về mặt
khoa học, luận án còn có ý nghĩa thực tiễn, giúp các doanh nghiệp sản xuất lắp
ráp ô tô trong nước có cơ sở để sản xuất, chế tạo ra những sản phẩm có chất
lượng cao.

KIẾN NGHỊ VỀ NHỮNG NGHIÊN CỨU TIẾP THEO

Do một số nguyên nhân khách quan và chủ quan nên đề tài còn một số hạn
chế cần tiếp tục mở rộng nghiên cứu:
Nghiên cứu chế tạo hệ thống treo theo các thông số đã tối ưu thay thế cho
hệ thống treo nguyên thủy;
Tối ưu hóa các thông số hình học của xe ô tô khách nhằm nâng cao độ êm
dịu và an toàn chuyển động.















×